首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wise JG  Vogel PD 《Biophysical journal》2008,94(12):5040-5052
One remaining challenge to our understanding of the ATP synthase concerns the dimeric coiled-coil stator subunit b of bacterial synthases. The subunit b-dimer has been implicated in important protein interactions that appear necessary for energy conservation and that may be instrumental in energy conservation during rotary catalysis by the synthase. Understanding the stator structure and its interactions with the rest of the enzyme is crucial to the understanding of the overall catalytic mechanism. Controversy exists on whether subunit b adopts a classic left-handed or a presumed right-handed dimeric coiled-coil and whether or not staggered pairing between nonhomologous residues in the homodimer is required for intersubunit packing. In this study we generated molecular models of the Escherichiacoli subunit b-dimer that were based on the well-established heptad-repeat packing exhibited by left-handed, dimeric coiled-coils by employing simulated annealing protocols with structural restraints collected from known structures. In addition, we attempted to create hypothetical right-handed coiled-coil models and left- and right-handed models with staggered packing in the coiled-coil domains. Our analyses suggest that the available structural and biochemical evidence for subunit b can be accommodated by classic left-handed, dimeric coiled-coil quaternary structures.  相似文献   

2.
Carbohydrate-carbohydrate recognition is emerging today as an important type of interaction in cell adhesion. One Ca(2+)mediated homotypic interaction between two Lewis( X ) determinants (Le( X )) has been proposed to drive cell adhesion in murine embryogenesis. Here, the adhesion energies of lipid vesicles functionalized with glycolipids bearing monomeric or dimeric Le( X ) determinants were measured in NaCl or CaCl(2) media with the micropipette aspiration technique. These experiments on Le( X ) with an environment akin to that provided by biological membrane confirmed the existence of this specific calcium dependent interaction of monomeric Le( X ). In contrast, dimeric Le( X ) produced a repulsive contribution. By using a simple model involving the various contributions to the adhesion free energy, specific and non specific interactions could be separated and quantified. The involvement of calcium ions has been discussed in the monomeric and dimeric Le( X ) lipids.  相似文献   

3.
The strength of key interfacial contacts that stabilize protein–protein interactions have been studied by computer simulation. Experimentally, changes in the interface are evaluated by generating specific mutations at one or more points of the protein structure. Here, such an evaluation is performed by means of steered molecular dynamics and use of a dimeric model of tryptophan repressor and in-silico mutants as a test case. Analysis of four particular cases shows that, in principle, it is possible to distinguish between wild-type and mutant forms by examination of the total energy and force–extension profiles. In particular, detailed atomic level structural analysis indicates that specific mutations at the interface of the dimeric model (positions 19 and 39) alter interactions that appear in the wild-type form of tryptophan repressor, reducing the energy and force required to separate both subunits.  相似文献   

4.
江浙蝮蛇蛇毒中性磷脂酶A2的结构模拟研究   总被引:1,自引:1,他引:0  
从我国江浙蝮蛇蛇毒纯化出的中性磷脂酶A2(ATX)不仅具有酶催化活性,还具有突触前神经毒性。用图象模拟和能量极小化及分子动力学方法,根据美国西部菱斑响尾蛇(C.atrox)蛇毒PLA2的晶体结构构建了ATX二体和单体模型,它们的基本折叠与C.atroxPLA2是很相似的。能量计算表明,二体的总势能比单体相应能量的两倍低263.6kcal/mol;ATX二体模型中两亚基间的作用与C.atroxPLA  相似文献   

5.
The crystallographic dimer of the C-terminal fragment (CTF) of the L7/L12 ribosomal protein has been subjected to molecular dynamics (MD) simulations. A 90 picosecond (ps) trajectory for the protein dimer, 19 water molecules and two counter ions has been calculated at constant temperature. Effects of intermolecular interactions on the structure and dynamics have been studied. The exact crystallographic symmetry is lost and the atomic fluctuations differ from one monomer to the other. The average MD structure is more stable than the X-ray one, as judged by accessible surface area and energy calculations. Crystal (non-dimeric) interactions have been simulated in another 40 ps trajectory by using harmonic restraints to represent intermolecular hydrogen bonds. The conformational changes with respect ot the X-ray structure are then virtually suppressed.The unrestrained dimer trajectory has been scanned for cooperative motions involving secondary structure elements. The intrinsic collective motions of the monomer are transmitted via intermolecular contacts to the dimer structure.The existence of a stable dimeric form of CTF, resembling the crystallographic one, has been documented. At the cost of fairly small energy expenditure the dimer has considerable conformational flexibility. This flexibility may endow the dimer with some functional potential as an energy transducer.  相似文献   

6.
The cytotoxic action of some ribonucleases homologous to bovine pancreatic RNase A, the superfamily prototype, has interested and intrigued investigators. Their ribonucleolytic activity is essential for their cytotoxic action, and their target RNA is in the cytosol. It has been proposed that the cytosolic RNase inhibitor (cRI) plays a major role in determining the ability of an RNase to be cytotoxic. However, to interact with cRI RNases must reach the cytosol, and cross intracellular membranes. To investigate the interactions of cytotoxic RNases with membranes, cytotoxic dimeric RNases resistant, or considered to be resistant to cRI, were assayed for their effects on negatively charged membranes. Furthermore, we analyzed the electrostatic interaction energy of the RNases complexed in silico with a model membrane. The results of this study suggest that close correlations can be recognized between the cytotoxic action of a dimeric RNase and its ability to complex and destabilize negatively charged membranes.  相似文献   

7.
Through experimental and theoretical approaches, it has been shown that bovine β-lactoglobulin (βlg) uses its hydrophobic cavity or calyx as the primary binding site for hydrophobic molecules, whereas the existence of a second ligand binding site at the dimeric interface has only been structurally identified for vitamin D3 (VD3). This binding exists even in the thermally denatured state, suggesting the prevalence of this secondary site. Although crystallographic experiments have suggested that VD3 can bind to both monomeric and dimeric states without significant structural differences, theoretical and experimental reports have proposed some structural requirements. Thus, in this study, based on known experimental data, the dynamic interaction of VD3 with the monomeric or dimeric forms of βlg was investigated through a protocol combining blind docking and 2 microsecond molecular dynamics simulations coupled with binding free energy and per-residue binding free energy decomposition analyses using the Molecular Mechanics Generalized Born Surface Area approach. Binding free energy calculations allowed us to estimate the energetic differences of coupling VD3 at the calyx and the dimeric interface for the monomeric or dimeric state, revealing that the dimeric structure is required to form a stable complex with VD3 at the dimeric interface. This also has an important impact on the dimerization process, whereas although the monomeric state also forms a stable complex with VD3 at the dimeric interface, the incorporation of the entropy component contributed to producing a marginally favorable binding free energy. Finally, the per-residue decomposition analysis provided energetic information about the most relevant residues in stabilizing the different systems.  相似文献   

8.
A comparative study of phosphorylation of native dimeric and artificial monomeric forms of inorganic pyrophosphatase and its fluoride-stabilized complex with PPi has been carried out. The maximal incorporation of Pi for the dimeric and monomeric proteins is 0.5 and 1 mole per mole of subunit, respectively. The saturation kinetic curves are suggestive of strong positive cooperative interactions. The value of the Hill coefficient (5.5) for the free dimeric enzyme drastically changes upon the active center blockage and/or transition to the monomeric enzyme. Acceleration of dephosphorylation induced by Pi in the presence of Mg2+ is observed only in the case of the dimeric protein. The data obtained indicate that phosphorylation of native dimeric pyrophosphatase occurs according to a "flip-flop" mechanism; the Pi binding in the active center exerts a strong influence on individual steps of the reaction.  相似文献   

9.
The concentration dependence of the ultraviolet absorption spectrum of aqueous solutions of caffeine has been studied. Individual species spectra have been derived for the monomer, dimer, and tetramer of caffeine. The emission spectrum of caffeine in aqueous solution and the dichroic spectra in oriented poly(vinyl alcohol) and polyethylene films have been measured. The long-wavelength tail of the absorption spectrum of caffeine in non-polar environment has been found to incorporate at least one carbonyl(π*, n) transition. Dichroic spectral data and molecular orbital calculations have been used to assign transition moment directions to the (π*,π) transitions. The lowest energy (π*,π) transition, responsible for the near-ultraviolet absorption peak in aqueous solution of caffeine, has been used for the study of degenerate exciton interactions in the dimeric species of caffeine. Assuming that the caffeine molecules in the dimer are stacked in parallel planes, theoretical calculations of the ground-state interactions and of the degenerate exciton interactions have been combined with experimental data and a unique model for the dimer of caffeine has been derived. The transfer rate of energy between the molecules in the dimer is of the order of 1013S?1.  相似文献   

10.
Ascorbate oxidase (AAO) is a large, multidomain, dimeric protein whose folding/unfolding pathway is characterized by a complex, multistep process. Here we used fluorescence correlation spectroscopy to demonstrate the formation of partially folded monomers by pH-induced full dissociation into subunits. Hence, the structural features of monomeric AAO could be studied by fluorescence and CD spectroscopy. We found that the monomers keep their secondary structure, whereas subtle conformational changes in the tertiary structure become apparent. AAO dissociation has also been studied when unfolding the protein by high hydrostatic pressure at different pH values. A strong protein concentration dependence was observed at pH 8, whereas the enzyme was either monomeric or dimeric at pH 10 and 6, respectively. The calculated volume change associated with the unfolding of monomeric AAO, ΔV ~ -55 mL·mol(-1), is in the range observed for most proteins of the same size. These findings demonstrate that partially folded monomeric species might populate the energy landscape of AAO and that the overall AAO stability is crucially controlled by a few quaternary interactions at the subunits' interface.  相似文献   

11.
From a study of the concentration dependence of the ultraviolet absorption spectra of aqueous solutions of 6-methylpurine, the spectra of monomeric and dimeric species have been derived. The dichroic spectrum of 6-methylpurine in stretched poly(vinyl alcohol) films has been determined. The absorption envelope of 6-methylpurine up to 44,000 cm?1 appears to include a low-intensity nitrogen (π*,n) transition at the low wavenumber tail and two additional electronic transitions of dominant intensities. Both the experimental dichroic ratios and theoretical calculations suggest that the letter two transitions are in-plane (π*,π) types. Analysis of the dimer species spectrum in terms of exciton interactions between molecules in “sandwich” conformation has been carried out. The interaction between the moments of the lowest energy (π*,π) transitions of the molecule in the dimer seems to result in transfer rates of energy of the order of 1013 sec?1 between the two molecules.  相似文献   

12.
Intensive study of bacterial chemoreceptors has not yet revealed how receptor methylation and ligand binding alter the interactions between the receptor cytoplasmic domain and the CheA kinase to control kinase activity. Both monomeric and dimeric forms of an Asp receptor cytoplasmic fragment have been shown to be highly dynamic, with a small core of slowly exchanging amide hydrogens (Seeley, S. K., Weis, R. M., and Thompson, L. K. (1996) Biochemistry 35, 5199-5206). Hydrogen exchange studies of the wild-type cytoplasmic fragment and an S461L mutant thought to mimic the kinase-inactivating state are used to investigate the relationship between the stable core and dimer dissociation. Our results establish that (i) decreasing pH stabilizes the dimeric state, (ii) the stable core is present also in the transition state for dissociation, and (iii) this core is expanded significantly by small changes in electrostatic and hydrophobic interactions. These kinase-inactivating changes stabilize both the monomeric and the dimeric states of the protein, which has interesting implications for the mechanism of kinase activation. We conclude that the cytoplasmic domain is a flexible region poised for stabilization by small changes in electrostatic and hydrophobic interactions such as those caused by methylation of glutamate residues and by ligand-induced conformational changes during signaling.  相似文献   

13.
Lee S  Bae YS 《Molecules and cells》2012,33(4):325-334
Extracellular signal-regulated protein kinase 2 (ERK2) plays many vital roles in cellular signal regulation. Phosphorylation of ERK2 leads to propagation and execution of various extracellular stimuli, which influence cellular responses to stress. The final response of the ERK2 signaling pathway is determined by localization and duration of active ERK2 at specific target cell compartments through protein-protein interactions of ERK2 with various cytoplasmic and nuclear substrates, scaffold proteins, and anchoring counterparts. In this respect, dimerization of phosphorylated ERK2 has been suggested to be a part of crucial regulating mechanism in various protein-protein interactions. After the report of putative dimeric structure of active ERK2 (Canagarajah et al., 1997), dimeric model was employed to explain many in vivo and in vitro experimental results. But more recently, many reports have been presented questioning the validity of dimer hypothesis of active ERK2. In this review, we summarize the various in vitro and in vivo studies concerning the Monomeric or the dimeric forms of ERK2 and the validity of the dimer hypothesis.  相似文献   

14.
The epidermal growth factor receptor (EGFR) is a tyrosine kinase protein, overexpressed in several cancers. The extracellular domain of EGFR is known to be heavily glycosylated. Growth factor (mostly epidermal growth factor or EGF) binding activates EGFR. This occurs by inducing the transition from the autoinhibited tethered conformation to an extended conformation of the monomeric form of EGFR and by stabilizing the flexible preformed dimer. Activated EGFR adopts a back‐to‐back dimeric conformation after binding of another homologous receptor to its extracellular domain as the dimeric partner. Several antibodies inhibit EGFR by targeting the growth factor binding site or the dimeric interfaces. Glycosylation has been shown to be important for modulating the stability and function of EGFR. Here, atomistic MD simulations show that N‐glycosylation of the EGFR extracellular domain plays critical roles in the binding of growth factors, monoclonal antibodies, and the dimeric partners to the monomeric EGFR extracellular domain. N‐glycosylation results in the formation of several noncovalent interactions between the glycans and EGFR extracellular domain near the EGF binding site. This stabilizes the growth factor binding site, resulting in stronger interactions (electrostatic) between the growth factor and EGFR. N‐glycosylation also helps maintain the dimeric interface and plays distinct roles in binding of antibodies to spatially separated epitopes of the EGFR extracellular domain. Analysis of SNP data suggests the possibility of altered glycosylation with functional consequences. Proteins 2017; 85:1529–1549. © 2017 Wiley Periodicals, Inc.  相似文献   

15.
16.
Single wavelength fluorescence cross-correlation spectroscopy (SW-FCCS), introduced to study biomolecular interactions, has recently been reported to monitor enzyme activity by using a newly developed fluorescent protein variant together with cyan fluorescent protein. Here, for the first time to our knowledge, SW-FCCS is applied to detect interactions between membrane receptors in vivo by using the widely used enhanced green fluorescent protein and monomeric red fluorescent protein. The biological system studied here is the epidermal growth factor/ErbB receptor family, which plays pivotal roles in the development of organisms ranging from worms to humans. It is widely thought that a ligand binds to the monomeric form of the receptor and induces its dimeric form for activation. By using SW-FCCS and F?rster resonance energy transfer, we show that the epidermal growth factor receptor and ErbB2 have preformed homo- and heterodimeric structures on the cell surface and quantitation of dimer fractions is performed by SW-FCCS. These receptors are major targets of anti-cancer drug development, and the receptors' homo- and heterodimeric structures are relevant for such developments.  相似文献   

17.
The conformational stability of dimeric globular proteins can be measured by equilibrium denaturation studies in solvents such as guanidine hydrochloride or urea. Many dimeric proteins denature with a 2-state equilibrium transition, whereas others have stable intermediates in the process. For those proteins showing a single transition of native dimer to denatured monomer, the conformational stabilities, delta Gu (H2O), range from 10 to 27 kcal/mol, which is significantly greater than the conformational stability found for monomeric proteins. The relative contribution of quaternary interactions to the overall stability of the dimer can be estimated by comparing delta Gu (H2O) from equilibrium denaturation studies to the free energy associated with simple dissociation in the absence of denaturant. In many cases the large stabilization energy of dimers is primarily due to the intersubunit interactions and thus gives a rationale for the formation of oligomers. The magnitude of the conformational stability is related to the size of the polypeptide in the subunit and depends upon the type of structure in the subunit interface. The practical use, interpretation, and utility of estimation of conformational stability of dimers by equilibrium denaturation methods are discussed.  相似文献   

18.
R E Johnson  J A Rupley 《Biochemistry》1979,18(16):3611-3616
The association reactions of NADH and NAD+ with dimeric pig heart supernatant malate dehydrogenase (s-MDH) have been measured at pH 6 and 8 by calorimetric and fluorescence methods, and the thermodynamic parameters describing these reactions have been evaluated. Coenzyme binding is associated with the uptake of 0.55 mol of H+/mol of NADH at pH 8 and 0.19 mol of H+ at pH 6. No significant effect of NAD+ binding on proton binding was observed. Increase in ionic strength strongly affects the free energies of binding of NAD+ and NADH. No cooperativity was observed in the enthalpy or free energy changes for binding of NAD+ or NADH. The differences in free energy of binding of NAD+ and NADH and the effect of pH on binding of NADH are entropy based. These effects are interpreted as reflecting a small number of interactions within the active site that are predominantly ionic.  相似文献   

19.
Kinesins are dimeric motor proteins that move processively along microtubules. It has been proposed that the processivity of conventional kinesins is increased by electrostatic interactions between the positively charged neck of the motor and the negatively charged C-terminus of tubulin (E-hook). In this report we challenge this anchoring hypothesis by studying the motility of a fast fungal kinesin from Neurospora crassa (NcKin). NcKin is highly processive despite lacking the positive charges in the neck. We present a detailed analysis of how proteolytic removal of the E-hook affects truncated monomeric and dimeric constructs of NcKin. Upon digestion we observe a strong reduction of the processivity and speed of dimeric motor constructs. Monomeric motors with truncated or no neck display the same reduction of microtubule gliding speed as dimeric constructs, suggesting that the E-hook interacts with the head only. The E-hook has no effect on the strongly bound states of NcKin as microtubule digestion does not alter the stall forces produced by single dimeric motors, suggesting that the E-hook affects the interaction site of the kinesin.ADP-head and the microtubule. In fact, kinetic and binding experiments indicate that removal of the E-hook shifts the binding equilibrium of the weakly attached kinesin.ADP-head toward a more strongly bound state, which may explain reduced processivity and speed on digested microtubules.  相似文献   

20.
A series of potential energy calculations have been carried out to estimate base sequence dependent structural differences in B-DNA. Attention has been focused on the simplest dimeric fragments that can be used to build long chains, computing the energy as a function of the orientation and displacement of the 16 possible base pair combinations within the double helix. Calculations have been performed, for simplicity, on free base pairs rather than complete nucleotide units. Conformational preferences and relative flexibilities are reported for various combinations of the roll, tilt, twist, lateral displacement, and propeller twist of individual residues. The predictions are compared with relevant experimental measures of conformation and flexibility, where available. The energy surfaces are found to fit into two distinct categories, some dimer duplexes preferring to bend in a symmetric fashion and others in a skewed manner. The effects of common chemical substitutions (uracil for thymine, 5-methyl cytosine for cytosine, and hypoxanthine for guanine) on the preferred arrangements of neighboring residues are also examined, and the interactions of the sugar-phosphate backbone are included in selected cases. As a first approximation, long range interactions between more distant neighbors, which may affect the local chain configuration, are ignored. A rotational isomeric state scheme is developed to describe the average configurations of individual dimers and is used to develop a static picture of overall double helical structure. The ability of the energetic scheme to account for documented examples of intrinsic B-DNA curvature is presented, and some new predictions of sequence directed chain bending are offered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号