首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamics of the species structure of Cladocera based on the materials on bottom sediments has been studied for 3000- and 6000-year periods in two lakes. The community of one of these lakes has reached a dynamic climax, and the community of the other lake is at the stage of directing succession. The species structure of both communities is approximated well by the Motomura–Whittaker equation (i.e., model of geometrical series). For each of the studied lakes, the main parameter of this model (the coefficient of geometrical progression) does not differ significantly from its theoretically derived value equaled to 1–exp(–1) = 0.632. A stable relationship is found between species diversity of the community, the rate of ecological succession, and the coefficient of geometrical progression.  相似文献   

2.
Parasite communities are similar to free‐living communities; decay of similarity over geographic distance, theory of island biogeography, species–area relationships and nestedness have been documented in both communities. Ecological succession has been studied in free‐living communities but has rarely been examined in parasite communities. We use seriation with replication to test the hypothesis that succession of parasite community structure is deterministic, thus developing throughout consecutive changes along the fish ontogeny, via a seriated pattern. 12 306 marine fishes (95 species) were studied. In 40 species, a seriated pattern was detected; 25 had a tendency towards a seriated pattern, and for 31 species, succession was at random. Age‐classes for each host species explained deterministic successional patterns for whole parasite communities and ectoparasites. Richness and number of age‐classes explained this pattern for endoparasites. Seriated successional pattern was evident for parasite communities of long‐lived marine fish, indicating that parasite communities follow sequential changes over time, like many free‐living communities.  相似文献   

3.
Analysis of 28 plant communities containing Hypericum perforatum L. in five different biotope types has been performed in 17 districts of the Saratov Region. A total of 325 species from 197 genera of 52 vascular plant species have been recorded, with plants characteristic of forest-edge, steppe, and anthropogenic biotopes prevailing in most communities. It has been shown that H. perforatum at the southeastern boundary of its range behaves as an explerent species. The main factor limiting its growth in biotopes of a certain type is the degree of disturbance in the structure of corresponding communities rather than by their taxonomic composition.  相似文献   

4.
Marine parasite communities can exhibit temporal and spatial changes in response to seasonal and local variations in several biotic and abiotic environmental factors. Limited attention has been given to the influence of abiotic factors, so their effects on parasite community structure remain unclear. A total of 496 specimens of Euthynnus lineatus were collected over a 7‐year period (2012–2018) from Acapulco Bay, Mexico. Their parasite communities were analyzed to determine if they experience interannual variations due to local biotic and abiotic factors. Thirty‐three metazoan parasite species were recovered and identified: four species of Monogenea (adults); 16 of Digenea (one larvae and 15 adults); two of Acanthocephala (adults); two of Cestoda (larvae); three of Nematoda (two larvae and one adult); and six of Crustacea (three Copepoda, and three Isopoda). Species richness was greatest among the digeneans, which represented 48% of the total species recovered, followed by the crustaceans (19% of total species). Species richness at the component community level (14–24 species) was similar to reported richness in other small tuna species. The component communities and infracommunities of E. lineatus exhibited a similar pattern: high species richness and diversity, and numerical dominance by a single species, mainly by one of the didymozoids Allopseudocolocyntotrema claviforme or Pseudocolocyntotrema yaito. Parasite community structure and species composition varied among sampling years. Variations were possibly caused by a combination of abiotic and biotic factors which generated notable changes in the infection levels of several component species during the study period. These communities may therefore be unpredictable in terms of structure and species composition, as has been suggested for other communities of marine parasites.  相似文献   

5.
Lower Devonian quiet-water marine benthic communities were examined to determine what parameters of community structure are maintained from locality to locality. The preserved elements of the communities are dominated by brachiopods. Each community has a characteristic taxonomic composition and diversity. From stratigraphically lowest to highest the communities include the newly proposed Dawsonelloides Community which has relatively low diversity, and is strongly dominated by a single species. The Beachia Community is less strongly dominated by a single species. The newly proposed Leptostrophia Community is very strongly dominated by a single species; less common species are rare or absent in the other communities. The Plicoplasia Community is slightly less diverse than the preceeding two communities, but unlike them has six species which dominate one or more collections and are commonly found in reduced abundance in the other collections. The gradual change in taxonomic composition and structure from one community to adjacent communities coupled with the similar structure of diversity and dominance within particular communities suggest that these characteristics are time-averaged and primary structural features of the communities.  相似文献   

6.
This paper presents new data on small mammal communities in the industrial area of Pavlodar (Kazakhstan) for the first time. We have analyzed and compared diversity characteristics of small mammal communities found in a reference area and in an area of anthropogenic disturbance. The total abundance has been shown to increase with distance to the sources of pollution. A depauperate composition and single-dominance structure of species characterize the communities of small mammals in significantly disturbed areas. With a moderately intense level of anthropogenic stressors, species diversity increases, but the number of individual species decreases due to the fragmentation of habitats.  相似文献   

7.
The species composition and community structure of soil-inhabiting testate amoebae communities have been studied in biotopes of different types in the southern tundra and forest-tundra of the Tazovskaya Lowland, Western Siberia. A total of 93 species and forms have been identified. It has been found that the species richness of testate amoebae is much lower in dry than in moist biotopes due to a lower level of beta-diversity, with alpha diversity being the same (on average, 16.9 and 17.1 species per sample, respectively). Factors acting at the microbiotope level (biotope type and moisture) play the most important role in the formation of species richness; biotope features (soils and vegetation) are second in importance. In moist habitats, local communities of testate amoebae from different microbiotopes (mosses, lichens, or litter) are fairly similar in species structure, and communities from different moist biotopes are heterogeneous. In dry areas, the opposite situation is observed: local communities differ at the microbiotope level but are similar at the biotope level. The abundance of testate amoebae in moist biotopes reaches 200 × 103 ind./g dry soil, being an order of magnitude lower in dry biotopes.  相似文献   

8.
The invertebrate fauna of rivers and streams of the Southern Yamal has been studied using original specimens (122 bottom and vegetation samples). A total of 158 taxa have been recorded, many of which are new for this region. Among them, 18 types of rheophilic macrobenthic communities have been distinguished which mainly correspond to certain types of habitats and watercourses. A depletion in the set of rheophilic communities (including the loss of almost all crenal and many phytal ones), the taxonomic structure of communities (the loss of large bivalves and most gastropods, hemipterans, and dragonflies), and the total species composition of the fauna, as well as changes in the balance of life forms towards filter feeders (larvae of the family Simuliidae midges and pea clams) and leveling of the differences between the communities of large and small watercourses when compared with the communities of the Russian forest zone, have been recorded. Widespread Eurosiberian species are the most abundant in the rheophilic fauna of the examined region, Arctic species account for ∼20% of all species, and six East Siberian species have been found. No endemic species have been discovered.  相似文献   

9.
Recently, there has been a vigorous interest in community ecology about the structure of mutualistic networks and its importance for species persistence and coevolution. However, the mechanisms shaping mutualistic networks have been rarely explored. Here we extend for the first time the neutral theory of biodiversity to a multi trophic system. We focus on nestedness, a distinctive pattern of mutualistic community assembly showing two characteristics, namely, asymmetrical specialization (specialists interacting with generalists) and a generalist core (generalists interacting with generalists). We investigate the importance of relative species abundance (RSA) for the nested assembly of plant–animal mutualistic networks. Our results show that neutral mutualistic communities give rise to networks considerably more nested than real communities. RSA explains 60–70% of nested patterns in two real communities studied here, while 30–40% of nestedness is still unexplained. The nested pattern in real communities is better explained when we introduce interaction‐specific species traits such as forbidden links and intensity of dependence (relative importance of fruits for the diet of a frugivore) in our analysis. The fact that neutral mutualistic communities exhibit a perfectly nested structure and do not show a random or compartmentalized structure, underlines the importance of RSA in the assembly of mutualistic networks.  相似文献   

10.
The main factors that structure Neotropical animal communities have been the subject of discussion in ecology communities. We used a set of null models to investigate the existence of structure in snake communities from the Cerrado in Central Brazil in relation to the co-occurrence of species and guilds concerning specific resources. We used fragments (conservation units) inside the Distrito Federal and neighbor municipalities. In spite of recent human colonization in the region from the end of the 1950s, intense habitat modification and fragmentation has taken place. Sixty three snake species are present in the Distrito Federal. Co-occurrence analysis of species and guilds associated to snake diets and habitats suggested a lack of organization. The homogeneity of habitats in Central Brazil and the minor importance of ecological effects can lead to random arrangement.  相似文献   

11.
We have little knowledge of how climatic variation (and by proxy, habitat variation) influences the phylogenetic structure of tropical communities. Here, we quantified the phylogenetic structure of mammal communities in Africa to investigate how community structure varies with respect to climate and species richness variation across the continent. In addition, we investigated how phylogenetic patterns vary across carnivores, primates, and ungulates. We predicted that climate would differentially affect the structure of communities from different clades due to between-clade biological variation. We examined 203 communities using two metrics, the net relatedness (NRI) and nearest taxon (NTI) indices. We used simultaneous autoregressive models to predict community phylogenetic structure from climate variables and species richness. We found that most individual communities exhibited a phylogenetic structure consistent with a null model, but both climate and species richness significantly predicted variation in community phylogenetic metrics. Using NTI, species rich communities were composed of more distantly related taxa for all mammal communities, as well as for communities of carnivorans or ungulates. Temperature seasonality predicted the phylogenetic structure of mammal, carnivoran, and ungulate communities, and annual rainfall predicted primate community structure. Additional climate variables related to temperature and rainfall also predicted the phylogenetic structure of ungulate communities. We suggest that both past interspecific competition and habitat filtering have shaped variation in tropical mammal communities. The significant effect of climatic factors on community structure has important implications for the diversity of mammal communities given current models of future climate change.  相似文献   

12.
The release of anthropogenic pollution into freshwater ecosystems has largely transformed biodiversity and its geographical distribution patterns globally. However, for many communities including ecologically crucial ones such as zooplankton, it is largely unknown how different communities respond to environmental pollution. Collectively, dispersal and species sorting are two competing processes in determining the structure and geographical distribution of zooplankton communities in running water ecosystems such as rivers. At fine geographical scales, dispersal is usually considered as the dominant factor; however, the relative role of species sorting has not been evaluated well, mainly because significant environmental gradients rarely exist along continuously flowing rivers. The Chaobai River in northern China represents a rare system, where a significant environmental gradient exists at fine scales. Here, we employed high‐throughput sequencing to characterize complex zooplankton communities collected from the Chaobai River, and tested the relative roles of dispersal and species sorting in determining zooplankton community structure along the pollution gradient. Our results showed distinct patterns of zooplankton communities along the environmental gradient, and chemical pollutant‐related factors such as total phosphorus and chlorophyll‐a were identified as the major drivers for the observed patterns. Further partial redundancy analyses showed that species sorting overrode the effect of dispersal to shape local zooplankton community structure. Thus, our results reject the dispersal hypothesis and support the concept that species sorting caused by local pollution can largely determine the zooplankton community structure when significant environmental gradients exist at fine geographical scales in highly polluted running water ecosystems.  相似文献   

13.
There is a long tradition in ecology of evaluating the relative contribution of the regional species pool and local interactions on the structure of local communities. Similarly, a growing number of studies assess the phylogenetic structure of communities, relative to that in the regional species pool, to examine the interplay between broad-scale evolutionary and fine-scale ecological processes. Finally, a renewed interest in the influence of species source pools on communities has shown that the definition of the source pool influences interpretations of patterns of community structure. We use a continent-wide dataset of local ant communities and implement ecologically explicit source pool definitions to examine the relative importance of regional species pools and local interactions for shaping community structure. Then we assess which factors underlie systematic variation in the structure of communities along climatic gradients. We find that the average phylogenetic relatedness of species in ant communities decreases from tropical to temperate regions, but the strength of this relationship depends on the level of ecological realism in the definition of source pools. We conclude that the evolution of climatic niches influences the phylogenetic structure of regional source pools and that the influence of regional source pools on local community structure is strong.  相似文献   

14.
Knowledge of species interactions is vital to understand ecological and evolutionary patterns in nature. Traditional species interactions (e.g., competition, predation, symbiosis) have received a great deal of deserved attention and their general importance in shaping the evolution of populations and structure of communities is unquestioned. Recently, reproductive interference has been receiving attention as an important species interaction. Reproductive interference is defined as interspecific reproductive activities that decrease the fitness of at least one of the species involved in the interaction. Reproductive interference has the potential to affect the evolutionary trajectories of populations and structure of communities. Here, I comment on seven papers that make up this special feature on reproductive interference. Along the way I highlight key discoveries of these studies and areas of research that may contribute to our understanding of the causes and consequences of reproductive interference.  相似文献   

15.
Nested species subset patterns consist in a hierarchical structure of species composition in related assemblages, with the species found in depauperate assemblages representing non-random subsets of progressively richer ones. This pattern has been found at the infracommunity level in about a third of the fish ectoparasite assemblages studied to date. Here we present evidence for another non-random structural pattern in assemblages of fish ectoparasites, anti-nestedness, which corresponds to situations in which parasite species are always absent from infracommunities richer than the most depauperate one in which they occur. We show that this pattern is exactly as common as nestedness, and that anti-nested assemblages are characterised by significantly lower prevalence and mean intensities of parasites than nested assemblages. In addition, we found a positive relationship between the prevalence and the mean intensity of parasites across the different assemblages. We propose a link between the nestedness/anti-nestedness continuum and the prevalence-intensity relationship that may involve colonisation-extinction processes. The results presented here suggest that, although nestedness may not be common in parasite communities, other departures from random species assembly are possible, and that some form of structure may be present in many communities. The continuum between nestedness and anti-nestedness also has implications for recent models of species coexistence in communities.  相似文献   

16.
Despite the expansion of phylogenetic community analysis to understand community assembly, few studies have used these methods on mobile organisms and it has been suggested the local scales that are typically considered may be too small to represent the community as perceived by organisms with high mobility. Mobility is believed to allow species to mediate competitive interactions quickly and thus highly mobile species may appear randomly assembled in local communities. At larger scales, however, biogeographical processes could cause communities to be either phylogenetically clustered or even. Using phylogenetic community analysis we examined patterns of relatedness and trait similarity in communities of bumble bees (Bombus) across spatial scales comparing: local communities to regional pools, regional communities to continental pools and the continental community to a global species pool. Species composition and data on tongue lengths, a key foraging trait, were used to test patterns of relatedness and trait similarity across scales. Although expected to exhibit limiting similarity, local communities were clustered both phenotypically and phylogenetically. Larger spatial scales were also found to have more phylogenetic clustering but less trait clustering. While patterns of relatedness in mobile species have previously been suggested to exhibit less structure in local communities and to be less clustered than immobile species, we suggest that mobility may actually allow communities to have more similar species that can simply limit direct competition through mobility.  相似文献   

17.
On the basis of long-term count of insectivorous mammals, the zonal, landscape, and biotopical distributions of their species and communities in the Upper Ob region have been characterized. Landscape-dependent variations in the species composition and dominance structure, as well as population density and species richness of the communities of insectivores have been estimated.  相似文献   

18.
The metacommunity concept, describing how local and regional scale processes interact to structure communities, has been successfully applied to patterns of taxonomic diversity. Functional diversity has proved useful for understanding local scale processes, but has less often been applied to understanding regional scale processes. Here, we explore functional diversity patterns within a metacommunity context to help elucidate how local and regional scale processes influence community assembly. We detail how each of the four metacommunity perspectives (species sorting, mass effects, patch dynamics, neutral) predict different patterns of functional beta‐ and alpha‐diversity and spatial structure along two key gradients: dispersal limitation and environmental conditions. We then apply this conceptual model to a case study from alpine tundra plant communities. We sampled species composition in 17 ‘sky islands’ of alpine tundra in the Colorado Rocky Mountains, USA that differed in geographic isolation and area (key factors related to dispersal limitation) and temperature and elevation (key environmental factors). We quantified functional diversity in each site based on specific leaf area, leaf area, stomatal conductance, plant height and chlorophyll content. We found that colder high elevation sites were functionally more similar to each other (decreased functional beta‐diversity) and had lower functional alpha‐diversity. Geographic isolation and area did not influence functional beta‐ or alpha‐diversity. These results suggest a strong role for environmental conditions structuring alpine plant communities, patterns consistent with the species sorting metacommunity perspective. Incorporating functional diversity into metacommunity theory can help elucidate how local and regional factors structure communities and provide a framework for observationally examining the role of metacommunity dynamics in systems where experimental approaches are less tractable.  相似文献   

19.
The modern state of the species structure and spatial distribution of zooplankton cenoses in the upper part of the river hydraulics zone in the Cheboksary Reservoir, where the construction of a low-head dam is planned, and in the mouth part of the Oka River has been studied based on the data of 2016 and 2017. Two zooplankton communities have been identified in these areas; differences in their species structure are determined by several ecological factors: total mineralization, water transparency, temperature, pH, etc.  相似文献   

20.
Apparent competition is a form of indirect interaction among species that can potentially structure biological communities. In insect communities, parasitoid-mediated apparent competition has been proposed as a particularly important structuring force. We argue that short-term apparent competition may be less important in structuring insect communities in tropical regions, compared with temperate regions. This prediction arises because, compared with temperate insects, tropical insects that share natural enemies are more likely to be isolated in both space and time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号