首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Meiosis is an ancestral, highly conserved process in eukaryotic life cycles, and for all eukaryotes the shared component of sexual reproduction. The benefits and functions of meiosis, however, are still under discussion, especially considering the costs of meiotic sex. To get a novel view on this old problem, we filter out the most conserved elements of meiosis itself by reviewing the various modifications and alterations of modes of reproduction. Our rationale is that the indispensable steps of meiosis for viability of offspring would be maintained by strong selection, while dispensable steps would be variable. We review evolutionary origin and processes in normal meiosis, restitutional meiosis, polyploidization and the alterations of meiosis in forms of uniparental reproduction (apomixis, apomictic parthenogenesis, automixis, selfing) with a focus on plants and animals. This overview suggests that homologue pairing, double-strand break formation and homologous recombinational repair at prophase I are the least dispensable elements, and they are more likely optimized for repair of oxidative DNA damage rather than for recombination. Segregation, ploidy reduction and also a biparental genome contribution can be skipped for many generations. The evidence supports the theory that the primary function of meiosis is DNA restoration rather than recombination.  相似文献   

2.
Liberating genetic variance through sex   总被引:1,自引:0,他引:1  
Genetic variation in fitness is the fundamental prerequisite for adaptive evolutionary change. If there is no variation in survival and reproduction or if this variation has no genetic basis, then the composition of a population will not evolve over time. Consequently, the factors influencing genetic variation in fitness have received close attention from evolutionary biologists. One key factor is the mode of reproduction. Indeed, it has long been thought that sex enhances fitness variation and that this explains the ubiquity of sexual reproduction among eukaryotes. Nevertheless, theoretical studies have demonstrated that sex need not always increase genetic variation in fitness. In particular, if fitness interactions among beneficial alleles (epistasis) are positive, sex can reduce genetic variance in fitness. Empirical data have been sorely needed to settle the issue of whether sex does enhance fitness variation. A recent flurry of studies[1-4] has demonstrated that sex and recombination do dramatically increase genetic variation in fitness and consequently the rate of adaptive evolution. Interpreted in light of evolutionary theory, these studies rule out positive in these experiments epistasis as a major source of genetic associations. Further studies are needed, however, to tease apart other possible sources.  相似文献   

3.
4.
Meiosis in Saccharomyces yeast produces four haploid gametes that usually fuse with each other, an extreme form of self-fertilization among the products of a single meiosis known as automixis. The gametes signal to each other with sex pheromone. Better-quality gametes produce stronger signals and are preferred as mates. We suggest that the function of this signalling system is to enable mate choice among the four gametes from a single meiosis and so to promote the clearance of deleterious mutations. To support this claim, we construct a mathematical model that shows that signalling during automixis (i) improves the long-term fitness of a yeast colony and (ii) lowers its mutational load. We also show that the benefit to signalling is greater with larger numbers of segregating mutations.  相似文献   

5.
The selective forces responsible for the evolution of genes mediating recombination are discussed. These genes originated because of their role indna repair. In eukaryotes, their role in repair is not sufficient to account for the evolution of meiosis and syngamy. Therefore, a “hitch-hiking” explanation is required, according to which a recombination gene gets a lift in frequency from the high-fitness genes to which it is linked. Such hitch-hiking models are reviewed: collectively they provide an adequate explanation for the maintenance of sex and recombination in eukaryotes. In prokaryotes, the main selective force favouring recombination isdna repair: the cross-overs caused by recombination may occasionally have important evolutionary effects, but they are the consequences, rather than the causes, of the evolution of recombination in prokaryotes. In both prokaryotes and eukaryotes, recombination genes also cause specific, repeatable and adaptive rearrangements of the genetic material.  相似文献   

6.
Certain types of asexual reproduction lead to loss of complementation, that is unmasking of recessive deleterious alleles. A theoretical measure of this loss is calculated for apomixis, automixis and endomitosis in the cases of diploidy and polyploidy. The effect of the consequent unmasking of deleterious recessive mutations on fitness is also calculated. Results show that, depending on the number of lethal equivalents and on the frequency of recombination, the cost produced by loss of complementation after few generations of asexual reproduction may be greater than the two-fold cost of meiosis. Maintaining complementation may, therefore, provide a general short-term advantage for sexual reproduction. Apomixis can replace sexual reproduction under a wide range of parameters only if it is associated with triploidy or tetraploidy, which is consistent with our knowledge of the distribution of apomixis.  相似文献   

7.
Parthenogenesis is an asexual mode of reproduction that plays an important role in the evolution of sex, sociality, and reproduction strategies in insects. Some species of cockroach exhibit thelytoky, a type of parthenogenesis in which female offspring are produced without fertilization. However, the cytological and genetic mecha? nisms of parthenogenesis in cockroaches are not well understood. Here we provide the first molecular genetic evidence that cockroaches can reproduce through automixis. Using the American cockroach Periplaneta aniericana, we performed microsatellite analysis to investigate the genetic relationship between parthenogenetically produced nymphs and the parent virgin females, and found that all parthenogenetic offspring were homozygous for autosomal microsatellite markers, whereas the female parents were heterozygous. In addition, flow cytometry analysis revealed that the parthenogenetic offspring were diploid. Taken together, our results demonstrate that P. americana exhibits automixis-type thelytoky, in which diploidy is restored by gamete duplication or terminal fusion. These findings highlight the unique reproduction strategies of cockroaches, which are more varied than was previously recognized.  相似文献   

8.
Sex can sometimes lead to complications. In some crops, 2n gametes have been exploited by plant breeders to transfer genetic variation between taxa of different ploidy levels. However, their role and use in dioecious genera have received relatively little attention. In the dioecious genus Actinidia (kiwifruit), seedling populations usually segregate equally for females and males as sex is determined by an XX female/XY male system. While fertilization involving 2n egg cells is not expected to affect the sex ratios of progenies, fertilization involving 2n pollen is likely to produce progenies with excess males. The extent of sex ratio distortion will depend on the relative contributions of first and second division restitution, and the frequency and location of cross-overs in meiosis. In this study, seedlings recovered from crosses between females of hexaploid Actinidia deliciosa and males of two diploid species, Actinidia chinensis and Actinidia eriantha, included a proportion of pentaploid hybrids presumably derived from fertilization involving 2n pollen. Most of these pentaploids were male, and a proportion of them were likely to be carrying two Y chromosomes. If used as parents in further crosses, males with multiple Y chromosomes are likely to cause distorted sex ratios in their immediate progenies. In dioecious genera such as Actinidia, the effects on sex ratios of different mechanisms of ploidy change need to be taken into account when considering the evolution of polyploidy and the design of breeding strategies involving ploidy manipulation.  相似文献   

9.
Ever since Darwin first addressed it, sexual reproduction reigns as the ‘queen’ of evolutionary questions. Multiple theories tried to explain how this apparently costly and cumbersome method has become the universal mode of eukaryote reproduction. Most theories stress the adaptive advantages of sex by generating variation, they fail however to explain the ubiquitous persistence of sexual reproduction also where adaptation is not an issue. I argue that the obstacle for comprehending the role of sex stems from the conceptual entanglement of two distinct processes – gamete production by meiosis and gamete fusion by mating (mixis). Meiosis is an ancient, highly rigid and evolutionary conserved process identical and ubiquitous in all eukaryotes. Mating, by contrast, shows tremendous evolutionary variability even in closely related clades and exhibits wonderful ecological adaptability. To appreciate the respective roles of these two processes, which are normally linked and alternating, we require cases where one takes place without the other. Such cases are rather common. The heteromorphic sex chromosomes Y and W, that do not undergo meiotic recombination are an evolutionary test case for demonstrating the role of meiosis. Substantial recent genomic evidence highlights the accelerated rates of change and attrition these chromosomes undergo in comparison to those of recombining autosomes. I thus propose that the most basic role of meiosis is conserving integrity of the genome. A reciprocal case of meiosis without bi‐parental mating, is presented by self‐fertilization, which is fairly common in flowering plants, as well as most types of apomixis. I argue that deconstructing sex into these two distinct processes – meiosis and mating – will greatly facilitate their analysis and promote our understanding of sexual reproduction.  相似文献   

10.
Sex allocation by simultaneous hermaphrodites is theoretically influenced by selfing rate, which is in turn influenced by the benefits of enhanced genomic transmission and reproductive assurance relative to the cost of inbreeding depression. The experimental investigation of these influences in seed plants has a rich pedigree, yet although such an approach is equally relevant to colonial invertebrates, which globally dominate subtidal communities on firm substrata, such studies have been scarce. We reared self‐compatible genets of the marine bryozoan Celleporella hyalina s.l. in the presence and absence of allosperm, and used molecular genetic markers for paternity analysis of progeny to test theoretical predictions that: (1) genets from focal populations with high selfing rates show less inbreeding depression than from focal populations with low selfing rates; (2) genets whose selfed progeny show inbreeding depression prefer outcross sperm (allosperm); and (3) genets bias sex allocation toward female function when reared in reproductive isolation. Offspring survivorship and paternity analysis were used to estimate levels of inbreeding depression and preference for outcrossing or selfing. Sex allocation was assessed by counting male and female zooids. As predicted, inbreeding depression was severe in selfed progeny of genets derived from the populations with low self‐compatibility rates, but, with one exception, was not detected in selfed progeny of genets derived from the populations with higher self‐compatibility rates. Also, as predicted, genets whose selfed progeny showed inbreeding depression preferred outcrossing, and a genet whose selfed progeny did not show inbreeding depression preferred selfing. Contrary to prediction, sex allocation in the majority of genets was not influenced by reproductive isolation. Lack of economy of male function may reflect the over‐riding influence of allosperm‐competition in typically dense breeding populations offering good opportunity for outcrossing. We suggest that hermaphroditism may be a plesiomorphic character of the crown group Bryozoa, prevented by phylogenetic constraint from being replaced by gonochorism and therefore not necessarily adaptive in all extant clades. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 519–531.  相似文献   

11.
For over a century, the paradigm has been that sex invariably increases genetic variation, despite many renowned biologists asserting that sex decreases most genetic variation. Sex is usually perceived as the source of additive genetic variance that drives eukaryotic evolution vis-à-vis adaptation and Fisher's fundamental theorem. However, evidence for sex decreasing genetic variation appears in ecology, paleontology, population genetics, and cancer biology. The common thread among many of these disciplines is that sex acts like a coarse filter, weeding out major changes, such as chromosomal rearrangements (that are almost always deleterious), but letting minor variation, such as changes at the nucleotide or gene level (that are often neutral), flow through the sexual sieve. Sex acts as a constraint on genomic and epigenetic variation, thereby limiting adaptive evolution. The diverse reasons for sex reducing genetic variation (especially at the genome level) and slowing down evolution may provide a sufficient benefit to offset the famed costs of sex.  相似文献   

12.
Differences in relative fitness of male and female offspring across ecological and social environments should favour the evolution of sex-determining mechanisms that enable adjustment of brood sex ratio to the context of breeding. Despite the expectation that genetic sex determination should not produce consistent bias in primary sex ratios, extensive and adaptive modifications of offspring sex ratio in relation to social and physiological conditions during reproduction are often documented. Such discordance emphasizes the need for empirical investigation of the proximate mechanisms for modifying primary sex ratios, and suggests epigenetic effects on sex-determining mechanisms as the most likely candidates. Birds, in particular, are thought to have an unusually direct opportunity to modify offspring sex ratio because avian females are heterogametic and because the sex-determining division in avian meiosis occurs prior to ovulation and fertilization. However, despite evidence of strong epigenetic effects on sex determination in pre-ovulatory avian oocytes, the mechanisms behind such effects remain elusive. Our review of molecular and cytological mechanisms of avian meiosis uncovers a multitude of potential targets for selection on biased segregation of sex chromosomes, which may reflect the diversity of mechanisms and levels on which such selection operates in birds. Our findings indicate that pronounced differences between sex chromosomes in size, shape, size of protein bodies, alignment at the meiotic plate, microtubule attachment and epigenetic markings should commonly produce biased segregation of sex chromosomes as the default state, with secondary evolution of compensatory mechanisms necessary to maintain unbiased meiosis. We suggest that it is the epigenetic effects that modify such compensatory mechanisms that enable context-dependent and precise adjustment of primary sex ratio in birds. Furthermore, we highlight the features of avian meiosis that can be influenced by maternal hormones in response to environmental stimuli and may account for the precise and adaptive patterns of offspring sex ratio adjustment observed in some species.  相似文献   

13.
Sexual reproduction in eukaryotes is accomplished by meiosis, a complex and specialized process of cell division that results in haploid cells (e.g., gametes). The stereotypical reductive division in meiosis is a major evolutionary innovation in eukaryotic cells, and delineating its history is key to understanding the evolution of sex. Meiosis arose early in eukaryotic evolution, but when and how meiosis arose and whether all eukaryotes have meiosis remain open questions. The known phylogenetic distribution of meiosis comprises plants, animals, fungi, and numerous protists. Diplomonads including Giardia intestinalis (syn. G. lamblia) are not known to have a sexual cycle; these protists may be an early-diverging lineage and could represent a premeiotic stage in eukaryotic evolution. We surveyed the ongoing G. intestinalis genome project data and have identified, verified, and analyzed a core set of putative meiotic genes-including five meiosis-specific genes-that are widely present among sexual eukaryotes. The presence of these genes indicates that: (1) Giardia is capable of meiosis and, thus, sexual reproduction, (2) the evolution of meiosis occurred early in eukaryotic evolution, and (3) the conserved meiotic machinery comprises a large set of genes that encode a variety of component proteins, including those involved in meiotic recombination.  相似文献   

14.
Sexual reproduction is the dominant reproductive mode in eukaryotes but, in many taxa, it has never been observed. Molecular methods that detect evidence of sex are largely based on the genetic consequences of sexual reproduction. Here we describe a powerful new approach to directly search genomes for genes that function in meiosis. We describe a "meiosis detection toolkit", a set of meiotic genes that represent the best markers for the presence of meiosis. These genes are widely present in eukaryotes, function only in meiosis and can be isolated by degenerate PCR. The presence of most, or all, of these genes in a genome would suggest they have been maintained for meiosis and, implicitly, sexual reproduction. In contrast, their absence would be consistent with the loss of meiosis and asexuality. This approach will help to understand both meiotic gene evolution and the capacity for meiosis and sex in putative obligate asexuals.  相似文献   

15.
Sex-determination is commonly categorized as either “genetic” or “environmental”—a classification that obscures the origin of this dichotomy and the evolution of sex-determining factors. The current focus on static outcomes of sex-determination provides little insight into the dynamic developmental processes by which some mechanisms acquire the role of sex determinants. Systems that combine “genetic” pathways of sex-determination (i.e., sex chromosomes) with “environmental” pathways (e.g., epigenetically induced segregation distortion) provide an opportunity to examine the evolutionary relationships between the two classes of processes and, ultimately, illuminate the evolution of sex-determining systems. Taxa with sex chromosomes typically undergo an evolutionary reduction in size of one of the sex chromosomes due to suppressed recombination, resulting in pronounced dimorphism of the sex chromosomes, and setting the stage for emergence of epigenetic compensatory mechanisms regulating meiotic segregation of heteromorphic sex chromosomes. Here we propose that these dispersed and redundant regulatory mechanisms enable environmental contingency in genetic sex-determination in birds and account for frequently documented context-dependence in avian sex-determination. We examine the evolution of directionality in such sex-determination as a result of exposure of epigenetic regulators of meiosis to natural selection and identify a central role of hormones in integrating female reproductive homeostasis, resource allocation to oocytes, and offspring sex. This approach clarifies the evolutionary relationship between sex-specific molecular genetic mechanisms of sex-determination and non-sex-specific epigenetic regulators of meiosis and demonstrates that both can determine sex. Our perspective shows how non-sex-specific mechanisms can acquire sex-determining function and, by establishing the explicit link between physiological integration of oogenesis and sex-determination, opens new avenues to the studies of adaptive sex-bias and sex-specific resource allocation in species with genetic sex-determination.  相似文献   

16.
Knowledge of the genetic and environmental influences on a character is pivotal for understanding evolutionary changes in quantitative traits in natural populations. Dominance and aggression are ubiquitous traits that are selectively advantageous in many animal societies and have the potential to impact the evolutionary trajectory of animal populations. Here we provide age‐ and sex‐specific estimates of additive genetic and environmental components of variance for dominance rank and aggression rate in a free‐living, human‐habituated bird population subject to natural selection. We use a long‐term data set on individually marked greylag geese (Anser anser) and show that phenotypic variation in dominance‐related behaviours contains significant additive genetic variance, parental effects and permanent environment effects. The relative importance of these variance components varied between age and sex classes, whereby the most pronounced differences concerned nongenetic components. In particular, parental effects were larger in juveniles of both sexes than in adults. In paired adults, the partner's identity had a larger influence on male dominance rank and aggression rate than in females. In sex‐ and age‐specific estimates, heritabilities did not differ significantly between age and sex classes. Adult dominance rank was only weakly genetically correlated between the sexes, leading to considerably higher heritabilities in sex‐specific estimates than across sexes. We discuss these patterns in relation to selection acting on dominance rank and aggression in different life history stages and sexes and suggest that different adaptive optima could be a mechanism for maintaining genetic variation in dominance‐related traits in free‐living animal populations.  相似文献   

17.
In vertebrates, facultative parthenogenesis (i.e. asexual reproduction by a sexually reproducing species) has been documented in four diverse taxonomic groups, namely sharks, birds, lizards, and snakes. With a single exception, the mode is terminal fusion automixis, where the second polar body fuses with the nucleus of the gamete, restoring diploidy and triggering cell division. The deviating case involves a report of a captive Burmese python (Python bivittatus), a giant Asiatic species common in zoological gardens and the pet trade. Although terminal fusion automixis produces half‐clones of the mother, under this unique case in P. bivittatus, the foetuses were reported as full clones. This conclusion is an apparent anomaly with respect to the mechanism of facultative parthenogenesis reported in all other snakes. In the present study, using genotyping methods, we analyze facultative parthenogenesis in two other species of pythonids and report results that challenge the abovementioned conclusions regarding clonality. Specifically, we report new findings comparable to those reported in other primitive snakes (namely boids), which support the hypothesis of terminal fusion automixis as the mode of facultative parthenogenesis. Furthermore, in light of our new data, we re‐examine the previous report of facultative parthenogenesis in the Burmese python and suggest an intriguing alternative explanation for the earlier findings. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 461–468.  相似文献   

18.
Sex determination is a complex and dynamic process with multiple genetic and environmental causes, in which germ and somatic cells receive various sex‐specific features. During the fifth week of fetal life, the bipotential embryonic gonad starts to develop in humans. In the bipotential gonadal tissue, certain cell groups start to differentiate to form the ovaries or testes. Despite considerable efforts and advances in identifying the mechanisms playing a role in sex determination and differentiation, the underlying mechanisms of the exact functions of many genes, gene–gene interactions, and epigenetic modifications that are involved in different stages of this cascade are not completely understood. This review aims at discussing current data on the genetic effects via genes and epigenetic mechanisms that affect the regulation of sex determination. Birth Defects Research (Part C) 108:321–336, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
It is generally accepted that genetic recombination in eukaryotes is mostly driven by meiotic divisions as part of the sexual cycle. The maintenance of the sexual cycle that combines beneficial genes in sexual offspring from two parents provides an advantage for a species in novel or changing environments. Sex thus preserves beneficial and removes deleterious mutations. However, some eukaryotes, including many fungi lack sex entirely, and thus, it was assumed that recombination occurring during mitotic (somatic) divisions is the main force to shape the genome of these asexually propagating microbes. However, several recent reports of a sexual cycle in asexually propagating fungi put this concept in question. Here, we summarize the accumulating evidence for the general occurrence of cryptic sex in filamentous fungi in which sexual reproduction has not been previously reported.  相似文献   

20.
Important questions remain about the long-term survival and adaptive significance of eukaryotic asexual lineages. Numerous papers dealing with sex advantages still continued to compare parthenogenetic populations versus sexual populations arguing that sex demonstrates a better fitness. Because asexual lineages do not possess any recombination mechanisms favoring rapid changes in the face of severe environmental conditions, they should be considered as an evolutionary dead-end. Nevertheless, reviewing literature dealing with asexual reproduction, it is possible to draw three stimulating conclusions. (1) Asexual reproduction in eukaryotes considerably differs from prokaryotes which experience recombination but neither meiosis nor syngamy. Recombination and meiosis would be a driving force for sexual reproduction. Eukaryotes should therefore be considered as a continuum of sexual organisms that are more or less capable (and sometimes incapable) of sexual reproduction. (2) Rather than revealing ancestral eukaryotic forms, most known lineages of asexual eukaryotes have lost sex due to a genomic conflict affecting their sexual capacity. Thus, it could be argued that hybridization is a major cause of their asexuality. Asexuality may have evolved as a reproductive mechanism reducing conflict within organisms. (3) It could be proposed that, rather than being generalists, parthenogenetic hybrid lineages could be favored when exploiting peculiar restricted ecological niches, following the “frozen niche variation” model. Although hybrid events may result in sex loss, probably caused by genomic conflict, asexual hybrids could display new original adaptive traits, and the rapid colonization of environments through clonal reproduction could favor their long-term survival, leading to evolutionary changes and hybrid speciation. Examination of the evolutionary history of asexual lineages reveals that evolutionary processes act through transitional stages in which even very small temporary benefits may be enough to counter the expected selective disadvantages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号