首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The tree-of-heaven Ailanthus altissima (family Simaroubaceae, order Sapindales) is one of the most invasive neophytes in Europe. The tree originated in China and became invasive worldwide in areas with Mediterranean to temperate climates. As known from other invasive plants, only a few pathogens have been reported from A. altissima in Europe, and, to date, powdery mildews on it have been unknown in the European region. Recently, two powdery mildews were found on A. altissima during a survey of neomycetes on non-native plants in Switzerland. Because they did not fit with any of the species known to occur on Simaroubaceae in Asia, they were identified by DNA barcoding using sequences of the ITS region of the n-rDNA, revealing them to be the powdery mildews of plane and oak trees, Erysiphe platani and E. alphitoides. This is the first record of E. platani on a host outside the genus Platanus and its family Platanaceae, as well as its order Proteales. In contrast, E. alphitoides has been reported to occur on several host families and orders. Host jumps over great phylogenetic distances—such as across plant families and orders—appear to be quite common in biogeographically novel associations between Erysiphales species and plants. The consequences of such host jumps for identity and taxonomic placement of species are discussed here. It is further questioned whether both pathogens are usable as biological control agents against the tree-of-heaven.  相似文献   

2.
This study examined the co-immobilization of the cyanobacterium Synechococcus elongatus with the plant growth-promoting bacterium Azospirillum brasilense in alginate beads and its potential application for the removal of phosphorus from aquaculture wastewater. Co-immobilization of both microorganisms significantly increased the cell density of S. elongatus (2852.5?×?104 cells mL?1) compared with that of immobilization of cyanobacteria alone (1325.2?×?104 cells mL?1). Chlorophyll a content was similar in co-immobilized (11.1?±?3.5 pg cell?1) and immobilized S. elongatus (14.5?±?4.9 pg cell?1). Azospirillum brasilense showed continuous growth until day 2, after which its cell concentration declined until the end of the assay. Co-immobilized S. elongatus removed more phosphorus (44.8 %) than immobilized cyanobacteria cells alone (32.0 %). In conclusion, phosphate removal was greater with free cells of S. elongatus but overlapped with the values that were obtained with the treatment of co-immobilization of cells. Our results demonstrate that A. brasilense enhances the growth of S. elongatus and improves its removal of phosphorus when they are co-immobilized in alginate beads compared with only immobilization of cyanobacteria cells alone.  相似文献   

3.
The influence of arbuscular mycorrhiza (AM) and drought stress on aquaporin (AQP) gene expression, water status, and photosynthesis was investigated in black locust (Robinia pseudoacacia L.). Seedlings were grown in potted soil inoculated without or with the AM fungus Rhizophagus irregularis, under well-watered and drought stress conditions. Six full-length AQP complementary DNAs (cDNAs) were isolated from Robinia pseudoacacia, named RpTIP1;1, RpTIP1;3, RpTIP2;1, RpPIP1;1, RpPIP1;3, and RpPIP2;1. A phylogenetic analysis of deduced amino acid sequences demonstrated that putative proteins coded by these RpAQP genes belong to the water channel protein family. Expression analysis revealed higher RpPIP expression in roots while RpTIP expression was higher in leaves, except for RpTIP1;3. AM symbiosis regulated host plant AQPs, and the expression of RpAQP genes in mycorrhizal plants depended on soil water condition and plant tissue. Positive effects were observed for plant physiological parameters in AM plants, which had higher dry mass and lower water saturation deficit and electrolyte leakage than non-AM plants. Rhizophagus irregularis inoculation also slightly increased leaf net photosynthetic rate and stomatal conductance under well-watered and drought stress conditions. These findings suggest that AM symbiosis can enhance the drought tolerance in Robinia pseudoacacia plants by regulating the expression of RpAQP genes, and by improving plant biomass, tissue water status, and leaf photosynthesis in host seedlings.  相似文献   

4.
Small heat shock proteins (sHSPs) have been shown to be involved in stress tolerance. However, their functions in Prunus mume under heat treatment are poorly characterized. To improve our understanding of sHSPs, we cloned a sHSP gene, PmHSP17.9, from P. mume. Sequence alignment and phylogenetic analysis indicated that PmHSP17.9 was a member of plant cytosolic class III sHSPs. Besides heat stress, PmHSP17.9 was also upregulated by salt, dehydration, oxidative stresses and ABA treatment. Leaves of transgenic Arabidopsis thaliana that ectopically express PmHSP17.9 accumulated less O2 ? and H2O2 compared with wild type (WT) after 42 °C treatment for 6 h. Over-expression of PmHSP17.9 in transgenic Arabidopsis enhanced seedling thermotolerance by decreased relative electrolyte leakage and MDA content under heat stress treatment when compared to WT plants. In addition, the induced expression of HSP101, HSFA2, and delta 1-pyrroline-5-carboxylate synthase (P5CS) under heat stress was more pronounced in transgenic plants than in WT plants. These results support the positive role of PmHSP17.9 in response to heat stress treatment.  相似文献   

5.
Species of Diaporthe are important plant pathogenic fungi that commonly occur on a wide range of hosts. They are relatively difficult to identify due to their extreme similarity in morphology and confusing multigene phylogeny, especially in the Diaporthe eres complex. In the present study, isolates were collected from diseased branches of Juglans regia in China. Most strains were clustered into the D. eres species complex based on the combined internal transcribed spacer (ITS) region, partial calmodulin (CAL), histone H3 (HIS), translation elongation factor 1-alpha (TEF1-α) and beta-tubulin (TUB) genes. To focus on this complex, CAL, TEF1-α and TUB were selected in further phylogenetic analyses that showed a better topology compared with combined five-gene phylogeny. Results revealed that all strains which clustered in the Diaporthe eres complex from Juglans regia in China were Diaporthe eres. Results suggested a revised species criterion in the Diaporthe eres complex. The current study uncovered a new species here described as Diaporthe. tibetensis.  相似文献   

6.
As traditionally circumscribed, Cuscuta sect. Denticulatae is a group of three parasitic plant species native to the deserts of Western USA (Cuscuta denticulata, Cuscuta nevadensis) and the central region of Baja California, Mexico (Cuscuta veatchii). Molecular phylogenetic studies confirmed the monophyly of this group and suggested that the disjunct C. veatchii is a hybrid between the other two species. However, the limited sampling left the possibility of alternative biological and methodological explanations. We expanded our sampling to multiple individuals of all the species collected from across their entire geographical ranges. Sequence data from the nuclear and plastid regions were used to reconstruct the phylogeny and find out if the topological conflict was maintained. We obtained karyotype information from multiple individuals, investigated the morphological variation of the group thorough morphometric analyses, and compiled data on ecology, host range, and geographical distribution. Our results confirmed that C. veatchii is an allotetraploid. Furthermore, we found previously unknown autotetraploid population of C. denticulata, and we describe a new hybrid species, Cuscuta psorothamnensis. We suggest that this newly discovered natural hybrid is resulting from an independent (and probably more recent) hybridization event between the same diploid parental species as those of C. veatchii. All the polyploids showed host shift associated with hybridization and/or polyploidy and are found growing on hosts that are rarely or never frequented by their diploid progenitors. The great potential of this group as a model to study host shift in parasitic plants associated with recurrent allopolyploidy is discussed.  相似文献   

7.
Auxin receptors TIR1/AFBs play an essential role in a series of signaling network cascades. These F-box proteins have also been identified to participate in different stress responses via the auxin signaling pathway in Arabidopsis. Cucumber (Cucumis sativus L.) is one of the most important crops worldwide, which is also a model plant for research. In the study herein, two cucumber homologous auxin receptor F-box genes CsTIR and CsAFB were cloned and studied for the first time. The deduced amino acid sequences showed a 78% identity between CsTIR and AtTIR1 and 76% between CsAFB and AtAFB2. All these proteins share similar characteristics of an F-box domain near the N-terminus, and several Leucine-rich repeat regions in the middle. Arabidopsis plants ectopically overexpressing CsTIR or CsAFB were obtained and verified. Shorter primary roots and more lateral roots were found in these transgenic lines with auxin signaling amplified. Results showed that expression of CsTIR/AFB genes in Arabidopsis could lead to higher seeds germination rates and plant survival rates than wild-type under salt stress. The enhanced salt tolerance in transgenic plants is probably caused by maintaining root growth and controlling water loss in seedlings, and by stabilizing life-sustaining substances as well as accumulating endogenous osmoregulation substances. We proposed that CsTIR/AFB-involved auxin signal regulation might trigger auxin mediated stress adaptation response and enhance the plant salt stress resistance by osmoregulation.  相似文献   

8.
9.
During a study on the biodiversity of yeasts and yeast-like ascomycetes from wild plants in Iran, four strains of yeast-like filamentous fungi were isolated from a healthy plant of Euphorbia polycaulis in the Qom Province, Iran (IR. of). All four strains formed small hyaline one-celled conidia from integrated conidiogenous cells directly on hyphae and sometimes on discrete phialides, as well as by microcyclic conidiation. Two strains additionally produced conidia in conidiomata that open by rupture. The internal transcribed spacer (ITS) sequences suggested the placement of these strains in the genera Collophorina (Leotiomycetes) and Coniochaeta (Sordariomycetes), respectively. Blast search results on NCBI GenBank and phylogenetic analyses of ITS, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the translation elongation factor 1α (EF-1α) sequences, and the nuclear large subunit ribosomal gene (LSU), partial actin (ACT), and β-tubulin (TUB) sequences, respectively, revealed the isolates to belong to three new species, that are described here as Collophorina euphorbiae, Coniochaeta iranica, and C. euphorbiae. All three species are characterised by morphological, physiological, and molecular data.  相似文献   

10.

Key message

Map-based cloning identified a candidate gene for resistance to the anthracnose fungal pathogen Colletotrichum orbiculare in cucumber, which reveals a novel function for the highly conserved STAYGREEN family genes for host disease resistance in plants.

Abstract

Colletotrichum orbiculare is a hemibiotrophic fungal pathogen that causes anthracnose disease in cucumber and other cucurbit crops. No host resistance genes against the anthracnose pathogens have been cloned in crop plants. Here, we reported fine mapping and cloning of a resistance gene to the race 1 anthracnose pathogen in cucumber inbred lines Gy14 and WI 2757. Phenotypic and QTL analysis in multiple populations revealed that a single recessive gene, cla, was underlying anthracnose resistance in both lines, but WI2757 carried an additional minor-effect QTL. Fine mapping using 150 Gy14?×?9930 recombinant inbred lines and 1043 F2 individuals delimited the cla locus into a 32 kb region in cucumber Chromosome 5 with three predicted genes. Multiple lines of evidence suggested that the cucumber STAYGREEN (CsSGR) gene is a candidate for the anthracnose resistance locus. A single nucleotide mutation in the third exon of CsSGR resulted in the substitution of Glutamine in 9930 to Arginine in Gy14 in CsSGR protein which seems responsible for the differential anthracnose inoculation responses between Gy14 and 9930. Quantitative real-time PCR analysis indicated that CsSGR was significantly upregulated upon anthracnose pathogen inoculation in the susceptible 9930, while its expression was much lower in the resistant Gy14. Investigation of allelic diversities in natural cucumber populations revealed that the resistance allele in almost all improved cultivars or breeding lines of the U.S. origin was derived from PI 197087. This work reveals an unknown function for the highly conserved STAYGREEN (SGR) family genes for host disease resistance in plants.
  相似文献   

11.
12.
Macaranga is a tree genus that includes many species of myrmecophytes, which are plants that harbor ant colonies within hollow structures known as domatia. The symbiotic ants (plant–ants) protect their host plants against herbivores; this defense mechanism is called ‘ant defense’. A Bornean phasmid species Orthomeria cuprinus feeds on two myrmecophytic Macaranga species, Macaranga beccariana and Macaranga hypoleuca, which are obligately associated with Crematogaster ant species. The phasmids elude the ant defense using specialized behavior. However, the mechanisms used by the phasmid to overcome ant defenses have been insufficiently elucidated. We hypothesized that O. cuprinus only feeds on individual plants with weakened ant defenses. To test the hypothesis, we compared the ant defense intensity in phasmid-infested and non-infested M. beccariana trees. The number of plant–ants on the plant surface, the ratio of plant–ant biomass to tree biomass, and the aggressiveness of plant–ants towards experimentally introduced herbivores were significantly lower on the phasmid-infested trees than on the non-infested trees. The phasmid nymphs experimentally introduced into non-infested trees, compared with those experimentally introduced into phasmid-infested trees, were more active on the plant surface, avoiding the plant–ants. These results support the hypothesis and suggest that ant defenses on non-infested trees effectively prevent the phasmids from remaining on the plants. Thus, we suggest that O. cuprinus feeds only on the individual M. beccariana trees having decreased ant defenses, although the factors that reduce the intensity of the ant defenses remain unclear.  相似文献   

13.
Phelipanche and Orobanche spp. (broomrapes) are economically important parasitic weeds, causing severe damage to many agricultural crops. However, conventional methods to control these parasitic weeds are often not effective. Targeting molecular and biochemical processes involved in the establishment of the connection between the parasite and the host may offer a new perspective for control. However, progress in the understanding of these processes is hampered by the fact that genetic transformation and regeneration of these parasites is difficult if not impossible due to their specific lifecycle. Phelipanche and Orobanche spp. are holoparasites that need to attach to the roots of a host plant to get their assimilates, nutrients and water to develop and reproduce. The present study describes a highly efficient genetic transformation and regeneration protocol for the root holoparasitic Phelipanche ramosa. We present a new transformation system for P. ramosa using Agrobacterium rhizogenes MSU440 carrying a non-destructive selection marker gene coding for a red fluorescent protein (DsRed1). Using this protocol up to 90% transformation efficiency was obtained. We transformed 4 weeks old P. ramosa calli and transgenic calli expressing DsRed1 were then cultured on host plants. For the first time, we present shoot and flower development of the transgenic parasitic plant P. ramosa after successful connection of transgenic calli with the host plant roots. Moreover, we also present, for the first time, growth and development of P. ramosa shoots and flowers in vitro in the absence of a host plant.  相似文献   

14.
15.
Nymphs and larvae belonging to Ixodes spp. were collected from a red fox in Turkey. The ticks were identified morphologically and molecularly (16S rDNA PCR and phylogenetic analysis) as I. kaiseri. Sequence and phylogenetic analyses show that our I. kaiseri isolate is very similar to I. kaiseri isolates collected from Germany, Serbia, Romania, and Hungary. Therefore, the existence of I. kaiseri has been demonstrated for the first time in Turkey. More studies relating to the regional distribution and vectorial competence of I. kaiseri are needed.  相似文献   

16.
In plants, ROS signaling and increase in activities of antioxidants are among defense responses. The present study describes the oxidative stress profiling in model host plant tomato (Solanum lycopersicum L.), during an invasion of the wilt pathogen Fusarium oxysporum f. sp. lycopersici with or without seed priming with Pseudomonas isolates M80, M96 and T109. Tomato seeds were primed with known Pseudomonas isolates M80, M96 and T109 and the forty-day- old plants were challenged with spores of F. oxysporum under greenhouse conditions. Leaf samples were collected at 0, 24, 48 72 and 96 h post fungal challenge and analysed for systemic level of oxidative stress parameters including total phenolics, proline, hydrogen peroxide, lipid peroxidation and enzymatic antioxidants. Disease incidence in the plants under greenhouse conditions was also calculated. Results revealed that priming with Pseudomonas isolates resulted in reduced oxidative stress in the host, during pathogen invasion. M80-priming showed highest antioxidative protection to the host plants during F. oxysporum invasion. The observed reduction in hydrogen peroxide and lipid peroxidation in primed plants was in agreement with the increased activities of the corresponding antioxidant enzymes. Greenhouse results showed that the highest wilt disease symptoms were with M80-priming followed by M96 and T109. The present study gives substantial evidences on the oxidative stress mitigation in response to Pseudomonas-priming on the model tomato-Fusarium interaction system.  相似文献   

17.
Two new species in the Fusarium solani species complex (FSSC) are described and introduced. The new taxa are represented by German isolates CBS 142481 and CBS 142480 collected from commercial yard waste compost and vascular tissue of a wilting branch of hibiscus, respectively. The phylogenetic relationships of the collected strains to one another and within the FSSC were evaluated based on DNA sequences of 6 gene loci. Due to the limited sequence data available for reference strains in GenBank, however, a multi-gene phylogenetic analysis included partial sequences for the internal transcribed spacer region and intervening 5.8S nrRNA gene (ITS), translation elongation factor 1-alpha (tef1) and the RNA polymerase II second largest subunit (rpb2). Morphological and molecular phylogenetic data independently showed that these strains are distinct populations of the FSSC, nested within Clade 3. Thus, we introduce Fusarium stercicola and Fusarium witzenhausenense as novel species in the complex. In addition, 19 plant species of 7 legume genera were evaluated for their potential to host the newly described taxa. Eighteen plant species were successfully colonized, with 6 and 9 of these being symptomatic hosts for F. stercicola and F. witzenhausenense, respectively. As plants of the family Fabaceae are very distant to the originally sourced material from which the new taxa were recovered, our results suggest that F. stercicola and F. witzenhausenense are not host-specific and are ecologically fit to sustain stable populations in variety of habitats.  相似文献   

18.
Piriformospora indica, a root endophytic fungus, has been reported to promote growth of many plants under normal condition and allow the plants to survive under stress conditions. However, its impact on an important medicinal plant Aloe vera L. has not been well studied. Therefore, this study was undertaken to investigate the effect of P. indica on salinity stress tolerance of A. vera plant. P. indica inoculated and non-inoculated A. vera plantlets were subjected to four levels of salinity treatment- 0, 100, 200 and 300 mM NaCl. The salinity stress decreased the ability of the fungus to colonize roots of A. vera but the interaction of A. vera with P. indica resulted in an overall increase in plant biomass and greater shoot and root length as well as number of shoots and roots. The photosynthetic pigment (Chl a, Chl b and total Chl) and gel content were significantly higher for the fungus inoculated A. vera plantlets, at respective salinity concentrations. Furthermore, the inoculated plantlets had higher phenol, flavonoid, flavonol, aloin contents and radical scavenging activity at all salinity concentrations. The higher phenolic and flavonoid content may help the plants ameliorate oxidative stress resulting from high salinity.  相似文献   

19.
The U small nuclear RNA (U snRNA) genes comprise a multigene family and are required for splicing of pre-mRNA. In this paper, we aimed to study the chromosomal location of the U2 snRNA gene in Megaleporinus, Leporinus and Schizodon species, which constitute interesting models for the study of repetitive DNA and genomic evolution in fish once the group comprises species with and without heteromorphic sex chromosomes. The all six species showed 2n?=?54 chromosomes: Megaleporinus elongatus, Megaleporinus macrocephalus, Leporinus striatus, Leporinus friderici, Schizodon borelli and Schizodon isognathus. The U2 snDNA clusters were evident in only one medium-sized submetracentric pair in all analyzed species and this may represent a condition shared by Anostomidae family.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号