首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To become invasive, exotic species have to succeed in the consecutive phases of introduction, naturalization, and invasion. Each of these phases leaves traces in genetic structure, which may affect the species’ success in subsequent phases. We examined this interplay of genetic structure and invasion dynamics in the South African Ragwort (Senecio inaequidens), one of Europe’s fastest plant invaders. We used AFLP and microsatellite markers to analyze 19 native African and 32 invasive European populations. In combination with historic data, we distinguished invasion routes and traced them back to the native source areas. This revealed that different introduction sites had markedly different success in the three invasion phases. Notably, an observed lag‐phase in Northern Germany was evidently not terminated by factors increasing the invasiveness of the resident population but by invasive spread from another introduction centre. The lineage invading Central Europe was introduced to sites in which winters are more benign than in the native source region. Subsequently, this lineage spread into areas in which winter temperatures match the native climate more closely. Genetic diversity clearly increases with population age in Europe and less clearly decreases with spread rate up to population establishment. This indicates that gene flow along well‐connected invasion routes counteracted losses of genetic diversity during rapid spread. In summary, this study suggests that multiple introductions, environmental preadaptation and high gene flow along invasion routes contributed to the success of this rapid invader. More generally, it demonstrates the benefit of combining genetic, historical, and climatic data for understanding biological invasions.  相似文献   

2.
Mammalian herbivores can have pronounced effects on plant diversity but are currently declining in many productive ecosystems through direct extirpation, habitat loss and fragmentation, while being simultaneously introduced as livestock in other, often unproductive, ecosystems that lacked such species during recent evolutionary times. The biodiversity consequences of these changes are still poorly understood. We experimentally separated the effects of primary productivity and herbivores of different body size on plant species richness across a 10-fold productivity gradient using a 7-year field experiment at seven grassland sites in North America and Europe. We show that assemblages including large herbivores increased plant diversity at higher productivity but decreased diversity at low productivity, while small herbivores did not have consistent effects along the productivity gradient. The recognition of these large-scale, cross-site patterns in herbivore effects is important for the development of appropriate biodiversity conservation strategies.  相似文献   

3.
Exotic plant species can affect soil microbial communities with the potential for community and ecosystem feedbacks. Yet, separating the effects of exotics from confounded changes in plant community diversity still remains a challenge. We focused on how plant diversity and native or exotic life history affected root fungi because of their significant roles in community and ecosystem processes. Specifically, we examined how fungi colonizing plant roots were affected by plant richness (one, two or four species) replicated across a range of plant community mixtures (natives, exotics, native-exotic mixtures). Fungal biomass inside roots was affected independently by plant richness and mixture, while root fungal community composition was affected only by plant richness. Extraradical networks also increased in size with plant richness. By contrast, plant biomass was a function of plant mixture, with natives consistently smaller than exotics and native-exotic mixtures intermediate. Plant invasions may have an impact on the belowground community primarily through their effects on diversity, at least in the short-term. Disentangling the effects of diversity and invasion on belowground microbial communities can help us to understand both the controllers of belowground resilience and mechanisms of successful colonization and spread of exotic plants.  相似文献   

4.

Aim

The local‐ and regional‐based forms of anthropogenic change reducing grassland diversity are generally identified, but these scale‐dependent processes tend to co‐occur with unclear interactive effects. Here, we explicitly test how common local and regional perturbations simultaneously affect plant alpha and beta diversity in a multiyear community assembly experiment using fragments of grassland habitat of various sizes. We hypothesized that local disturbances and decreasing patch size would interact, suppressing local diversity while homogenizing composition among patches.

Location

North America.

Methods

We conducted a three‐year grassland assembly experiment, factorially manipulating local perturbation (nitrogen addition and mowing) and patch area for 36 patches over 13 ha. We quantified the individual and interactive effects of these local and regional factors on plant alpha and beta diversity within (quadrat scale) and among patches (patch scale). We also used a null model approach to disentangle between stochastic‐ and niche‐based assembly mechanisms.

Results

We detected a gradient of assembly outcomes driven by two non‐interacting factors—the effects of N fertilization on alpha (negative) and beta (positive) diversity regardless of spatial scale and the scale‐dependant effect of increasing patch size on alpha (positive) and beta (positive) diversity. These effects unfolded over time, with the constraints on richness and composition shifting from dispersal‐based during the first sampling year to perturbation‐and size‐based factors at year two and three. Fertilization effects were driven by a mixture of deterministic (i.e., selection at the species level) and stochastic (i.e., random extinctions) processes resulting in a decline in local richness but an increase in spatial heterogeneity in species composition. Area appeared to influence alpha diversity mainly via stochastic “sampling effect”—larger patches represented a larger sample of the regional pool. Niche‐based processes, however, led to convergence in beta diversity among smaller patches driving a positive overall effect of area on beta diversity.

Main conclusion

Our results illustrate how diversity regulation in contemporary grasslands can be simultaneously shaped by local and regional factors acting additively but via contrasting assembly mechanisms that operate at different spatial and temporal scales.
  相似文献   

5.
Erin A. Mordecai 《Oikos》2015,124(4):414-420
Environmental variability can promote species diversity when species respond differently to environmental conditions, via the storage effect. Pathogens, predators and other shared consumers can also facilitate coexistence when they differentially limit common species. However, it remains unclear how environmental variation and consumers interact to determine species diversity. Here, I use a model based on California annual grassland plants to show that a generalist pathogen with no host specificity can enhance the positive effect of environmental variability on diversity. The model predicts that pathogens can promote diversity by increasing the covariance between the environment and competition, enhancing the storage effect. However, pathogen impacts depend on life history. Pathogens that infect germinating seeds or plants tend to increase the storage effect, whereas those that infect dormant seeds can undermine the storage effect by eliminating population buffering during unfavorable years. These results suggest that pathogens may mediate plant responses to environmental variability and change, and in doing so may maintain diversity.  相似文献   

6.
Plant diversity can affect ecological processes such as competition and herbivory, and these ecological processes can act as drivers of evolutionary change. However, surprisingly little is known about how ecological variation in plant diversity can alter selective regimes on members of the community. Here, we examine how plant diversity at two different scales (genotypic and species diversity) impacts natural selection on a focal plant species, the common evening primrose (Oenothera biennis). Because competition is frequently relaxed in both genotypically and species rich plant communities, we hypothesized that increasing diversity would weaken selection on competitive ability. Changes in plant diversity can also affect associated arthropod communities. Therefore, we hypothesized that diversity would alter selection on plant traits mediating these interactions, such as herbivory related traits. We grew 24 focal O. biennis genotypes within four different neighbourhoods: genotypic monocultures or polycultures of O. biennis, and species monocultures or polycultures of old-field species that commonly co-occur with O. biennis. We then measured genotypic selection on nine plant traits known to be ecologically important for competition and herbivory. Focal O. biennis plants were smaller, flowered for shorter periods of time, had lower fitness, and experienced greater attack from specialist predispersal seed predators when grown with conspecifics versus heterospecifics. While neither conspecific nor heterospecific diversity altered trait means, both types of diversity altered the strength of selection on focal O. biennis plants. Specifically, selection on plant biomass was stronger in conspecific monocultures versus polycultures, but weaker in heterospecific monocultures versus polycultures. We found no evidence of selection on plant traits that mediate insect interactions, despite differences in arthropod communities on plants surrounded by conspecifics versus heterospecifics. Our data demonstrate that plant genotypic and species diversity can act as agents of natural selection, potentially driving evolutionary changes in plant communities.  相似文献   

7.
Understanding population dynamics and population regulation of invasive species is critical for predicting their effects on native ecosystems as well as for control strategies. Many species of gastropod in the genus Pomacea are successful aquatic invaders that have caused economic and ecological impacts in Southeastern Asia where their large fecundity and broad reproductive window helps them to colonize and take advantages of ephemeral agricultural habitats. We followed the population dynamics of P. insularum in permanent, stable freshwater systems (ponds and streams), and in ephemeral agricultural habitats in the upper Texas Gulf Coast region, USA. We found that although P. insularum has a large reproductive potential, its density, biomass and size structure in stable permanent systems did not change significantly from March to November, and densities averaged <2 m−2. This same species, however, displayed very different population dynamics in ephemeral agricultural environments. We found high densities (>130 m−2), and no stable size structure through time. Differences in the stability and persistence of these two types of environments appear to drive these patterns. Stability and persistence of habitats can result in different predator communities and the risk of predation for snails. We suggest that such factors may cause the differences in population dynamics and structure observed. The ability of snails to escape population control and explode in ephemeral habitats could drive the types of impacts seen on agricultural crops.  相似文献   

8.
Invaders exert new selection pressures on the resident species, for example, through competition for resources or by using novel weapons. It has been shown that novel weapons aid invasion but it is unclear whether native species co‐occurring with invaders have adapted to tolerate these novel weapons. Those resident species which are able to adapt to new selective agents can co‐occur with an invader while others face a risk of local extinction. We ran a factorial common garden experiment to study whether a native plant species, Anthriscus sylvestris, has been able to evolve a greater tolerance to the allelochemicals exerted by the invader, Lupinus polyphyllus. Lupinus polyphyllus produces allelochemicals which potentially act as a novel, strong selective agent on A. sylvestris. We grew A. sylvestris seedlings collected from uninvaded (naïve) and invaded (experienced) sites growing alone and in competition with L. polyphyllus in pots filled with soil with and without activated carbon. Because activated carbon absorbs allelochemicals, its addition should improve especially naïve A. sylvestris performance in the presence of the invader. To distinguish the allelochemicals absorption and fertilizing effects of activated carbon, we grew plants also in a mixture of soil and fertilizer. A common garden experiment indicated that the performances of naïve and experienced A. sylvestris seedlings did not differ when grown with L. polyphyllus. The addition of activated carbon, which reduces interference by allelochemicals, did not induce differences in their performances although it had a positive effect on the aboveground biomass of A. sylvestris. Together, these results suggest that naïve and experienced A. sylvestris plants tolerated equally the invader L. polyphyllus and thus the tolerance has not occurred over the course of invasion.  相似文献   

9.
10.
Comprehending ecological dynamics requires not only knowledge of modern communities but also detailed reconstructions of ecosystem history. Ancient DNA (aDNA) metabarcoding allows biodiversity responses to major climatic change to be explored at different spatial and temporal scales. We extracted aDNA preserved in fossil rodent middens to reconstruct late Quaternary vegetation dynamics in the hyperarid Atacama Desert. By comparing our paleo‐informed millennial record with contemporary observations of interannual variations in diversity, we show local plant communities behave differentially at different timescales. In the interannual (years to decades) time frame, only annual herbaceous expand and contract their distributional ranges (emerging from persistent seed banks) in response to precipitation, whereas perennials distribution appears to be extraordinarily resilient. In contrast, at longer timescales (thousands of years) many perennial species were displaced up to 1,000 m downslope during pluvial events. Given ongoing and future natural and anthropogenically induced climate change, our results not only provide baselines for vegetation in the Atacama Desert, but also help to inform how these and other high mountain plant communities may respond to fluctuations of climate in the future.  相似文献   

11.
The spread of exotic, invasive species is a global phenomenon that is recognized as a major source of environmental change. Although many studies have addressed the effects of exotic plants on the communities they invade, few have quantified the effects of invader removal on plant communities, or considered the degree to which different plant groups vary in response to invasion and invader removal. We evaluated the effects of an exotic succulent, iceplant (Carpobrotus edulis), on a coastal dune plant community in northern California, as well as the community responses to its removal. To assess possible mechanisms by which iceplant affects other plants, we also evaluated its above- and belowground influences on the germination and growth of a dominant exotic annual grass, Bromus diandrus. We found that iceplant invasion was associated with reduced native plant cover as well as increased cover and density of some exotic plants—especially exotic annual grasses. However, iceplant removal did not necessarily lead to a reversal of these effects: removal increased the cover and density of both native and exotic species. We also found that B. diandrus grown in iceplant patches, or in soil where iceplant had been removed, had poorer germination and growth than B. diandrus grown in soil not influenced by iceplant. This suggests that the influence of iceplant on this dune plant community occurs, at least in part, due to belowground effects, and that these effects remain after iceplant has been removed. Our study demonstrates the importance of considering how exotic invasive plants affect not only native species, but also co-occurring exotic taxa. It also shows that combining observational studies with removal experiments can lead to important insights into the influence of invaders and the mechanisms of their effects.  相似文献   

12.
The relationship between diversity and productivity of plant community under plant invasion has been not well known up to now. Here, we investigated the relationship between diversity and productivity under plant invasion and studied the response of species level plant mass to species richness in native and invaded communities. A field experiment from 2008 to 2013 and a pot experiment in 2014 were conducted to study the effects of plant invasion on the relationship between diversity and productivity and the response of species level plant mass to species richness in native and invaded communities. The community level biomass was negatively correlated to plant species richness in invaded communities while the same relationship was positive in native communities. The species level plant mass of individual species responded differently to overall plant species richness in the native and invaded communities, namely, most of the species’ plant mass increased in native communities, but decreased in invaded communities with increasing species richness. The complementarity or selection effects might dominate in native communities while competition effects might dominate in invaded communities. Accordingly, the negative relationship between diversity and productivity under plant invasion is highlighted in our experiments.  相似文献   

13.
Modelling invasion for a habitat generalist and a specialist plant species   总被引:2,自引:0,他引:2  
Predicting suitable habitat and the potential distribution of invasive species is a high priority for resource managers and systems ecologists. Most models are designed to identify habitat characteristics that define the ecological niche of a species with little consideration to individual species' traits. We tested five commonly used modelling methods on two invasive plant species, the habitat generalist Bromus tectorum and habitat specialist Tamarix chinensis , to compare model performances, evaluate predictability, and relate results to distribution traits associated with each species. Most of the tested models performed similarly for each species; however, the generalist species proved to be more difficult to predict than the specialist species. The highest area under the receiver-operating characteristic curve values with independent validation data sets of B. tectorum and T. chinensis was 0.503 and 0.885, respectively. Similarly, a confusion matrix for B. tectorum had the highest overall accuracy of 55%, while the overall accuracy for T. chinensis was 85%. Models for the generalist species had varying performances, poor evaluations, and inconsistent results. This may be a result of a generalist's capability to persist in a wide range of environmental conditions that are not easily defined by the data, independent variables or model design. Models for the specialist species had consistently strong performances, high evaluations, and similar results among different model applications. This is likely a consequence of the specialist's requirement for explicit environmental resources and ecological barriers that are easily defined by predictive models. Although defining new invaders as generalist or specialist species can be challenging, model performances and evaluations may provide valuable information on a species' potential invasiveness.  相似文献   

14.

Background

Biogeographical and macroecological principles are derived from patterns of distribution in large organisms, whereas microscopic ones have often been considered uninteresting, because of their supposed wide distribution. Here, after reporting the results of an intensive faunistic survey of marine microscopic animals (meiofauna) in Northern Sardinia, we test for the effect of body size, dispersal ability, and habitat features on the patterns of distribution of several groups.

Methodology/Principal Findings

As a dataset we use the results of a workshop held at La Maddalena (Sardinia, Italy) in September 2010, aimed at studying selected taxa of soft-bodied meiofauna (Acoela, Annelida, Gastrotricha, Nemertodermatida, Platyhelminthes and Rotifera), in conjunction with data on the same taxa obtained during a previous workshop hosted at Tjärnö (Western Sweden) in September 2007. Using linear mixed effects models and model averaging while accounting for sampling bias and potential pseudoreplication, we found evidence that: (1) meiofaunal groups with more restricted distribution are the ones with low dispersal potential; (2) meiofaunal groups with higher probability of finding new species for science are the ones with low dispersal potential; (3) the proportion of the global species pool of each meiofaunal group present in each area at the regional scale is negatively related to body size, and positively related to their occurrence in the endobenthic habitat.

Conclusion/Significance

Our macroecological analysis of meiofauna, in the framework of the ubiquity hypothesis for microscopic organisms, indicates that not only body size but mostly dispersal ability and also occurrence in the endobenthic habitat are important correlates of diversity for these understudied animals, with different importance at different spatial scales. Furthermore, since the Western Mediterranean is one of the best-studied areas in the world, the large number of undescribed species (37%) highlights that the census of marine meiofauna is still very far from being complete.  相似文献   

15.
Conservation practitioners widely agree that optimal conservation strategies will maximize the amount of genetic variation preserved in target taxa, but there is ongoing debate about how that variation should be distributed through restoration and mitigation activities. Here, we evaluate the impacts of ~10 years of mitigation on the population genetic structure of Limnanthes vinculans, a state- and federally-listed endangered plant species restricted to ephemeral vernal pool wetlands in the Santa Rosa Plain of California. Using microsatellite loci to estimate patterns of neutral molecular variation, we found that created pools support similar levels of variation in L. vinculans as natural pools. Habitat creation and seed translocation have not disrupted the largest-scale patterns of population structure across the species range, but a concentration of mitigation activity towards the range center has reduced the extent of isolation-by-distance operating in this region and shifted the location of at least one genetic boundary. Patterns of genetic variation among populations in remnant vernal pools reveal that gene flow has historically occurred beyond the scale of individual pools at the center of the species range, while small genetic populations have differentiated around the range margins. On average, L. vinculans in created pools exhibit less cover and more restricted local distributions than those in remnant pools, but these patterns were driven by two particularly productive natural sites rather than consistent differences between natural and created sites. We conclude that mitigation activities have changed the historical patterns of gene flow within the species range to a moderate degree, that these changes will likely impact remnant pools through gene flow, and that current created sites provide less heterogeneous habitat for L. vinculans than do natural pools. Studies that track individual plants will be needed to determine if the changes in gene flow due to mitigation will have positive or negative impacts on the demographic and microevolutionary trajectories of L. vinculans. More generally, this study provides a retrospective analysis of the outcome of managing an endangered plant species through intensive mitigation, and yields several insights to inform future conservation strategies.  相似文献   

16.
The Australian tree Melaleuca quinquenervia (melaleuca) formed dense monocultural forests several decades after invading parts of Florida and the Caribbean islands. These dominant forests have displaced native vegetation in sensitive wetland systems. We hypothesized that native plant diversity would increase following recent reductions in density of mature melaleuca stands in south Florida. We therefore examined data on changes in melaleuca densities and plant species diversity derived from permanent plots that were monitored from 1997 to 2005. These plots were located within mature melaleuca stands in nonflooded and seasonally-flooded habitats. Two host-specific biological control agents of melaleuca, Oxyops vitiosa and Boreioglycaspis melaleucae, were introduced during 1997 and 2002, respectively. Also, an adventive rust fungus Puccinia psidii and lobate-lac scale Paratachardina pesudolobata became abundant during the latter part of the study period. Overall melaleuca density declines in current study coincided with two to four fold increases in plant species diversity. The greatest declines in melaleuca density as well as the greatest increases in family importance values and species diversity indices occurred in nonflooded as compared to seasonally-flooded habitats. Most pioneer plant species in study sites belonged to Asteraceae, Cyperaceae, Poaceae, and Ulmaceae. The rapid reduction in melaleuca density and canopy cover during the study period may be attributed to self-thinning accelerated by the negative impact of natural enemies. Densities of other woody plants, particularly Myrica and Myrsine, which were sparsely represented in the understory by a few suppressed individuals also declined during the same period, possibly due to infestation by the generalist lac-scale. These findings indicate that natural-enemy accelerated self-thinning of melaleuca densities is positively influencing the native plant diversity and facilitating the partial rehabilitation of degraded habitats.  相似文献   

17.
Arthropod abundance has been hypothesized to be correlated with plant diversity but the results of previous studies have been equivocal. In contrast, plant productivity, vegetation structure, abiotic site conditions, and the physical disturbance of habitats, are factors that interact with plant diversity, and that have been shown to influence arthropod abundance. We studied the combined effect of plant species diversity, productivity and site characteristics on arthropod abundance in 71 managed grasslands in central Germany using multivariate statistics. For each site we determined plant species cover, plant community biomass (productivity), macro- and micronutrients in the soil, and characterized the location of sites with respect to orographic parameters as well as the current and historic management regimes. Arthropods were sampled using a suction sampler and classified a priori into functional groups (FGs). We found that arthropod abundance was not correlated with plant species richness, effective diversity or Camargo's evenness, even when influences of environmental variables were taken into account. In contrast, plant community composition was highly correlated with arthropod abundances. Plant community productivity influenced arthropod abundance but explained only a small proportion of the variance. The abundances of the different arthropod FGs were influenced differentially by agricultural management, soil characteristics, vegetation structure and by interactions between different FGs of arthropods. Herbivores, carnivores and detritivores reacted differently to variation in environmental variables in a manner consistent with their feeding mode. Our results show that in natural grassland systems arthropod abundance is not a simple function of plant species richness, and they emphasize the important role of plant community composition for the abundance patterns of the arthropod assemblages.  相似文献   

18.
19.
全球变化背景下, 诸如营养、水分等资源的波动是非稳态的, 往往以脉冲的形式出现, 呈现出频率低、强度高和持续时间短的特征。资源脉冲往往会打破植物群落固有的平衡状态, 进而影响全球变化的另一重要组分——外来植物入侵。目前, 全球变化对外来植物入侵影响的研究往往关注资源的稳态变化, 忽略了资源的波动性, 特别是脉冲的作用。该文通过综述资源脉冲对外来植物入侵影响的研究, 简要评述了资源脉冲的形成原因、类型及影响, 讨论了不同类型的资源脉冲对外来植物入侵的作用。此外, 该文根据现有的研究进展提出了一些未来可能的研究方向, 如资源脉冲的不同属性, 多种资源脉冲交互作用对植物入侵的影响及其机制等。  相似文献   

20.
余轩  王兴  吴婷  王启学  马昀  谢莉  宋乃平 《生态学报》2021,41(21):8516-8524
为揭示荒漠草原围栏封育后植物多样性的恢复对土壤生境的响应机制,以围栏封育和适度放牧草地的灰钙土和风沙土生境植物群落为研究对象,采用方差分析和冗余分析(redundancy analysis RDA)方法,研究了围栏封育后植物多样性的变化及其与土壤生境物理和化学因子的关系。结果表明:(1)相对于适度放牧利用,围栏封育显著降低了灰钙土和风沙土生境植物多样性;随着封育年限的增加,植物多样性呈现显著,且封育的负效应随着封育年限的增加而增加;(2)两种土壤生境下植物多样性与生物量均表现为负相关。植物群落对灰钙土和风沙土两种土壤生境下表现出的不同点有:(1)灰钙土生境下,植物多样性与砂粒正相关,生物量与有机碳,全氮正相关;(2)风沙土生境下,植物多样性与有机碳,全氮正相关,生物量与电导率正相关。未来荒漠草原退化草地植物多样性恢复需要充分考虑不同土壤生境类型的影响,草地管理需要采取适度利用和封育保护相结合道路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号