首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine the relative importance of factors affecting bacterial abundance in Lake Biwa, correlation and multiple regression analyses were performed with relevant biotic and abiotic variables. Data used in the analyses were collected weekly from April 1997 to June 1998 at a pelagic site in the north basin. The bacterial abundance ranged from 1 to 7 × 106 cells ml−1, and its spatio-temporal pattern was virtually identical to that in previous studies conducted 12–15 years ago. In the surface layer (0–12.5 m), bacterial abundance was significantly correlated with water temperature and with protozoan and metazoan grazers, but not with chlorophyll a and nutrient concentrations. The results suggest that loss factors rather than growth factors are more important in determining bacterial abundance in this lake. However, grazing effects on bacterial abundance differed among zooplankton. Bacterial abundance correlated negatively with phagotrophic nanoflagellates (PNF) and Daphnia, but positively with Eodiaptomus. Thus, PNF and Daphnia act to reduce the bacterial abundance, while Eodiaptomus acts to stimulate. In contrast, these biotic factors did not explain changes in bacterial abundance in the middle (12.5–25 m) and deep (>25 m) layers. Instead, the bacterial abundance in the deep layer was highly correlated with vertical mixing regimes, suggesting that bacterial abundance was directly or indirectly affected by abiotic factors. These results indicate that bacterial abundance in Lake Biwa was regulated by different factors at different depths. Received: February 8, 2000 / Accepted: August 29, 2000  相似文献   

2.
Detection and assessment of the impact of pollution on biological resources imply increasing research on early-warning markers such as metallothioneins in metal exposure. Metallothioneins are cytosolic, low molecular weight proteins, involved principally in essential metal homeostasis and non-essential metal detoxication. Metallothionein synthesis could be influenced by abiotic (season) or biotic (reproduction process) factors directly or indirectly by its effect on metal bioaccumulation (i.e., sex, weight). In a view of using metallothioneins as metal-exposure biomarkers in Gammarus pulex, this study attempts to define the effect of several factors (sex, weight/size and season) on the level of this protein. Metallothionein levels recorded in individuals over a large range of weights indicate a negative correlation between them. Inversely in our conditions, no difference was observed between male and female organisms. During field study, metallothionein level changes were observed with the highest levels in autumn and winter periods. The highest metallothionein levels were observed after the reproduction period, perhaps linked with the metabolic needs of biologically available essential metal such as zinc.  相似文献   

3.
《Journal of Ornithology》1994,135(1):201-211

Research Notes on Avian Biology 1994: Selected Contributions from the 21st International Ornithological CongressEcology: Distribution

Subject: Distribution: Influence of biotic and abiotic factors  相似文献   

4.
Several factors have been identified as relevant in determining the abundance of non-native invasive species. Nevertheless, the relative importance of these factors will vary depending on the invaded habitat and the characteristics of the invasive species. Due to their harsh environmental conditions and remoteness, high-alpine habitats are often considered to be at low risk of plant invasion. However, an increasing number of reports have shown the presence and spread of non-native plant species in alpine habitats; thus, it is important to study which factors control the invasion process in these harsh habitats. In this study, we assessed the role of disturbance, soil characteristics, biotic resistance and seed rain in the establishment and abundance of the non-native invasive species Taraxacum officinale (dandelion) in the Andes of central Chile. By focusing on human-disturbed patches, naturally disturbed patches, and undisturbed patches, we did not find that disturbance per se, or its origin, affected the establishment and abundance of T. officinale. The abundance of this non-native invasive species was not negatively related to the diversity of native species at local scales, indicating no biotic resistance to invasion; instead, some positive relationships were found. Our results indicate that propagule pressure (assessed by the seed rain) and the abiotic soil characteristics are the main factors related to the abundance of this non-native invasive species. Hence, in contrast to what has been found for more benign habitats, disturbance and biotic resistance have little influence on the invasibility of T. officinale in this high-alpine habitat.  相似文献   

5.
S. Radwan 《Hydrobiologia》1980,73(1-3):59-62
The influence of some biotic and abiotic factors on the fertility of some planktonic rotifers was studied. Trophic factors, such as community structure and the amount of nannoplankton food available was of considerable influence to rotifer fertility, especially among sedimentators, while abiotic factors had a much smaller influence.  相似文献   

6.
Accumulation of the extracellular proteins localized in intercellular spaces of barley primary leaves was examined after inoculation with powdery mildew (Erysiphe graminis f. sp. hordei) as biotic stress factor and after abiotic stresses such as heat shock, low temperature and heavy metal (Mg,Zn, Cu, Al, Cd and Co) treatment using native polyacrylamide gel electrophoresis. Six to eight major pathogen-induced proteins (bands on native gel) have been identified. Their accumulation at host-parasite incompatibility was more expressive than at compatibility interaction. Elevated temperature did not induce pathogenesis-related (PR) proteins while low temperature induced three of them. Cu, Al, Cd and Co induced accumulation pattern of extracellular proteins was very similar to that in powdery mildew inoculated leaves. Mg and Zn had no effect on the induction of protein accumulation in the intercellular spaces of leaves. Induction of PR proteins by different stresses indicated their general function in the resistance of plants to changing environment. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Larval abundance of Chironomus circumdatus in sewage canal and pond systems was studied during 1988–1990. Monthly changes in the morphometric features of the pond revealed that both total and littoral areas progressively decreased from 1063 and 107 m2 in December 1988 to 151 and 43 m2 in May '89; the decrease during the year 1989–1990 was from 1116 and 92 m2 in October to 109 and 31 m2 in May. A significant negative correlation (r= – 0.52) was obtained for the relation between littoral area and larval density in the pond. Larval density and biomass depended generally on the nature of the substrate and quantity of organic matter. Larval density of Ch. circumdatus was positively correlated with O2, bacterial count and organic matter content, but negatively correlated with CO2 level. Daily removal of organic matter by the larvae ranged from 20 to 31 % of the available organic matter in the sewage canal and from 3 to 11 % in the pond.  相似文献   

8.
Dioscorea deltoidea cell suspension cultures were established in modified Murashige and Skoog medium. The diosgenin production increased from 0.10 g–1 to 3.98 g–1 dry cell weight when cells were cultivated in the light and in a growth medium limited in phosphate and sucrose. The addition of 1.3 g of autoclaved fungal mycelium of Alternaria tenuis per litre of cell culture growing in the dark induced the production of 0.04 mg diosgenin g–1 dry cell weight. In both cases, the production of diosgenin was preceded by a transient induction of isopentenyl diphosphate isomerase activity.  相似文献   

9.
Mutualistic interactions between animals and plants vary over time and space based on the abundance of fruits or animals and seasonality. Little is known about this temporal dynamic and the influence of biotic and abiotic factors on the structure of interaction networks. We evaluated changes in the structure of network interactions between bats and fruits in relation to variations in rainfall. Our results suggest that fruit abundance is the main variable responsible for temporal changes in network attributes, such as network size, connectance, and number of interactions. In the same way, temperature positively affected the abundance of fruits and bats. An increase in temperature and alterations in rainfall patterns, due to human induced climate change, can cause changes in phenological patterns and fruit production, with negative consequences to biodiversity maintenance, ecological interactions, and ecosystem functioning.  相似文献   

10.
The changes in NADPH activity was studied in the roots of 3–4-day-old etiolated pea (cultivar Aksaiskii usatyi) seedlings depending on plant inoculation with Rhizobium leguminosarum bv. viceae (strain CIAM 1026), adverse environmental factors (low temperature and high dose of a mineral nitrogen fertilizer), chemical substances (sodium nitroprusside and methyl viologen, or paraquat), and a biotic factor—the bacterium Escherichia coli (strain XL-1Blue). It was demonstrated that all exogenous factors increased the activity of microsomal NADPH oxidase. Rhizobial infection removed the activation caused by exogenous factors only in the case of high nitrogen content in the medium, thereby displaying an antagonistic effect. A synergistic action on the enzyme activity was observed in the variants with combined action of rhizobia + paraquat and rhizobia + E. coli. An increased NADPH oxidase activity coincided with a growth inhibition of pea seedling roots. The results are discussed from the standpoint of the roles of NADPH oxidase and reactive oxygen species in the legume-rhizobium symbiosis.  相似文献   

11.
12.
Community structure and dynamics in aquatic ecosystems are influenced by a variety of abiotic and biotic factors including productivity, species composition, and temperature. These factors may also affect local-scale community resilience to nonnative species invasions. We used habitat characteristics, zooplankton concentrations, fish abundances, and species composition and richness data collected by two fish population monitoring programs to define relationships that influence stress and nutrition in invasive silver carp (Hypophthalmichthys molitrix). We collected blood samples and quantified nutritional (alkaline phosphatase, cholesterol, protein, and triglycerides) and stress metrics (cortisol and glucose) from individuals across three distinct time periods. Nutritional patterns in silver carp were explained by temperature and food resources, indicating elevated feeding in warmer months. Patterns in blood-based stress parameters were most strongly driven by environmental characteristics, elevating with high water temperatures and increased turbidity. Nutrient levels and community richness parameters did not influence the stress or condition of silver carp, likely due to the absence of limiting resources or competition for this species. Together, our results provide insights into the factors that may influence the spread and distribution of silver carp, as well as the characteristics of habitats that could be vulnerable to future silver carp invasion.  相似文献   

13.
NAC转录因子在植物抗病和抗非生物胁迫反应中的作用   总被引:3,自引:0,他引:3  
Sun LJ  Li DY  Zhang HJ  Song FM 《遗传》2012,34(8):993-1002
NAC转录因子是植物特有的一类转录因子,其共同特点是在N端含有一段高度保守、由约150个氨基酸组成的NAC结构域,而C端为高度变异的转录调控区。研究表明,NAC转录因子不仅参与植物生长发育的调控,而且在植物抗逆反应中具有重要的调控作用。文章着重介绍NAC转录因子在植物抗逆反应中的作用及其调控机制,并简要讨论NAC转录因子生物学功能的研究方向。  相似文献   

14.
15.

Background

Plants are affected by several aspects of the soil, which have the potential to exert cascading effects on the performance of herbivorous insects. The effects of biotic and abiotic soil characteristics have however mostly been investigated in isolation, leaving their relative importance largely unexplored. Such is the case for the dune grass Ammophila, whose decline under decreasing sand accretion is argued to be caused by either biotic or abiotic soil properties.

Methodology/Principal Findings

By manipulating dune soils from three different regions, we decoupled the contributions of region, the abiotic and biotic soil component to the variation in characteristics of Ammophila arenaria seedlings and Schizaphis rufula aphid populations. Root mass fraction and total dry biomass of plants were affected by soil biota, although the latter effect was not consistent across regions. None of the measured plant properties were significantly affected by the abiotic soil component. Aphid population characteristics all differed between regions, irrespective of whether soil biota were present or absent. Hence these effects were due to differences in abiotic soil properties between regions. Although several chemical properties of the soil mixtures were measured, none of these were consistent with results for plant or aphid traits.

Conclusions/Significance

Plants were affected more strongly by soil biota than by abiotic soil properties, whereas the opposite was true for aphids. Our results thus demonstrate that the relative importance of the abiotic and biotic component of soils can differ for plants and their herbivores. The fact that not all effects of soil properties could be detected across regions moreover emphasizes the need for spatial replication in order to make sound conclusions about the generality of aboveground-belowground interactions.  相似文献   

16.
Pfiesteria spp. are mixotrophic armored dinoflagellates populating the Atlantic coastal waters of the United States. They have been a focus of intense research due to their reported association with several fish mortality events. We have now used a clonal culture of Pfiesteria piscicida and several new environmental isolates to describe growth characteristics, feeding, and factors contributing to the encystment and germination of the organism in both laboratory and environmental samples. We also discuss applied methods of detection of the different morphological forms of Pfiesteria in environmental samples. In summary, Pfiesteria, when grown with its algal prey, Rhodomonas sp., presents a typical growth curve with lag, exponential, and stationary phases, followed by encystment. The doubling time in exponential phase is about 12 h. The profiles of proliferation under a standard light cycle and in the dark were similar, although the peak cell densities were markedly lower when cells were grown in the dark. The addition of urea, chicken manure, and soil extracts did not enhance Pfiesteria proliferation, but crude unfiltered spent aquarium water did. Under conditions of food deprivation or cold (4 degrees C), Pfiesteria readily formed harvestable cysts that were further analyzed by PCR and scanning electron microscopy. The germination of Pfiesteria cysts in environmental sediment was enhanced by the presence of live fish: dinospores could be detected 13 to 15 days earlier and reached 5- to 10-times-higher peak cell densities with live fish than with artificial seawater or f/2 medium alone. The addition of ammonia, urea, nitrate, phosphate, or surprisingly, spent fish aquarium water had no effect.  相似文献   

17.
In this study we examined ecosystem respiration (RECO) data from 104 sites belonging to FLUXNET, the global network of eddy covariance flux measurements. The goal was to identify the main factors involved in the variability of RECO: temporally and between sites as affected by climate, vegetation structure and plant functional type (PFT) (evergreen needleleaf, grasslands, etc.). We demonstrated that a model using only climate drivers as predictors of RECO failed to describe part of the temporal variability in the data and that the dependency on gross primary production (GPP) needed to be included as an additional driver of RECO. The maximum seasonal leaf area index (LAIMAX) had an additional effect that explained the spatial variability of reference respiration (the respiration at reference temperature Tref=15 °C, without stimulation introduced by photosynthetic activity and without water limitations), with a statistically significant linear relationship (r2=0.52, P<0.001, n=104) even within each PFT. Besides LAIMAX, we found that reference respiration may be explained partially by total soil carbon content (SoilC). For undisturbed temperate and boreal forests a negative control of total nitrogen deposition (Ndepo) on reference respiration was also identified. We developed a new semiempirical model incorporating abiotic factors (climate), recent productivity (daily GPP), general site productivity and canopy structure (LAIMAX) which performed well in predicting the spatio‐temporal variability of RECO, explaining >70% of the variance for most vegetation types. Exceptions include tropical and Mediterranean broadleaf forests and deciduous broadleaf forests. Part of the variability in respiration that could not be described by our model may be attributed to a series of factors, including phenology in deciduous broadleaf forests and management practices in grasslands and croplands.  相似文献   

18.
The aim of this study was to estimate the influence of biotic and abiotic factors on Suaeda maritima reproduction on a salt marsh. Individuals of Suaeda maritima were submitted in natural conditions to four series of densities (100, 1,000, 4,000 and 8,000 plants/m2). When density increases, individuals tend to be less or non-branched, while individual biomass decreases. Consequently, individual seed production decreases as density increases. Despite morphological modifications, Suaeda maritima present density-dependent mortality. For a unit area, total biomass and seed production are higher at intermediate density (1,000 plants/m2). Environmental factors could interfere with self-thinning. They seem to limit the effect of competition on mortality and to have an influence on individual and total seed production. This experiment stressed the importance of a biotic factor such as intra-specific competition, which occurs at the same time as abiotic factors, in Suaeda maritima dynamics in the field.  相似文献   

19.
Droughts and summer drying create unusual temporary aquatic habitats in the form of isolated pools in many small streams around the world. To examine spatial and temporal variation in fish community structure of drying stream pools, their relation to abiotic environmental variables, and associations among species, fish were sampled during summer 1995 and 1996 from pools of four streams in the Ozark mountains, Arkansas, USA. Redundancy analysis of physical-chemical variables showed significant differences among stream sites, but no significant difference between years or stream site by year interaction. Stream sites separated consistently along axes one (habitat heterogeneity) and two (temperature/canopy cover) in both years. Redundancy analysis of fish species-size class densities showed a significant stream site by year interaction. Groupings of stream sites based on fish assemblages were not well explained by physical-chemical variables measured at the pool scale, but were related to location within the drainage basin, and these groupings differed between years. There were 27 (15.8%) and 10 (5.8%) significant associations found among fish species-size classes in 1995 and 1996, respectively, and all but two significant associations in 1995 were positive. Pool depth, habitat heterogeneity, pool size and dissolved oxygen/canopy cover were important local abiotic factors depending on response variables examined. In both years, large fish total density, large central stoneroller density (80 mm TL), and small sunfish (<80 mm TL) density were positively related to pool depth. Otherwise, there was no consistent relationship between physical-chemical variables and dependent variables (fish density and species richness) within a year or between years for a given dependent variable. These results support the hypothesis that local abiotic factors are important in structuring fish assemblages in harsh environments, but the importance of those factors varies temporally, and regional influences appear to override local abiotic conditions as factors structuring fish assemblages in drying stream pools. Predation by terrestrial vertebrates may also be an important factor structuring these fish assemblages that has been largely overlooked.  相似文献   

20.
Plants depend heavily on efficient nutrient uptake and utilization for optimal growth and development. However, plants are constantly subjected to a diverse array of biotic stresses, such as pathogen infections, insect pests, and herbivory,as well as abiotic stress like drought, salinity,extreme temperatures, and nutrient imbalances.These stresses significantly impact the plant's ability to take up nutrient and use it efficiency.Understanding how plants maintain nutrient uptake and use efficiency under biotic and abiotic stress conditions is crucial for improving crop resilience and sustainability. This review explores the recent advancements in elucidating the mechanisms underlying nutrient uptake and utilization efficiency in plants under such stress conditions. Our aim is to offer a comprehensive perspective that can guide the breeding of stresstolerant and nutrition-efficient crop varieties,ultimately contributing to the advancement of sustainable agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号