首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Woody plant encroachment is a common consequence of disturbance in savannas. Grazers and browsers interfere with sapling establishment dynamics by direct consumption of plant tissue, changing soil nutrient status (through fertilization and trampling) and grass competition. Studies evaluating the effects of herbivory on sapling establishment have mostly been extrapolated from single species. In a controlled field experiment, we studied the effects of clipping (simulating grazing and browsing), nutrients, grass competition, and their interactive effects on sapling survival and growth of four dominant humid and four dominant mesic savanna species. We conducted this experiment in a humid South African savanna. We found no effects on sapling survival by the treatments provided. However, clipped saplings of all species increased their investment in relative growth rate of stem length (RGRL). Clipping had a greater negative impact on relative growth rate of more humid than mesic species in terms of stem diameter (RGRD), total dry biomass and proportion of leaf biomass. Nutrients had a positive effect on the RGRL and sapling biomass of three mesic species. Positive effects of nutrients on RGRL of one humid and two mesic species were observed in their clipped saplings only. Grass competition had a strong negative impact on all growth parameters measured. Clipped saplings of one humid and two mesic species had lower RGRL with grass competition whereas intact saplings showed no significant response. After clipping, humid savanna species were more vulnerable to grass competition than mesic species, with reduced ability to use nutrients. In conclusion, herbivory increases sapling vulnerability to grass competition, with humid species being more susceptible than mesic species, indicating that woody-plant control strategies are more likely to be effective in humid savannas.  相似文献   

2.
Atmospheric CO2 has more than doubled since the last glacial maximum (LGM) and could double again within this century, largely due to anthropogenic activity. It has been suggested that low [CO2] contributed to reduced tree cover in savanna and grassland biomes at LGM, and that increasing [CO2] over the last century promoted increases in woody plants in these ecosystems over the past few decades. Despite the implications of this idea for understanding global carbon cycle dynamics and key global role of the savanna biome, there are still very few experimental studies quantifying the effects of CO2 on tree growth and demography in savannas and grasslands. In this paper we present photosynthetic, growth and carbon allocation responses of African savanna trees (Acacia karroo and Acacia nilotica) and a C4 grass, Themeda triandra, exposed to a gradient of CO2 concentrations from 180 (typical of LGM) to 1000 µmol mol?1 in open‐top chambers in a glasshouse as a first empirical test of this idea. Photosynthesis, total stem length, total stem diameter, shoot dry weight and root dry weight of the acacias increased significantly across the CO2 gradient, saturating at higher CO2 concentrations. After clipping to simulate fire, plants showed an even greater response in total stem length, total stem diameter and shoot dry weight, signalling the importance of re‐sprouting following disturbances such as fire or herbivory in savanna systems. Root starch (per unit root mass and total root starch per plant) increased steeply along the CO2 gradient, explaining the re‐sprouting response. In contrast to the strong response of tree seedlings to the CO2 gradient, grass productivity showed little variation, even at low CO2 concentrations. These results suggest that CO2 has significant direct effects on tree recruitment in grassy ecosystems, influencing the ability of trees to recover from fire damage and herbivory. Fire and herbivore regimes that were effective in controlling tree increases in grassy ecosystems could thus be much less effective in a CO2‐rich world, but field‐based tests are needed to confirm this suggestion.  相似文献   

3.

Background and aims

Below-ground grass competition limits woody establishment in savannas. N2-fixing legumes may, however, have a nutritional advantage over broad-leaved species. We hypothesised that broad-leaved non-legume savanna thicket species would be more severely constrained by grass competition for N and consequently respond more to N-fertilization than the legume, Acacia karroo.

Methods

A. karroo and five non-legume thicket species (Maytenus senegalensis, M. heterophylla, Euclea divinorum, Ziziphus mucronata, Schotia brachypetala) were grown together in an irrigated competition experiment with clipped-, unclipped-grass and without grass with/without N-fertilizer. The biomass, foliar nutrient, δ13C and δ15N of grasses and woody species were determined.

Results

Growth of both A. karroo and the non-legume species was equally sensitive (c. 90 % reduction) to both clipped- and unclipped-grass competition, regardless of N-fertilization. With grass competition, however, foliar [N] increased and δ15N decreased in response to N-fertilization. Grass biomass accumulation was also unchanged by fertilisation, despite increases in foliar [N] and decreases in δ15N.

Conclusions

The N2-fixation capacity of A. karroo provided no growth advantage over non-legumes. The lack of responsiveness of biomass accumulation by both the woody species and the grasses to N-fertilization, despite evidence that plants accessed the N-fertilizer, indicates limitation by other nutrients.  相似文献   

4.
Macek  Petr  Lepš  Jan 《Plant Ecology》2003,168(1):31-43
Melinis minutiflora Beauv. (Poaceae) is an African grass that is invading mid-elevation Trachypogon savannas in Venezuela. The objective of this study was to investigate the influence of soil fertility, competition and soil disturbance in facilitating Melinis' invasion and growth in these savanna sites. We manipulated soil fertility by adding nitrogen (+N), phosphorus and potassium (+PK), or nitrogen, phosphorus, and potassium (+NPK). We simultaneously manipulated the competitive environment by clipping background vegetation. In a separate experiment, we mechanically disrupted the soil to simulate disturbance. We hypothesized that germination and growth were bottlenecks to early establishment in undisturbed savanna, but that disturbance would alleviate those bottlenecks. We measured Melinis seed germination and subsequent establishment by adding seeds to all plots. We examined Melinis growth by measuring biomass of Melinis seedling transplants, 11 months after they were placed into treatment plots. Germination and establishment of Melinis from seed was extremely low. Of the 80,000 seeds applied in the experiment, only 28 plants survived the first growing season. Mortality of Melinis seedling transplants was lowest in PK fertilized plots, but in the absence of PK mortality increased with N additions and clipping. By contrast, fertilization of the savanna with NPK greatly increased Melinis seedling biomass and this effect was greatly enhanced when competition was reduced (e.g. clipping). Melinis transplant growth responded strongly to soil disturbance- a response not fully explained by removal of competitors (clipping) or changes in soil nutrients and moisture. We suspect that disruption of the soil structure allowed for greater root proliferation and subsequent plant growth. We believe that native savanna is relatively resistant to Melinis invasion, since Melinis seedlings persisted in intact savanna but exhibited little or no growth during the first year. The significant enhancement of Melinis seedling growth with clipping and nutrient additions suggests that low soil nutrients and the presence of native savanna species are important factors in the ability of native savanna to resist Melinis establishment. However, the potential for Melinis growth increases enormously with soil disturbance.  相似文献   

5.
 The effects of water stress and nitrogen availability on leaf water potential, nitrogenase activity, and growth was studied in a pot experiment with Leucaena leucocephala seedlings. Water stress was imposed on fertilized and unfertilized plants after inoculation with Rhizobium. Non-inoculated seedlings were used as control plants. Water stress lowered leaf water potential in all seedlings after 14 days of treatment. In inoculated seedlings, fertilized plants were more sensitive to water stress than unfertilized plants, as shown by a higher leaf water potential in plants of the latter treatment. Uninoculated and fertilized seedlings were most affected by water stress. This indicates that Rhizobium might increase stress tolerance in unfertilized seedlings at moderate water stress levels. The combined effects of water stress and applied fertilizers resulted in cessation of nitrogen fixation. Nitrogen fixation came to a complete stop after 22 days of water stress in fertilized seedlings. The different treatments were accompanied by anatomical changes of nodule structure. It is hypothesised that the leaf water potential may be used as an indicator to predict changes in nitrogen fixation in legume tree/shrub species during periods of water stress. Received: 21 October 1996 / Accepted: 12 May 1997  相似文献   

6.
The effects of irrigation and fertilization on nutrient content, shoot growth and photosynthetic rate of the deciduous Vaccinium uliginosum L. and the evergreen V. vitis-idaea L. were studied in a field experiment at Abisko, Swedish Lapland. V. vitis-idaea responded to fertilization with a greater increase in leaf nitrogen, phosphorus and potassium concentrations, as well as with a relatively greater change in shoot growth than V. uliginosum . Also to irrigation did V. vitis-idaea respond more strongly. Decreased leaf longevity was indicated in both irrigated and fertilized plants of V. vitis-idaea . It is concluded that no general response pattern for evergreen and deciduous plants can be expected to emerge unless one also takes other plant characteristics, and also site characteristics, into consideration.  相似文献   

7.
In a field experiment Coffea arabica L. was subjected to various moisture and fertilizer regimes in Simao, Yunan, SW China. The experimental treatments consisted of eight factorial combinations of two fertilization levels (high and low) and four watering treatments applied in the dry season: application of dry rice straw mulch, drip irrigation, mulching plus drip irrigation on the soil surface, and control (no mulching or irrigation). The growth of the coffee plants was monitored throughout the course of a full year. Two clear growth peaks were detected (one at the beginning and one in the middle of the wet season) in plants subjected to all treatments, and the growth rhythm of coffee plants was not regulated by extrinsic abiotic factors. High fertilization resulted in a significantly higher relative growth rates for both height and length of the branches during the growth peaks than the low fertilization treatment. In the dry season, increasing the soil moisture contents by irrigation and/or mulching enhanced the plants’ gas exchange, but the soil water status had no significant effects on the internal fluorescence parameters of photosystem 2. More fertilized plants had a greater ability to acclimate to high-irradiance environments than the lightly fertilized plants, showing significant lower diurnal photoinhibition, associated with higher energy utilization through photochemistry and energy dissipation through the xanthophyll cycle. Hence the wet season is the optimum period for photosynthetic carbon fixation and vegetative growth of coffee plants. Higher than routinely applied levels of fertilization are required to optimize the coffee plants’ photosynthetic acclimation and growth in the studied environment. Both soil moisture conserving practices tested, mulching and drip irrigation, had significant effects on the growth and photosynthesis of the coffee plants, but the former was more practical than the latter.  相似文献   

8.
Summary We report the results of a pot experiment that examined the effects of three ecologically important factors controlling plant growth rates in savanna grasslands: defoliation, soil nitrogen and soil water availability. The experiment was conducted in the Amboseli region in east Africa, and was designed to simulate natural conditions as far as possible, using local soils and a grass species that is heavily grazed by abundant large herbivores. Productivity by different plant components was reduced, stimulated or unchanged by defoliation, depending on specific watering and fertilization treatments. Total above-ground production was stimulated by defoliation and was maximized at moderate clipping intensities, but this was statistically significant only when plants were watered infrequently (every 8 days), and most important, periods between clipping events were extended (at least 24 days). Under these conditions, plant growth rates were limited by water availability at the time of clipping, and soil water conserved in clipped, compared to unclipped plants. Within a given fertilization treatment, whole-plant production was never stimulated by defoliation because root growth was unaffected or inhibited by clipping. However, when fertilization was coupled to defoliation, as they are in the field, whole-plant production by fertilized and moderately clipped plants exceeded production by infertilized, unclipped plants. Under this interpretation, maximum whole-plant production coincided with optimum conditions for herbivores (maximum nitrogen concentration in grass leaves) when watering was frequent, and plants were moderately defoliated. However, these conditions were not the same as those that maximized relative above-ground stimulation of growth (infrequent watering and clipping).The results indicate that above-ground grass production can be stimulated by grazing, and when that is likely to occur. However, the results emphasize that plant production responses to defoliation can vary widely, contigent upon a complex interaction of ecological factors.  相似文献   

9.
Summary The spatial overlap of woody plant root systems and that of annual or perennial grasses promotes competition for soil-derived resources. In this study we examined competition for soil nitrogen between blue oak seedlings and either the annual grassBromus mollis or the perennial grassStipa pulchra under controlled outdoor conditions. Short-term nitrogen competition was quantified by injecting15N at 30 cm depth in a plane horizontal to oak seedling roots and that of their neighbors, and calculating15N uptake rates, pool sizes and15N allocation patterns 24 h after labelling. Simultaneously, integrative nitrogen competition was quantified by examining total nitrogen capture, total nitrogen pools and total nitrogen allocation.Stipa neighbors reduced inorganic soil nitrogen content to a greater extent than didBromus plants. Blue oak seedlings responded to lower soil nitrogen content by allocating lower amounts of nitrogen per unit of biomass producing higher root length densities and reducing the nitrogen content of root tissue. In addition, blue oak seedlings growing with the perennial grass exhibited greater rates of15N uptake, on a root mass basis, compensating for higher soil nitrogen competition inStipa neighborhoods. Our findings suggest that while oak seedlings have lower rates of nitrogen capture than herbaceous neighbors, oak seedlings exhibit significant changes in nitrogen allocation and nitrogen uptake rates which may offset the competitive effect annual or perennial grasses have on soil nitrogen content.  相似文献   

10.
Nutrient loss from litter plays an essential role in carbon and nutrient cycling in nutrient‐constrained environments. However, the decomposition and nutrient dynamics of nutrient‐rich mistletoe litter remains unknown in semi‐arid savanna where productivity is nutrient limited. We studied the decomposition and nutrient dynamics (nitrogen: N, phosphorous; P, carbon: C) of litter of three mistletoe species, Erianthemum ngamicum, Plicosepalus kalachariensis, and Viscum verrucosum and N‐fixing Acacia karroo using the litter‐bag method in a semi‐arid savanna, southwest Zimbabwe. The temporal dynamics of the soil moisture content, microbial populations, and termite activity during decomposition were also assessed. Decay rates were slower for A. karroo litter (k = 0.63), but faster for the high quality mistletoe litters (mean k‐value = 0.79), which supports the premise that mistletoes can substantially influence nutrient availability to other plants. Nitrogen loss was between 1.3 and 3 times greater in E. ngamicum litter than in the other species. The litter of the mistletoes also lost C and P faster than A. karroo litter. However, soil moisture content and bacterial and fungal colony numbers changed in an opposite direction to changes in the decomposition rate. Additionally, there was little evidence of termite activity during the decay of all the species litters. This suggests that other factors such as photodegradation could be important in litter decomposition in semi‐arid savanna. In conclusion, the higher rate of decay and nutrient release of mistletoe than A. karroo litter indicate that mistletoes play an important role in carbon and nutrient fluxes in semi‐arid savanna.  相似文献   

11.
As herbivory usually leads to loss of photosynthesizing biomass, its consequences for plants are often negative. However, in favorable conditions, effects of herbivory on plants may be neutral or even beneficial. According to the compensatory continuum hypothesis plants can tolerate herbivory best in resource-rich conditions. Besides herbivory, also primarily positive biotic interactions like mycorrhizal symbiosis, bear carbon costs. Tritrophic plant–fungus–herbivore interaction further complicates plant's cost-benefit balance, because herbivory of the host plant is expected to cause decline in mycorrhizal colonization under high availability of soil nutrients when benefits of symbiosis decline in relation to costs. To gain insight into above interactions we tested the effects of plant size and resource manipulation (simulated herbivory and fertilization) on both above-ground performance and on root fungal colonization of the biennial Gentianella campestris.Clipping caused allocation shift from height growth to branches in all groups except in large and fertilized plants. For large plants nutrient addition may have come too late, as the number of meristems was most likely determined already before the fertilization. Clipping decreased the amount of DSE (dark septate endophytic) fungi which generally are not considered to be mycorrhizal. The effect of clipping on total fungal colonization and colonization by arbuscular mycorrhizal (AM) fungal coils were found to depend on host size and resource level. Dissimilar mycorrhizal response to simulated herbivory in small vs. large plants could be due to more intensive light competition in case of small plants. Carbon limited small plants may not be able to maintain high mycorrhizal colonization, whereas large clipped plants allocate extra resources to roots and mycorrhizal fungi at the expense of above-ground parts. Our results suggest that herbivory may increase carbon limitation that leads re-growing shoots and fungal symbionts to function as competing sinks for the limited carbon reserves.  相似文献   

12.
Summary The carbon to nitrogen balance theory was examined for a legume, Lotus corniculatus L., which allocates carbon to nitrogen fixation. N-fixation can influence the ratio of carbon to nitrogen in legumes by providing nitrogen in nutrient-poor habitats, and by consuming carbon for support of symbiotic N-fixation. L. corniculatus clones (genotypes) were grown under two levels of nitrogen fertilization: a treatment which suppressed nodulation with fertilization and a treatment which received no additional fertilization. These plants relied solely on symbiotic N-fixation. Plants which supported symbionts had lower biomass and lower tannin concentrations than fertilized plants; this appears to be a result of the large carbon demand on N-fixation. Plants supporting symbionts often had relatively lower protein concentrations than fertilized plants. Cyanide concentration was influenced by plant genotype but not by nitrogen source. Although symbiotic N-fixing plants were smaller, they had three times the reproductive output of fertilized plants.  相似文献   

13.
Increasing frequency of drought and high herbivore pressure significantly affect individual grass functions in semiarid regions. Reseeding of degraded rangelands by native grass species has been recommended as a tool for restoration semiarid rangelands. However, how grass species used for reseeding respond to stressors has not been fully explored. We examined biomass allocation and nutrient contents of Cenchrus ciliaris and Chloris gayana in the semiarid Borana rangelands, Ethiopia. We tested clipped mature tufts of the same species for biomass allocation and nutritive values. Further, shifts in rainfall and herbivory were simulated by three irrigation and four clipping treatments, respectively, for newly established grasses in pot and field plot experiments. Aboveground biomass (AGB) significantly declined by up to 75% under increased clipping in mature tufts. In contrast, clipping significantly stimulated up to 152% higher AGB of newly established grasses. Lower irrigation reduced the AGB by 24 and 42% in C. ciliaris and in C. gayana, respectively. Clipping, further, significantly enhanced grass nutrients in grass tufts by up to 82 and 105% in C. ciliaris and C. gayana, respectively. Hence, management should focus on balancing this trade-off in mature grasses for nutritious rangeland production by clipping and storing for later supplemental feeding when grass nutrients drop. Further, young pastures should be moderately clipped/grazed for better establishment and biomass allocation. Additionally, our experiments established the first interactive effect of clipping and irrigation frequencies on the biomass allocation of native grasses in the semiarid Borana rangelands, Ethiopia. Knowledge of these interacting factors is deemed essential for policy makers to enhance productivity of degraded rangelands such as the Borana rangelands.  相似文献   

14.
One-yr-old loblolly pine seedlings of two half-sib families, grown in sand, were fertilized three times per week with nutrient solution containing 20 μg/ml (low) or 80 μg/ml (high) nitrogen. Nitrogen concentration in the nutrient solution was either constant throughout the experiment, or interehanged after the inoculation of stems or shoots with Fusarium subglutinans, 55 days after initiation of fertilization. Growth was suppressed by a weekly excision of shoots branching from the stem apex. Either high nitrogen nutrition or shoot excision generally enhanced canker elongation on stem inoculated plants; the combination of both was extremely conducive for disease development. With intact plants of family 8–68, interchange of pre-inoculation low nitrogen nutrition with high nitrogen after inoculation enhanced canker elongation and rate of wilt. Nitrogen content varied in wood, bark and needles, as well as with time intervals, but was consistently in accordance with nitrogen level in the nutrient solution. In shoot excised plants, nitrogen content was higher than in the respective treatment without shoot excision. The higher nitrogen nutrient accelerated disease development on inoculated shoots, compared to low nitrogen, on both pine families. With respective treatments, stem cankers were larger and rates of shoots exhibiting lesions or wilt were higher on plants of family 8–68 than on 8–61. It is postulated that the disease enhancing effect associated with higher nitrogen content in stem tissues results from an increased nitrogen availability to the pathogen.  相似文献   

15.
Burley tobacco (Nicotiana tabacum L.) plants were grown in the field with or without irrigation and fertilized with 0, 120, 240 or 360 kg N ha–1 over two growing seasons to assess nitrogen use under Mediterranean climate conditions. Kjeldahl-N and NO3-N in leaves and stems and NO3-N and NH4-N in the soil at two depths (0–0.3 and 0.3–0.6 m) were determined. The effect of N fertilization on total N accumulated in the canopy biomass was markedly different between irrigated and non-irrigated plants. Under non-irrigated conditions N accumulated in the plant did not depend on the amount of N applied. In both years, the amount of N in irrigated plants increased in response to the amount of N applied, starting from 49 to 56 days after transplanting (DAT). The average amount of total N in the canopy of irrigated plants, measured across all sampling dates of both years, ranged from 30 kg ha–1 of the unfertilized control to 88 kg ha–1 of the 360 kg ha–1 of N applied. The average amount of plant NO3-N was 2.6 and 4.4 kg ha–1 for non-irrigated and irrigated plots across all N treatments (means of 1996 and 1997). Nitrogen uptake rate (NUR) of non-irrigated plants was high between seedling establishment and the period of rapid stem elongation in 1996 (from 36 to 50 DAT) and until flowering in 1997 (from 42 to 71 DAT), but much less or negligible at later stages of plant development. Irrigation increased NUR dramatically in the second part of the growing season. Maximum NUR was estimated for plants receiving 240 or 360 kg N ha–1 in both years. The year of study did not affect the recovery fraction (RF), physiological efficiency (PE) or agronomic efficiency (AE). Irrigation and N fertilization had significant effects on both RF and AE, but not on PE. Maximum values of RF were 45 and 22% for irrigated and non-irrigated treatments, respectively. In irrigated plots there was a negative relationship between RF and increasing N levels at all sampling dates.  相似文献   

16.
Although physiological effects of acute flooding have been well studied, chronic effects of suboptimal soil aeration caused by over‐irrigation of containerized plants have not, despite its likely commercial significance. By automatically scheduling irrigation according to soil moisture thresholds, effects of over‐irrigation on soil properties (oxygen concentration, temperature and moisture), leaf growth, gas exchange, phytohormone [abscisic acid (ABA) and ethylene] relations and nutrient status of tomato (Solanum lycopersicum Mill. cv. Ailsa Craig) were studied. Over‐irrigation slowly increased soil moisture and decreased soil oxygen concentration by 4%. Soil temperature was approximately 1°C lower in the over‐irrigated substrate. Over‐irrigating tomato plants for 2 weeks significantly reduced shoot height (by 25%) and fresh weight and total leaf area (by 60–70%) compared with well‐drained plants. Over‐irrigation did not alter stomatal conductance, leaf water potential or foliar ABA concentrations, suggesting that growth inhibition was not hydraulically regulated or dependent on stomatal closure or changes in ABA. However, over‐irrigation significantly increased foliar ethylene emission. Ethylene seemed to inhibit growth, as the partially ethylene‐insensitive genotype Never ripe (Nr) was much less sensitive to over‐irrigation than the wild type. Over‐irrigation induced significant foliar nitrogen deficiency and daily supplementation of small volumes of 10 mM Ca(NO3)2 to over‐irrigated soil restored foliar nitrogen concentrations, ethylene emission and shoot fresh weight of over‐irrigated plants to control levels. Thus reduced nitrogen uptake plays an important role in inhibiting growth of over‐irrigated plants, in part by stimulating foliar ethylene emission.  相似文献   

17.
S. J. McNaughton 《Oecologia》1985,65(4):478-486
Summary Clones of 2 C4 grass species, Sprobolus ioclados and S. pyramidalis, were obtained from more and less heavily grazed grasslands, respectively, in Tanzania's Serengeti National Park. Plants were grown in a factorial experiment to determine the effects of severe defoliation, nutrient limitation, and a salivary chemical (thiamine) on plant growth, nitrogen content, and non-structural carbohydrate content. The experimental design included: (1) species; (2) clipping, with plants either unclipped or clipped weekly to a height of 5 cm; (3) 0.2 ml of distilled water of 0.2 ml of 10 ppb aqueous thiamine sprayed on plants from an atomizer after clipping and identical treatments at the same time to unclipped plants; (4) phosphorus (P) at 0.2 or 1 mM; (5) nitrogen (N) at 3 or 15 mM. Clipping was the major variable affecting plant growth. Total and litter yields were reduced to half and residual plant yield was reduced to 30% of the values for unclipped plants. Clipping interacted strongly with other variables since they commonly had minor effects on clipped plants and major effects on unclipped plants. Exceptions to this generalization were generally due to better performance by S. ioclados under clipping. Compared to lower treatment levels, higher treatment levels promoted total yield of unclipped plants by 52% for N, 43% for thiamine, and 33% for P. In general, thiamine had greater effects than P but lesser effects than N. Thiamine promoted yield and modified the chemical balance of plants by promoting carbohydrate (CHO) concentrations and reducing N concentrations. N and P deficiencies promoted CHO accumulation. Clipping promoted the N of leaves and crowns and reduced the N levels in roots. Leaf blade water and N contents were positively correlated with very little scatter. The slope of the line was different for S. ioclados and S. pyramidalis. Leaf blade water and CHO contents were negatively related but there was more scatter and the species could not be distinguished. The species from more heavily grazed grasslands was conspicuously more sensitive to thiamine application. The results indicated that leaf treatment with thiamine, the only likely source of which in natural grasslands is saliva deposited by feeding herbivores, can have major effects on plant yield and metabolic balances at very low application levels. But under defoliation levels as severe as those imposed in this experiment, which reduced above ground plant biomass to a fourth of the level produced by unclipped plants, growth was so strongly limited by defoliation that neither thiamine nor inorganic nutrients affected plant yield residual from clipping. Therefore, whether chemicals such as thiamine that may be introduced onto grass foliage by grazing ungulates and other herbivores will influence the growth of grazed plants will depend upon the grazing intensity associated with the transfer.  相似文献   

18.
Tang Y  Jiang DM  Chen Z  Toshio O 《应用生态学报》2011,22(8):1955-1960
榆树疏林草原对科尔沁沙地植被恢复和景观保护有着重要意义.本文采用双因素两水平控制试验,从幼苗生物量、地下/地上生物量、茎高、根茎比、叶片数等方面,研究了草-树地上、地下竞争对科尔沁沙地榆树幼苗生长的影响.结果表明:对于1年生榆树幼苗,单株平均生物量表现为无竞争>地上竞争>全竞争>地下竞争;地下/地上生物量表现为地下竞争>全竞争>无竞争>地上竞争;幼苗高度表现为地上竞争>无竞争>全竞争>地下竞争;根茎比表现为地下竞争>全竞争>无竞争>地上竞争;叶片数表现为地上竞争>无竞争>地下竞争>全竞争.地下竞争对1年生榆树幼苗生长影响显著,而地上竞争对榆树幼苗生长无显著影响.地上竞争与地下竞争对2年生榆树幼苗生长的影响均不显著.科尔沁沙地草本植物对榆树幼苗生长的影响主要通过地下竞争的方式实现,但地下竞争并没有改变榆树幼苗的资源分配方式.随榆树幼苗龄级的增长,草本植物竞争作用的影响逐渐减弱.  相似文献   

19.
In frequently burnt mesic savannas, trees can get trapped into a cycle of surviving fire-induced stem death (i.e. topkill) by resprouting, only to be topkilled again a year or two later. The ability of savanna saplings to resprout repeatedly after fire is a key component of recent models of tree–grass coexistence in savannas. This study investigated the carbon allocation and biomass partitioning patterns that enable a dominant savanna tree, Acacia karroo, to survive frequent and repeated topkill. Root starch depletion and replenishment, foliage recovery and photosynthesis of burnt and unburnt plants were compared over the first year after a burn. The concentration of starch in the roots of the burnt plants (0.08 ± 0.01 g g−1) was half that of the unburnt plant (0.16 ± 0.01 g g−1) at the end of the first growing season after topkill. However, root starch reserves of the burnt plants were replenished over the dry season and matched that of unburnt plants within 1 year after topkill. The leaf area of resprouting plants recovered to match that of unburnt plants within 4–5 months after topkill. Shoot growth of resprouting plants was restricted to the first few months of the wet season, whereas photosynthetic rates remained high into the dry season, allowing replenishment of root starch reserves. 14C labeling showed that reserves were initially utilized for shoot growth after topkill. The rapid foliage recovery and the replenishment of reserves within a single year after topkill implies that A. karroo is well adapted to survive recurrent topkill and is poised to take advantage of unusually long fire-free intervals to grow into adults. This paper provides some of the first empirical evidence to explain how savanna trees in frequently burnt savannas are able to withstand frequent burning as juveniles and survive to become adults. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
王雁南  杜峰  隋媛媛  高艳  李伟伟  王月 《生态学报》2017,37(9):2913-2925
采用盆栽试验,研究了黄土丘陵区撂荒群落演替序列种(即,黄土丘陵区摞荒群落演替主要阶段的优势种)根系对氮素施肥方式和水平的形态响应,对了解我国氮沉降增加背景下的群落生态效应及人为施肥干扰促进植被恢复具有较好的理论和实践意义。测试并分析了6个演替序列种在不同施氮方式(匀质和异质施氮)和水平(高、低和无氮对照)条件下植株个体生物量指标(地上及地下生物量和根冠比)、根系形态指标(根长、直径、表面积、比根长和比表面积)的变化及其差异显著性;并且利用根钻法和单样本T检验比较了异质施氮方式下施氮斑块与不施氮斑块根系形态指标的差异。结果表明:1)6种演替序列种地上、地下生物量和根冠比存在种间固有差别,施氮方式和水平整体上对三者无显著影响;施氮方式和植物种类对根冠比存在显著交互作用,说明个别种的根冠比对施氮方式响应明显,其中猪毛蒿根冠比在异质施氮方式下显著高于匀质施氮。2)6种演替序列种根系塑形指标包括比根长、比表面积和直径存在种间差别,并且施氮水平对比根长影响显著,高、低施氮水平下比根长都显著低于不施氮对照。3)狗尾草和铁杆蒿分别在异质高氮和异质低氮条件下施氮斑块根系生物量密度显著高于未施氮斑块;猪毛蒿在异质高氮条件下施氮斑块发生了更多的伸长生长,其根长、根表面积、比根长和比表面积在施氮斑块中的密度显著高于未施氮斑块;猪毛蒿和狗尾草在异质高氮条件下,以及白羊草在异质低氮条件下,其根系直径在施氮斑块显著小于未施氮斑块。从根系形态变化敏感性和施氮对促进植物生长来看,演替过程中演替序列种对施氮响应的敏感性总体上呈降低趋势,前期种对施氮响应更敏感,从施氮获利也更多,因而恢复前期进行人为干扰促进植被恢复效果也会更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号