首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many plants produce defense chemicals that are induced in response to damage. In spite of the tight links between floral tissue and plant reproduction, very little is known about whether floral defenses are induced in response to floral damage. We manipulated Impatiens capensis flowers to determine whether floral damage reduces subsequent florivory, whether it induces anthocyanins or condensed tannins in floral tissues, and whether responses are localized or systemic. We damaged one flower per plant at one of three damage levels (0, 30, or 60 % tissue removal), collected subsequent flowers at set time intervals and branch locations, and measured whole-plant florivory for 3 weeks following damage. We also observed a flower color polymorphism and analyzed responses separately for red- and yellow-flowered plants. Moderate damage to a single flower reduced subsequent whole-plant florivory, but heavy damage did not. Moderate damage to a focal flower also increased anthocyanins in subsequent flowers on the same branch of red-flowered plants, but decreased anthocyanins on parallel-branch flowers of yellow-flowered plants. Damage did not affect floral tannins. Because the reduction in florivory was systemic and induced anthocyanins were not consistently induced systemically, there may be other secondary compounds not measured in this study that were systemically induced, or effects of visual or olfactory cues of damage itself that reduced subsequent florivory. This is the first study demonstrating that damage to a single flower can reduce subsequent whole-plant florivory in the field, indicating that initial damage can have cascading effects on subsequent interactions.  相似文献   

2.
Florivory: the intersection of pollination and herbivory   总被引:3,自引:0,他引:3  
McCall AC  Irwin RE 《Ecology letters》2006,9(12):1351-1365
Plants interact with many visitors who consume a variety of plant tissues. While the consequences of herbivory to leaves and shoots are well known, the implications of florivory, the consumption of flowers prior to seed coat formation, have received less attention. Herbivory and florivory can yield different plant, population and community outcomes; thus, it is critical to distinguish between these two types of consumption. Here, we consider the ecological and evolutionary consequences of florivory. A growing number of studies recognize that florivory is common in natural systems and in some cases surpasses leaf herbivory in magnitude and impact. Florivores can affect male and female plant fitness via direct trophic effects and through altered pathways of species interactions. In particular, florivory can affect pollination and have consequences for plant mating and floral sexual system evolution. Plants are not defenceless against florivore damage. Concepts of resistance and tolerance can be applied to plant–florivore interactions. Moreover, extant theories of plant chemical defence, including optimal defence theory, growth rate hypothesis and growth differentiation–balance hypothesis, can be used to make testable predictions about when and how plants should defend flowers against florivores. The majority of the predictions remain untested, but they provide a theoretical foundation on which to base future experiments. The approaches to studying florivory that we outline may yield novel insights into floral and defence traits not illuminated by studies of pollination or herbivory alone.  相似文献   

3.
Andrew C. McCall 《Oikos》2006,112(3):660-666
Resistance to leaf herbivory is well-documented in plants. In contrast, resistance to herbivory in flowers has received very little attention, even though reproductive tissues are often essential for plant reproduction. Plants may protect reproductive tissues with a range of defenses from constitutive to induced, although ecological costs associated with constitutive defense or resistance are expected to be higher than costs associated with induced responses. Induced responses in flowers may be effective against floral herbivores while minimizing the negative impacts of resistance on pollinators. This study examines induced responses in Nemophila menziesii (Hydrophyllaceae), a plant that frequently receives high levels of floral herbivory. I report that natural caterpillar herbivory increased levels of resistance against caterpillars later in the season. Similarly, artificial clipping to flowers consistently reduced natural damage to flowers vs unclipped controls over two years. Neither whole-plant nor individual seed set was affected by the reduction of floral damage. Induced resistance in reproductive tissues may benefit plants that are exposed to both floral herbivory and pollinator activity and can be an important link between plant antagonists and plant mutualists.  相似文献   

4.
Species often interact indirectly with each other via their traits. There is increasing appreciation of trait‐mediated indirect effects linking multiple interactions. Flowers interact with both pollinators and floral herbivores, and the flower‐pollinator interaction may be modified by indirect effects of floral herbivores (i.e., florivores) on flower traits such as flower size attracting pollinators. To explore whether flower size affects the flower‐pollinator interaction, we used Eurya japonica flowers. We examined whether artificial florivory decreased fruit and seed production, and also whether flower size affected florivory and the number of floral visitors. The petal removal treatment (i.e., artificial florivory) showed approximately 50% reduction in both fruit and seed set in natural pollination but not in artificial pollination. Furthermore, flower size increased the number of floral visitors, although it did not affect the frequency of florivory. Our results demonstrate that petal removal indirectly decreased 75% of female reproductive output via decreased flower visits by pollinators and that flower size mediated indirect interactions between florivory and floral visitors.  相似文献   

5.
While a plant’s capacity to tolerate damage by herbivores can be studied as a single trait, it is important to recognize that tolerance is generally a result of the combined action of several different traits. Here, we report on a pair of experiments to identify mechanisms for tolerating floral herbivory in Solanum carolinense, an andromonoecious perennial herb that regularly suffers from high levels of florivory. We measured the effect of actual and simulated florivory on host-plant fitness and assessed which plant traits exhibited plasticity in response to florivory. In addition, for each of nine plant genets, we calculated tolerance indices and determined which traits were genetically correlated with tolerance. Traits that served to help S. carolinense tolerate florivory in terms of sexual reproduction included initiating more inflorescences, aborting fewer buds prior to anthesis and fewer ovaries after fertilization, and increasing the ratio of perfect:male flowers. In addition, the greater the levels of florivory, the more the plants allocated to root growth, which may promote tolerance through greater potential future reproduction. The plant population contained significant genetic variation for tolerance itself and for nearly all of the putative tolerance mechanisms, which suggests that S. carolinense has the potential to evolve greater tolerance through a variety of different routes in response to natural selection.  相似文献   

6.
While many studies demonstrate that herbivores alter selection on plant reproductive traits, little is known about whether antiherbivore defenses affect selection on these traits. We hypothesized that antiherbivore defenses could alter selection on reproductive traits by altering trait expression through allocation trade‐offs, or by altering interactions with mutualists and/or antagonists. To test our hypothesis, we used white clover, Trifolium repens, which has a Mendelian polymorphism for the production of hydrogen cyanide—a potent antiherbivore defense. We conducted a common garden experiment with 185 clonal families of T. repens that included cyanogenic and acyanogenic genotypes. We quantified resistance to herbivores, and selection on six floral traits and phenology via male and female fitness. Cyanogenesis reduced herbivory but did not alter the expression of reproductive traits through allocation trade‐offs. However, the presence of cyanogenic defenses altered natural selection on petal morphology and the number of flowers within inflorescences via female fitness. Herbivory influenced selection on flowers and phenology via female fitness independently of cyanogenesis. Our results demonstrate that both herbivory and antiherbivore defenses alter natural selection on plant reproductive traits. We discuss the significance of these results for understanding how antiherbivore defenses interact with herbivores and pollinators to shape floral evolution.  相似文献   

7.
McCall AC  Barr CM 《Oecologia》2012,170(1):147-157
Although florivores can destroy significant amounts of sexual tissues and indirectly affect pollination, little is known about their preferences, which could shape the evolution of floral traits or defense. In this study, we used a gynodioecious plant Nemophila menziesii, and its main florivore Platyprepia virginalis, to test which floral characteristics are associated with florivory in the field and with florivore choice in the laboratory. Hermaphrodite flowers consistently received more damage than nearby females in the field. In the laboratory setting, florivores also preferred unmanipulated hermaphrodites versus unmanipulated females. Systematic evaluation of hermaphrodite traits, such as corolla size, anther presence, and corolla color, revealed that corolla diameter was the main determinant of florivore preference in this system. Here, we discuss the implications of both pollinator and florivore choice in the evolution of corolla size and sex ratio in gynodioecious species with cytoplasmic male sterility and emphasize the need for more information on the preferences of florivores.  相似文献   

8.
Adaptive phenotypic plasticity allows sessile organisms such as plants to match trait expression to the particular environment they experience. Plasticity may be limited, however, by resources in the environment, by responses to prior environmental cues, or by previous interactions with other species, such as competition or herbivory. Thus, understanding the expression of plastic traits and their effects on plant performance requires evaluating trait expression in complex environments, rather than across levels of a single variable. In this study, we tested the independent and combined effects of two components of a plant’s environment, herbivory and water availability, on the expression of attractive and defensive traits in Nicotiana quadrivalvis in the greenhouse. Damage and drought did not affect leaf nicotine concentrations but had additive and non-additive effects on floral attractive and defensive traits. Plants in the high water treatment produced larger flowers with more nectar than in the low water treatment. Leaf damage induced greater nectar volumes in the high water treatment only, suggesting that low water limited plastic responses to herbivore damage. Leaf damage also tended to induce higher nicotine concentrations in nectar, consistent with other studies showing that leaf damage can induce floral defenses. Our results suggest that there are separate and synergistic effects of leaf herbivory and drought on floral trait expression, and thus plasticity in response to complex environments may influence plant fitness via effects on floral visitation and defense.  相似文献   

9.
1. It has become increasingly recognised that several herbivores switch from folivory (leaf‐feeding) to florivory (flower‐feeding) during larval development. Yet, it remains poorly understood which cues influence this behaviour, whether a switch to florivory is consistently shown on different hosts, and to what extent florivory could be hindered by plant traits. 2. Using the sawfly Athalia rosae and two Brassicaceae differing in architecture and surface structure, the cues that influence larval movement to the flowers were investigated. A broad set of behavioural assays was employed and physical and chemical plant traits potentially affecting the larvae were analysed. Furthermore, the consequences of folivory versus florivory on insect performance were studied. 3. The larvae preferred flowers over leaves. Consumption of particular flower parts correlated partly with measured plant traits such as glucosinolate distribution. Visual cues were of higher importance than volatile cues. The initial position of newly hatched larvae on plants influenced the probability of the larvae reaching the flowers during development. Trichomes and surface waxes hindered the larvae from moving upwards to the flowers. Larvae developed slower and gained less body mass when feeding on inflorescences of Brassica nigra than when feeding on leaves, in contrast to the patterns observed before on Sinapis alba, where florivory led to an improved performance. 4. This study demonstrates that florivory depends on various host plant traits. It reveals new insights into different parameters influencing this multifaceted phenomenon and into the expected impact on the ecology and fitness of both the attacking herbivores and the plants.  相似文献   

10.
Herbivory induces various responses in plants, thus altering the plants’ phenotype in chemical and morphological traits. Herbivore‐induced changes in vegetative plant parts, plant‐physiological mechanisms, and effects on plant‐animal interactions have been intensively studied from species to community level. In contrast, we are just beginning to examine herbivore‐induced effects on reproductive plant parts and flower–visitor interactions, especially in a community context. We investigated the effect of herbivory at different plant developmental stages on plant growth, floral and vegetative phenotype and reproduction in Sinapis arvensis (Brassicaceae). Additionally, we tested how herbivore‐induced plant responses affect flower–visitor interactions and plant reproduction in species‐rich communities. Our results indicate that the timing of herbivory affects the magnitude of changes in plant traits. Herbivory in early but not in late development accelerated the plant's flowering phenology, reduced vegetative growth, increased stem trichome density and altered floral morphology and scent. These findings suggest age‐dependent tradeoffs between growth, defense and reproduction. Herbivore‐induced changes in flower traits also affected flower–visitor interactions in a community context with effects on the structure of flower–visitor networks. However, changes in the network structure had neglectable effects on plant reproduction, i.e. plants were able to compensate altered flower visitor behavior. Thus, herbivory is a source of intraspecific variation in reproductive traits, which can be behaviorally relevant for potential pollinators. However, plants were capable to maintain reproductive success suggesting a tolerance against herbivory. We conclude that in our study system induced direct or indirect defenses that have often been shown to decrease negative effects of herbivores on vegetative plant parts come at no costs for plant reproduction.  相似文献   

11.
The combination of defensive traits leads to the evolution of ‘plant defense syndromes’ which should provide better protection against herbivores than individual traits on their own. Defense syndromes can be generally driven by plant phylogeny and/or biotic and abiotic factors. However, we lack a solid understanding of (i) the relative importance of shared evolution vs. convergence due to similar ecological conditions and (ii) the role of induced defense strategies in shaping defense syndromes. We investigate the relative roles of evolutionary and ecological factors shaping the deployment of pine defense syndromes including multiple constitutive and induced chemical defense traits. We performed a greenhouse experiment with seedlings of eighteen species of Pinaceae family, and measured plant growth rate, constitutive chemical defenses and their inducibility. Plant growth rate, but not phylogenetic relatedness, determined the deployment of two divergent syndromes. Slow-growing pine species living in harsh environments where tissue replacement is costly allocated more to constitutive defenses (energetically more costly to produce than induced). In contrast, fast-growing species living in resource-rich habitats had greater inducibility of their defenses, consistent with the theory of constitutive-induced defense trade-offs. This study contributes to a better understanding of evolutionary and ecological factors driving the deployment of defense syndromes.  相似文献   

12.
Edaphic factors can lead to differences in plant morphology and tissue chemistry. However, whether these differences result in altered plant–insect interactions for soil-generalist plants is less understood. We present evidence that soil chemistry can alter plant–insect interactions both directly, through chemical composition of plant tissue, and indirectly, through plant morphology, for serpentine-tolerant Mimulus guttatus (Phrymaceae). First, we scored floral display (corolla width, number of open flowers per inflorescence, and inflorescence height), flower chemistry, pollinator visitation and florivory of M. guttatus growing on natural serpentine and non-serpentine soil over 2 years. Second, we conducted a common garden reciprocal soil transplant experiment to isolate the effect of serpentine soil on floral display traits and flower chemistry. And last, we observed arrays of field-collected inflorescences and potted plants to determine the effect of soil environment in the field on pollinator visitation and florivore damage, respectively. For both natural and experimental plants, serpentine soil caused reductions in floral display and directly altered flower tissue chemistry. Plants in natural serpentine populations received fewer pollinator visits and less damage by florivores relative to non-serpentine plants. In experimental arrays, soil environment did not influence pollinator visitation (though larger flowers were visited more frequently), but did alter florivore damage, with serpentine-grown plants receiving less damage. Our results demonstrate that the soil environment can directly and indirectly affect plant–mutualist and plant–antagonist interactions of serpentine-tolerant plants by altering flower chemistry and floral display.  相似文献   

13.
To understand how comprehensive plant defense phenotypes will respond to global change, we investigated the legacy effects of elevated CO2 on the relationships between chemical resistance (constitutive and induced via mechanical damage) and regrowth tolerance in four milkweed species (Asclepias). We quantified potential resistance and tolerance trade‐offs at the physiological level following simulated mowing, which are relevant to milkweed ecology and conservation. We examined the legacy effects of elevated CO2 on four hypothesized trade‐offs between the following: (a) plant growth rate and constitutive chemical resistance (foliar cardenolide concentrations), (b) plant growth rate and mechanically induced chemical resistance, (c) constitutive resistance and regrowth tolerance, and (d) regrowth tolerance and mechanically induced resistance. We observed support for one trade‐off between plant regrowth tolerance and mechanically induced resistance traits that was, surprisingly, independent of CO2 exposure. Across milkweed species, mechanically induced resistance increased by 28% in those plants previously exposed to elevated CO2. In contrast, constitutive resistance and the diversity of mechanically induced chemical resistance traits declined in response to elevated CO2 in two out of four milkweed species. Finally, previous exposure to elevated CO2 uncoupled the positive relationship between plant growth rate and regrowth tolerance following damage. Our data highlight the complex and dynamic nature of plant defense phenotypes under environmental change and question the generality of physiologically based defense trade‐offs.  相似文献   

14.
McCall AC 《Oecologia》2008,155(4):729-737
While herbivory has traditionally been studied as damage to leaves, florivory – herbivory to flowers prior to seed set – can also have large effects on plant fitness. Florivory can decrease fitness directly, either through the destruction of gametes or through alterations to plant physiology during fruit set, and can also change the appearance of a flower, deterring pollinators and reducing seed set. In order to distinguish between these hypotheses, it is necessary to both damage flowers and add pollen in excess to study the effects of damage on pollen limitation. Very few studies have used this technique over the lifetime of a plant. Here I describe a series of experiments showing the effects of natural and artificial damage on reproductive success in the annual plant Nemophila menziesii (Hydrophyllaceae, sensu lato). I show that natural and artificial petal damage decreased radial symmetry relative to controls and that both types of damage deterred pollinator activity. Both naturally damaged flowers and artificially damaged flowers in the field set fewer fruit or seed relative to undamaged control flowers. Finally, in an experiment crossing artificial petal damage with pollen addition, petal damage alone over the lifetime of this plant decreased female fitness, but only after a threshold of damage was reached. The fitness effect appeared to be direct because there was no detectable effect of pollen addition on the relationship between florivory and fitness. This result implies that both damaged and undamaged plants show similar amounts of pollen limitation and suggests that pollinator-mediated effects contributed little to the negative effects of florivory on female fitness. Florivores may thus be an under-appreciated agent of selection in certain plants, although more experimental manipulation of florivory is needed to determine if it is important over a range of taxa.  相似文献   

15.
How species interactions may modify the effects of environmental change on evolutionary adaptation is poorly understood. Elevated CO2 is known to alter plant–herbivore interactions, but the evolutionary consequences for plant populations have received little attention. We conducted an experiment to determine the effects of elevated CO2 and herbivory by a specialist insect herbivore (Danaus plexippus) on the expression of constitutive and induced plant defense traits in five genotypes of Asclepias syriaca, and assessed the heritability of these traits. We also examined changes in relative fitness among plant genotypes in response to altered CO2 and herbivory. The expression of plant defense traits varied significantly among genotypes. Elevated CO2 increased plant growth and physical defenses (toughness and latex), but decreased investment in chemical defenses (cardenolides). We found no effect of elevated CO2 on plant induction of cardenolides in response to caterpillar herbivory. Elevated CO2 decreased the expression of chemical defenses (cardenolides) to a different extent depending on plant genotype. Differential effects of CO2 on plant defense expression, rather than direct effects on relative fitness, may alter A. syriaca adaptation to changing climate.  相似文献   

16.
Optimal defense theory (ODT) states that the plant tissue with the highest value to fitness will receive the most protection compared with other plant parts. ODT can be applied to the differences in defenses among floral organs, although most studies have concentrated on the comparison between leaves and flowers. Using Iris gracilipes, we investigated whether ODT is supported when primary and accessory floral organs and leaves are distinguished. We found that anthers and perianths tended to be attacked more severely than ovaries and leaves in the bud and flower stages and that anthers contained the highest nitrogen and phosphorus concentrations. Although ovaries were also found to contain high nitrogen and phosphorus concentrations, they were less severely attacked by herbivores than anthers, perhaps because ovaries contained the highest condensed tannins concentrations among the floral organs except for perianths in the flower stage. Thus, noting that the number of ovules is very much smaller than that of pollen grains, we concluded that ovaries are the most intensively protected, consistent with the prediction of ODT as applied to floral organs. ODT is applicable to the difference in defense allocation among floral organs.  相似文献   

17.
McCall AC  Karban R 《Oecologia》2006,146(4):566-571
Plants protect themselves against herbivory using a continuum of strategies, ranging from constitutive defenses to intermittent induced responses. Induced defenses may not provide immediate and maximum protection, but could be advantageous when continuous defense is either energetically or ecologically costly. As such, induced defenses in flowers could help defend relatively valuable tissue while keeping reproductive structures accessible and attractive to pollinators. Thus far, no one has demonstrated the efficacy of induced defenses against floral herbivores (florivores) in the field. Here we show that mechanical leaf damage in wild tobacco, Nicotiana attenuata (Solanaceae), reduced both flower and fruit herbivory in the field and that exogenous application of methyl jasmonate, a potent elicitor of induced responses, reduced both leaf and floral damage in natural populations. This result is consistent with a survey of damage in the field, which showed a negative relationship between leaf damage and flower and fruit damage. Although optimal defense theory predicts that induced defenses should be rare in reproductive tissues, owing to their high fitness value, our results suggest otherwise. Induced defenses in leaves and reproductive tissues may allow plants to respond effectively to the concomitant pressures of defending against herbivory and attracting pollinators.  相似文献   

18.
H. George Wang  Susan Mopper 《Oikos》2008,117(4):564-570
Most herbivore studies focus on foliage feeders, despite the potentially strong impact of florivores on plant fitness and ecological communities. Vertebrate florivory is particularly noteworthy because it destroys the inflorescence, and may affect the community of floral arthropods. Strong biotic forces such as florivory can be influenced by abiotic forces. For example, field studies indicate that white-tailed deer Odocoileus virginianus consume up to 90% of all flowers produced in Iris hexagona populations that inhabit high salinity wetlands, whereas freshwater iris populations suffer relatively little damage. We conducted a common garden experiment to investigate the potential effects of vertebrate florivory and salinity on two iris herbivores, the leafminer Cerodontha iridiphora , and the verbena bud moth, Endothenia hebesana . We administered four levels of florivory: zero (control), one, two, and three flowers removed per stalk, and applied three levels of salinity (0, 4 and 8 parts per thousand NaCl) in a full-factorial design. Florivory and salinity had separate and interacting effects on herbivore performance. Salinity was more detrimental to herbivores than florivory, which was beneficial at low levels. A positive effect of moderate salinity on sexual reproduction was reversed by florivory. Our research reveals complex interactions between environmental stress and florivory, an understudied form of herbivory. These interactions have implications for wetland ecological communities that are increasingly exposed to biotic and abiotic stress.  相似文献   

19.
Florivores are antagonists that damage flowers, and have direct negative effects on flowering and pollination of the attacked plants. While florivory has mainly been studied for its consequences on seed production or siring success, little is known about its impact on mating systems. Damage to flowers can alter pollinator attraction to the plant and may therefore modify patterns of pollen transfer. However, the consequences of damage for mating systems can take two forms: a decrease in flower number reduces opportunities for intra-inflorescence pollen deposition (geitonogamy), which, in turn, may lead to a decrease in selfing; whereas a decrease in floral display may also reduce overall visitation and thus increase the chances of self-pollination via facilitated or autonomous autogamy. We investigated the effects of damage by a bud-clipping weevil ( Anthonomus signatus ) in Fragaria virginiana in an experimental setting mimicking natural conditions. We found that increased damage led to an increase in selfing, a result consistent with the increased autogamy pathway. We discuss the implications of this finding and evaluate the generality of florivore-mediated mating system expression.  相似文献   

20.
Inducible plant defenses—those produced in response to herbivore feeding—are thought to have evolved as a cost-saving tactic that allows plants to enact defenses only when needed. The costs of defense can be significant, and loss of plant fitness due to commitment of resources to induced defenses could affect plant populations and play a role in determining the success or failure of weed biocontrol. We used methyl jasmonate (MeJA) to experimentally induce defenses without herbivores in invasive houndstongue plants (Cynoglossum officinale L.) in the field and measured resulting growth and fitness (plant size, seed number, and seed weight). MeJA-treated plants emitted large amounts of plant volatiles and produced leaves with twice as many trichomes as untreated plants. Plants with activated defenses had fewer leaves, were smaller, and produced nutlets that weighed less than plants not investing in defenses. These data indicate that herbivore-induced defenses are costly for houndstongue plants in their invaded range and represent significant indirect costs of herbivory beyond direct feeding damage (e.g., loss of photosynthetic tissue). Notably, the magnitude of defenses elicited upon feeding varies greatly by herbivore species and a better understanding of the costs of defense could help us predict which potential biocontrol herbivores are most likely to be effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号