首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The social spiders are unusual among cooperatively breeding animals in being highly inbred. In contrast, most other social organisms are outbred owing to inbreeding avoidance mechanisms. The social spiders appear to originate from solitary subsocial ancestors, implying a transition from outbreeding to inbreeding mating systems. Such a transition may be constrained by inbreeding avoidance tactics or fitness loss due to inbreeding depression. We examined whether the mating system of a subsocial spider, in a genus with three social congeners, is likely to facilitate or hinder the transition to inbreeding social systems. Populations of subsocial Stegodyphus lineatus are substructured and spiders occur in patches, which may consist of kin groups. We investigated whether male mating dispersal prevents matings within kin groups in natural populations. Approximately half of the marked males that were recovered made short moves (< 5m) and mated within their natal patch. This potential for inbreeding was counterbalanced by a relatively high proportion of immigrant males. In mating experiments, we tested whether inbreeding actually results in lower offspring fitness. Two levels of inbreeding were tested: full sibling versus non-sib matings and matings of individuals within and between naturally occurring patches of spiders. Neither full siblings nor patch mates were discriminated against as mates. Sibling matings had no effect on direct fitness traits such as fecundity, hatching success, time to hatching and survival of the offspring, but negatively affected offspring growth rates and adult body size of both males and females. Neither direct nor indirect fitness measures differed significantly between within patch and between-patch pairs. We tested the relatedness between patch mates and nonpatch mates using DNA fingerprinting (TE-AFLP). Kinship explained 30% of the genetic variation among patches, confirming that patches are often composed of kin. Overall, we found limited male dispersal, lack of kin discrimination, and tolerance to low levels of inbreeding. These results suggest a history of inbreeding which may reduce the frequency of deleterious recessive alleles in the population and promote the evolution of inbreeding tolerance. It is likely that the lack of inbreeding avoidance in subsocial predecessors has facilitated the transition to regular inbreeding social systems.  相似文献   

2.
Evolution of cooperation and group living in spiders from subsocial family groups may be constrained by their cannibalistic nature. A tendency to avoid cannibalizing kin may facilitate tolerance among spiders and implies the ability to identify relatives. We investigated whether the subsocial spider Stegodyphus lineatus discriminates kin by recording cannibalism among juveniles in experiments during which amount of food and size difference among spiders in groups were varied. We hypothesized that family groups should be less cannibalistic than groups of mixed‐parental origin. Further, we tested whether food‐stress would influence cannibalism rates differently in kin and nonkin groups and the effect of relatedness on cannibalism within groups of spiders of variable size compared with those of homogenous size. In groups of six spiders, more spiders were cannibalized in nonsib groups than in sib groups under low food conditions. A tendency for nonkin biased cannibalism in starved spider pairs supported that kin recognition in S. lineatus is expressed when food is limited. Size variance of individuals within well‐fed groups of siblings and unrelated spiders had no influence on cannibalism rates. Apparently, both hunger and high density are important promoters of cannibalism. In addition to inclusive fitness benefits, we suggest that an ability to avoid cannibalizing kin will favour the evolution of cooperation and group living in phylogenetically pre‐adapted solitary species.  相似文献   

3.
The evolution of female multiple mating in social hymenoptera   总被引:5,自引:0,他引:5  
Abstract The evolution of female multiple mating is a highly controversial topic, especially in social insects. Here we analyze, using comparative analyses and simulation models, the merits of two major contending hypotheses for the adaptive value of polyandry in this group. The hypotheses maintain that, respectively, the resulting genotypic diversity among offspring within a colony: (1) mitigates against the effects of parasites; or (2) favors adaptive division of labor. Only two of 11 phylogenetically uncontrolled comparative analyses supported an association between polyandry and the complexity of division of labor (measured here using worker caste polymorphism or polyethism) as proposed by hypothesis 2, and after controlling for phylogeny there were no significant associations. In contrast, a previous study demonstrated such an association for parasite load as expected under hypothesis 1. In addition, we used simulation models to track the spread of an initially rare allele for double mating in a population of single-mating alleles, thus analyzing the crucial first step from monandry to polyandry. We find that double mating evolves consistently under antagonistic coevolution given that parasites exert sufficient selection intensity. In contrast, selection for enhanced division of labor resulted in only an erratic appearance of polyandry in highly (and mostly negatively) autocorrelated environments where no coevolutionary dynamics were allowed. Together, we interpret these results to suggest that parasites, and the antagonistic coevolutionary pressures they exert, may play an important role in the evolution of polyandry in social hymenopteran populations.  相似文献   

4.
A phylogenetic analysis of the evolution of mating systems in birds was made, based on the phylogeny of Sibley and Ahlquist. Both the mating behaviour and the social behaviour of species were classified for males and females, according to (1) the frequency of mated individuals in a species having several mates in a breeding season compared to those having one mate (the mating pattern), and (2) whether there is a bond between males and females, and in case of there being a bond, to the length of the bond. Non-passerines are extensively analysed, whereas we only give a survey of the situation in passerines. In non-passerine birds, the number of inferred transitions from monogamy to polygamy are 15 for females and 16–23 for males. Almost all transitions between different states of mating pattern are to higher states of polygamy. Our analyses also show a concentration of transitions to polygamy and short bonds, respectively, in the two monophyletic groups of Struthionidae-Anatidae and Pteroclidae-Laridae.  相似文献   

5.
Infidelity in socially monogamous birds may be a mechanism of inbreeding avoidance and may be impacted by cooperative breeding. Hajduk et al. (2018) find that relatedness increases extra‐pair mating only in mother‐son social pairs of Malurus cyaneus, while a greater number of nest helpers consistently increases the proportion of extra‐pair offspring. These findings suggest that there may be multiple explanations for extra‐pair mating within a single population.  相似文献   

6.
Interdemic selection, inbreeding and highly structured populations have been invoked to explain the evolution of cooperative social behaviour in the otherwise solitary and cannibalistic spiders. The family Eresidae consists of species ranging from solitary and intermediate subsocial to species exhibiting fully cooperative social behaviour. In this study we, in a hierarchical analysis, investigated relatedness of putative family clusters, inbreeding and population genetic structure of the subsocial spider Eresus cinnaberinus. Five hierarchical levels of investigation ranging from large scale genetic structure (distances of 250 and 50 km level 1 and 2) over microgeographic structure (20 km2 and 4 km2, level 3 and 4) to a single hill transect of 200 m (level 5) were performed. The purpose of level 5 was two-fold: (1) to investigate the relatedness of putative family groups, and (2) to evaluate the influence of both family living and sampling design on higher level estimates. Relatedness estimates of putative family groups showed an average relatedness of R=0.26. There was no indication of inbreeding. In contrast to social spiders, genetic variation was abundant, He?0.10. The population genetic structure was intermediate between social and asocial spiders. Genetic variance increased continually across hierarchical levels. Family structured neighbourhoods biased differentiation estimates among level 5 samples (FST? 0.04) and level 3 and 4 samples (0.07ST<0.18), and apparent inbreeding among level 3 and 4 samples, FIS>0, was caused by disjunct sampling from separate neighbourhoods. Larger scale samples were highly differentiated 0.12ST<0.26, depending on level and sampling design. Due to a distance effect family living did not influence estimates of the higher level 1. Although the dispersing sex among social spiders and the subsocial E. cinnebarinus differ, females versus males, female behaviour of both sociality classes lead to high genetic variance.  相似文献   

7.
In polygynandrous animals, post‐copulatory processes likely interfere with precopulatory sexual selection. In water striders, sexual conflict over mating rate and post‐copulatory processes are well documented, but their combined effect on reproductive success has seldom been investigated. We combine genetic parentage analyses and behavioural observations conducted in a competitive reproductive environment to investigate how pre‐ and post‐copulatory processes influence reproductive success in Gerris buenoi Kirkaldy. Precopulatory struggles had antagonistic effects on male and female reproductive success: efficiently gaining copulations was beneficial for males, whereas efficiently avoiding copulations was profitable for females. Also, high mating rates and an intermediate optimal resistance level of females supported the hypothesis of convenience polyandry. Contrary to formal predictions, high mating rates (i.e. the number of copulations) did not increase reproductive success in males or decrease reproductive success in females. Instead, the reproductive success of both sexes was higher when offspring were produced with several partners and when there were few unnecessary matings. Thus, male and female G. buenoi displayed different interests in reproduction, but post‐copulatory processes were masking the effects of copulatory mating success on reproductive success. Given the high mating rates observed, sperm competition could easily counter the effect of mating rates, perhaps in interaction with cryptic female choice and/or fecundity selection. Our study presents a complex but realistic overview of sexual selection forces at work in a model organism for the study of sexual conflict, confirming that insights are gained from investigating all episodes in the reproduction cycle of polygynandrous animals.  相似文献   

8.
Environmental microbes have the potential to be involved in nearly all behavioural processes. For example, mating systems where males use intromittent organs to transfer sperm to females represent a means by which environmental microbes collected by males can breach entry into females' body cavities during mating. However, the degree to which the acquisition of environmental microbes onto important sex structures alters courtship behaviours remains unknown. Here, we collected bacteria from the copulatory organs of Agelenopsis pennsylvanica funnel‐weaving spiders in situ to test whether exposure to bacteria on copulatory organs can alter hosts' courtship behaviour, reproductive success and survival. We used a standardized assay to repeatedly measure each spider's aggressiveness, a behavioural component of both male courtship and female sexual receptivity. Then, we experimentally altered the bacteria present on male and female spiders' copulatory organs with an application of either (a) a mixture of bacteria collected from conspecifics to increase bacterial presence, (b) an antibiotic to reduce bacterial presence or (c) a procedural control. Each spider was paired with a size‐matched spider of the opposite sex whose copulatory organs were unaltered, and we measured the latency until the onset and the duration of courtship. Spiders were then isolated, and we measured each individual's time until death and female fecundity over the next 40 days. We found that female exposure to bacteria had multiple effects on mating dynamics. Males took over four times longer to begin courting females that had been exposed to bacteria compared to unexposed and antibiotic‐treated females. Only when courting these bacteria‐exposed females, males began courtship sooner when females were more aggressive. Lastly, females whose mate had been exposed to bacteria experienced reduced survival. These data suggest that bacteria present on animals' copulatory organs can alter courtship behaviours, female survivorship, and may potentially play a role in mating dynamics.  相似文献   

9.
The convergent polygynous mating systems of marine iguanas and otariid pinnipeds depend on the existence of large female aggregations. These can build up where abundant marine food resources occur around oceanic islands which harbour fewer predators than continental areas. For marine iguanas distribution of food resources appears to determine the location of colonies, while for pinnipeds habitat choice is more decisive. In marine iguanas females benefit from gregariousness through reduced predation risk and social thermoregulation. In pinnipeds, sea lions may derive thermoregulatory benefits from gregariousness, while fur seals appear to be largely non-gregarious. In both groups males defend territories in areas of high female density. Large sexual size dimorphism presumably evolved in response to strong selection for high fighting potential of males. The capability to fast for prolonged periods of territory tenure is considered a secondary benefit of large male size, but not the driving force behind its evolution. We hypothesize that marginal males, through continuous sexual harassment of females that stay outside territories, have exerted pressure towards the evolution of female gregariousness.  相似文献   

10.
The Stenogastrinae are a subfamily of the Vespidae. The main difference between these and other social wasps (Polistinae and Vespinae) is a jelly-like substance that the Stenogastrinae secrete from the Dufour 's gland and use in many functions of their biology. It is suggested that this substance greatly contributed to the evolution of social life in these wasps by making it possible to nourish the brood with liquid food and store it in the nest, thus favoring also the evolution of the behavioral mechanisms which facilitated interactions between adults. Social organization of the colonies may have been kept at a low level through a basic system of continuous temporary helper replacement, while the evolution of large colonies was restrained, as well as by the poor quality of construction material, low egg-laying capacity and limited production of abdominal substance, imperfect social regulatory mechanisms, and the absence of defensive mechanisms of the colonies against large predators.  相似文献   

11.
Polyandry is ubiquitous in insects and provides the conditions necessary for male‐ and female‐driven forms of post‐copulatory sexual selection to arise. Populations of Amphiacusta sanctaecrucis exhibit significant divergence in portions of the male genitalia that are inserted directly into the female reproductive tract, suggesting that males may exercise some post‐copulatory control over fertilization success. We examine the potential for male–male and male–female post‐copulatory interactions to influence paternity in wild‐caught females of A. sanctaecrucis and contrast our findings with those obtained from females reared in a high‐density laboratory environment. We find that female A. sanctaecrucis exercise control by mating multiple times (females mount males), but that male–male post‐copulatory interactions may influence paternity success. Moreover, post‐copulatory interactions that affect reproductive success of males are not independent of mating environment: clutches of wild‐caught females exhibit higher sire diversity and lower paternity skew than clutches of laboratory‐reared females. There was no strong evidence for last male precedence in either case. Most attempts at disentangling the contributions of male–male and male–female interactions towards post‐copulatory sexual selection have been undertaken in a laboratory setting and may not capture the full context in which they take place – such as the relationship between premating and post‐mating interactions. Our results reinforce the importance of designing studies that can capture the multifaceted nature of sexual selection for elucidating the role of post‐copulatory sexual selection in driving the evolution of male and female reproductive traits, especially when different components (e.g. precopulatory and post‐copulatory interactions) do not exert independent effects on reproductive outcomes.  相似文献   

12.
The adequacy and utility of behavioural characters in phylogenetics is widely acknowledged, especially for stereotyped behaviours. However, the most common behaviours are not stereotyped, and these are usually seen as inappropriate or more difficult to analyze in a phylogenetic context. A few methods have been proposed to deal with such data, although they have never been tested on samples larger than six species, which limits their evolutionary interest. In the present study, we perform behavioural observations on 13 cockroach species and derive behavioural phylogenetic characters with the successive event‐pairing method. We combine these characters with morphological and molecular data (approximately 6800 bp) in a phylogenetic study of 41 species. We then reconstruct ancestral states of the behavioural data to study evolution of social behaviour in these insects with regard to their social systems (i.e. solitary, gregarious, and subsocial) and diversity of habitat choice. We report for the first time that nonstereotyped behavioural data are adequate for phylogenetic analyses: they are no more homoplastic than traditional data, and support several phylogenetic relationships that we discuss. From an evolutionary perspective, we show that the solitary species Thanatophyllum akinetum does not display original behavioural interactions, suggesting phylogenetic inertia of interactive behaviours despite a radical change in social structure. Conversely, the subsocial species Parasphaeria boleiriana shows original behavioural interactions, which could result from its peculiar social system or habitat. We conclude that phylogenetic approaches in studies of behaviour are useful for deciphering evolution of behaviour and discriminating between its different modalities, even for nonstereotyped characters. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 58–77.  相似文献   

13.
Polygynous parasitoid males may be limited by the amount of sperm they can transmit to females, which in turn may become sperm limited. In this study, I tested the effect of male mating history on copula duration, female fecundity, and offspring sex ratio, and the likelihood that females will have multiple mates, in the gregarious parasitoid Cephalonomia hyalinipennis Ashmead (Hymenoptera: Bethylidae: Epyrinae), a likely candidate for sperm depletion due to its local mate competition system. Males were eager to mate with the seven females presented in rapid succession. Copula duration did not differ with male mating history, but latency before a first mating was significantly longer than before consecutive matings. Male mating history had no bearing on female fecundity (number of offspring), but significantly influenced offspring sex ratio. The last female to mate with a given male produced significantly more male offspring than the first one, and eventually became sperm depleted. In contrast, the offspring sex ratio of first‐mated females was female biased, denoting a high degree of sex allocation control. Once‐mated females, whether sperm‐depleted or not, accepted a second mating after a period of oviposition. Sperm‐depleted females resumed production of fertilized eggs after a second mating. Young, recently mated females also accepted a second mating, but extended in‐copula courtship was observed. Carrying out multiple matings in this species thus seems to reduce the cost of being constrained to produce only haploid males after accepting copulation with a sperm‐depleted male. I discuss the reproductive fitness costs that females experience when mating solely with their sibling males and the reproductive fitness gain of males that persist in mating, even when almost sperm‐depleted. Behavioural observations support the hypothesis that females monitor their sperm stock. It is concluded that C. hyalinipennis is a species with a partial local mating system.  相似文献   

14.
How much should a female be willing to risk in any one reproductive event? Highly iteroparous females will be risk averse and very conservative in their behaviour. Such females will be expected to avoid mortality risks and seek assurance that any current reproductive activity is safe. By way of minimizing risk, these same females will not engage in mate assessment or mate searching to the same degree as less iteroparous species, if these activities involve increased risk of mortality. Using a field experiment in a highly iteroparous species (the bluehead wrasse, Thalassoma bifasciatum ), it is shown that females in this species are indeed relatively risk averse. More importantly, the experiment also shows that individuals vary in their risk aversion depending on local population size, in a manner predicted from life-history theory. Then it is reviewed how several important aspects of the mating system in this species are best interpreted as results of conservative, risk-averse female behaviour. Finally, these ideas are generalized to suggest how basic aspects of the mating system might differ between species with many reproductive events over the lifetime (e.g. many tropical reef fishes) v. species with few reproductive opportunities (e.g. many temperate freshwater and marine fishes).  相似文献   

15.
Reproductive partitioning is a key component of social organization in groups of cooperative organisms. In colonies of permanently social spiders of the genus Stegodyphus less than half of the females reproduce, while all females, including nonreproducers, perform suicidal allo‐maternal care. Some theoretical models suggest that reproductive skew is a result of contest competition within colonies, leading to size hierarchies where only the largest females become reproducers. We investigated the effect of competition on within‐group body size variation over six months in S. dumicola, by manipulating food level and colony size. We found no evidence that competition leads to increased size asymmetry within colonies, suggesting that contest competition may not be the proximate explanation for reproductive skew. Within‐colony body size variation was high already in the juvenile stage, and did not increase over the course of the experiment, suggesting that body size variation is shaped at an early stage. This might facilitate task specialization within colonies and ensure colony‐level reproductive output by early allocation of reproductive roles. We suggest that reproductive skew in social spiders may be an adaptation to sociality selected through inclusive fitness benefits of allo‐maternal care as well as colony‐level benefits maximizing colony survival and production.  相似文献   

16.
1.  Mating behaviour in Daphnia appears to rely on random contact between males and sexual females rather than diffusible pheromones. Males may be able to discriminate sexually receptive females from females in other developmental stages and increase their mating efficiency. Males may also use chemical signals to avoid mating with females from the same clone and avoid the severe inbreeding depression that has been documented for intraclonal mating. The present study used experiments to test for the avoidance of intraclonal mating and assess male mating efficiency in D. pulex .
2.  Three clones were examined for the avoidance of intraclonal mating by providing males with an opportunity to mate with females of the same or two different clones. The proportion of intraclonal matings did not differ from the proportion of interclonal matings, suggesting that D. pulex males do not use kin discrimination to avoid mating with females from the same clone.
3.  The proportion of mated females decreased with increasing numbers and density of sexual females when exposed to a single male. This observation suggests that a male spends more time pursuing and copulating with sexually receptive females than non-receptive females and there is insufficient time to mate with all sexual females. The decrease in proportion of females mated could also be the result of sperm depletion in the male. Sperm depletion is unlikely to occur in nature because sexually receptive females are much rarer than in the experimental conditions.  相似文献   

17.
《Current biology : CB》2022,32(20):4465-4472.e6
  1. Download : Download high-res image (155KB)
  2. Download : Download full-size image
  相似文献   

18.
The sexy-sperm hypothesis predicts that females obtain indirect benefits for their offspring via polyandy, in the form of increased fertilization success for their sons. I use a quantitative genetic approach to test the sexy-sperm hypothesis using the field cricket Teleogryllus oceanicus. Previous studies of this species have shown considerable phenotypic variation in fertilization success when two or more males compete. There were high broad-sense heritabilities for both paternity and polyandry. Patterns of genotypic variance were consistent with X-linked inheritance and/or maternal effects on these traits. The genetic architecture therefore precludes the evolution of polyandry via a sexy-sperm process. Thus the positive genetic correlation between paternity in sons and polyandry in daughters predicted by the sexy-sperm hypothesis was absent. There was significant heritable variation in the investment by females in ovaries and by males in the accessory gland. Surprisingly there was a very strong genetic correlation between these two traits. The significance of this genetic correlation for the coevolution of male seminal products and polyandry is discussed.  相似文献   

19.
Although the primary function of mating is gamete transfer, male ejaculates contain numerous other substances that are produced by accessory glands and transferred to females during mating. Studies with several model organisms have shown that these substances can exert diverse behavioural and physiological effects on females, including altered longevity and reproductive output, yet a comprehensive synthesis across taxa is lacking. Here we use a meta‐analytic approach to synthesize quantitatively extensive experimental work examining how male ejaculate quantity affects different components of female fitness. We summarize effect sizes for female fecundity (partial and lifetime) and longevity from 84 studies conducted on 70 arthropod species that yielded a total of 130 comparisons of female fecundity and 61 comparisons of female longevity. In response to greater amounts of ejaculate, arthropod females demonstrate enhanced fecundity (both partial and lifetime) but reduced longevity, particularly for Diptera and Lepidoptera. Across taxa, multiply mated females show particularly large fecundity increases compared to singly mated females, indicating that single matings do not maximize female fitness. This fecundity increase is balanced by a slight negative effect on lifespan, with females that received more ejaculate through polyandrous matings showing greater reductions in lifespan compared with females that have mated repeatedly with the same male. We found no significant effect size differences for either female fecundity or longevity between taxa that transfer sperm packaged into spermatophores compared to taxa that transfer ejaculates containing free sperm. Furthermore, females that received relatively larger or more spermatophores demonstrated greater lifetime fecundity, indicating that these seminal nuptial gifts provide females with a net fitness benefit. These results contribute to our understanding of the evolutionary origin and maintenance of non‐sperm ejaculate components, and provide insight into female mate choice and optimal mating patterns.  相似文献   

20.
The evolution of cooperation among animals has posed a major problem for evolutionary biologists, and despite decades of research into avian cooperative breeding systems, many questions about the evolution of their societies remain unresolved. A review of the kin structure of avian societies shows that a large majority live in kin-based groups. This is consistent with the proposed evolutionary routes to cooperative breeding via delayed dispersal leading to family formation, or limited dispersal leading to kin neighbourhoods. Hypotheses proposed to explain the evolution of cooperative breeding systems have focused on the role of population viscosity, induced by ecological/demographic constraints or benefits of philopatry, in generating this kin structure. However, comparative analyses have failed to generate robust predictions about the nature of those constraints, nor differentiated between the viscosity of social and non-social populations, except at a coarse level. I consider deficiencies in our understanding of how avian dispersal strategies differ between social and non-social species, and suggest that research has focused too narrowly on population viscosity and that a broader perspective that encompasses life history and demographic processes may provide fresh insights into the evolution of avian societies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号