首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Evolution of cooperation and group living in spiders from subsocial family groups may be constrained by their cannibalistic nature. A tendency to avoid cannibalizing kin may facilitate tolerance among spiders and implies the ability to identify relatives. We investigated whether the subsocial spider Stegodyphus lineatus discriminates kin by recording cannibalism among juveniles in experiments during which amount of food and size difference among spiders in groups were varied. We hypothesized that family groups should be less cannibalistic than groups of mixed‐parental origin. Further, we tested whether food‐stress would influence cannibalism rates differently in kin and nonkin groups and the effect of relatedness on cannibalism within groups of spiders of variable size compared with those of homogenous size. In groups of six spiders, more spiders were cannibalized in nonsib groups than in sib groups under low food conditions. A tendency for nonkin biased cannibalism in starved spider pairs supported that kin recognition in S. lineatus is expressed when food is limited. Size variance of individuals within well‐fed groups of siblings and unrelated spiders had no influence on cannibalism rates. Apparently, both hunger and high density are important promoters of cannibalism. In addition to inclusive fitness benefits, we suggest that an ability to avoid cannibalizing kin will favour the evolution of cooperation and group living in phylogenetically pre‐adapted solitary species.  相似文献   

2.
Stegodyphus lineatus (Eresidae) is a desert spider that buildsan aerial capture web on bushes in the Negev desert in southernIsrael. Web building for spiders is costly in energy, time,and risk of predation. Spiders should trade-off these costswith the benefits in terms of prey capture. We tested the hypothesisthat the previous foraging success of the spider influencesthe effort invested in foraging. Specifically, we asked whetheran increase in food intake causes spiders to reduce web renewalactivity and web size. Alternatively, time constraints on foragingand development, resulting from a short growing season, couldinduce spiders to continue foraging even when supplemented withprey. The cost of web building was measured as time and massloss. To build an average size web (about 150 cm2), we calculatedthat a spider requires 6 h and that spiders lose 3%-7% of their weight.In field experiments, spiders responded differently to food supplementationin 2 different years. In 1994, they improved their condition comparedto individuals whose webs were removed to reduce foraging opportunitiesand compared to control spiders. In 1995, spiders tested earlier inthe season than the previous year did not improve their conditionin response to prey supplementation. Nonetheless, in both years, food-supplementedspiders built significantly smaller webs than food-deprived andcontrol spiders. This result was confirmed in a laboratory experiment whereprey intake was controlled. We conclude that for S. lineatus immediateforaging risks outweigh the potential time constraints on foraging.  相似文献   

3.
  总被引:5,自引:0,他引:5  
Abstract The evolution of female multiple mating is a highly controversial topic, especially in social insects. Here we analyze, using comparative analyses and simulation models, the merits of two major contending hypotheses for the adaptive value of polyandry in this group. The hypotheses maintain that, respectively, the resulting genotypic diversity among offspring within a colony: (1) mitigates against the effects of parasites; or (2) favors adaptive division of labor. Only two of 11 phylogenetically uncontrolled comparative analyses supported an association between polyandry and the complexity of division of labor (measured here using worker caste polymorphism or polyethism) as proposed by hypothesis 2, and after controlling for phylogeny there were no significant associations. In contrast, a previous study demonstrated such an association for parasite load as expected under hypothesis 1. In addition, we used simulation models to track the spread of an initially rare allele for double mating in a population of single-mating alleles, thus analyzing the crucial first step from monandry to polyandry. We find that double mating evolves consistently under antagonistic coevolution given that parasites exert sufficient selection intensity. In contrast, selection for enhanced division of labor resulted in only an erratic appearance of polyandry in highly (and mostly negatively) autocorrelated environments where no coevolutionary dynamics were allowed. Together, we interpret these results to suggest that parasites, and the antagonistic coevolutionary pressures they exert, may play an important role in the evolution of polyandry in social hymenopteran populations.  相似文献   

4.
5.
6.
We hypothesize that aggregations of animals are likely to attract pathogenic micro-organisms and that this is especially the case for semisocial and eusocial insects where selection ultimately led to group sizes in the thousands or even millions, attracting the epithet 'superorganism'. Here, we analyse antimicrobial strength, per individual, in eight thrips species (Insecta: Thysanoptera) that present increasing innate group sizes and show that species with the largest group size (100-700) had the strongest antimicrobials, those with smaller groups (10-80) had lower antimicrobial activity, while solitary species showed none. Species with large innate group sizes showed strong antimicrobial activity while the semisocial species showed no activity until group size increased sufficiently to make activity detectable. The eusocial species behaved in a similar way, with detectable activity appearing once group size exceeded 120. These analyses show that antimicrobial strength is determined by innate group size. This suggests that the evolution of sociality that, by definition, increases group size, may have had particular requirements for defences against microbial pathogens. Thus, increase in group size, accompanied by increased antibiotic strength, may have been a critical factor determining the 'point of no return', early in the evolution of social insects, beyond which the evolution of social anatomical and morphological traits was irreversible. Our data suggest that traits that increase group size in general are accompanied by increased antimicrobial strength and that this was critical for transitions from solitary to social and eusocial organization.  相似文献   

7.
    
Interdemic selection, inbreeding and highly structured populations have been invoked to explain the evolution of cooperative social behaviour in the otherwise solitary and cannibalistic spiders. The family Eresidae consists of species ranging from solitary and intermediate subsocial to species exhibiting fully cooperative social behaviour. In this study we, in a hierarchical analysis, investigated relatedness of putative family clusters, inbreeding and population genetic structure of the subsocial spiderEresus cinnaberinus. Five hierarchical levels of investigation ranging from large scale genetic structure (distances of 250 and 50 km level 1 and 2) over microgeographic structure (20 km2and 4 km2, level 3 and 4) to a single hill transect of 200 m (level 5) were performed. The purpose of level 5 was two-fold: (1) to investigate the relatedness of putative family groups, and (2) to evaluate the influence of both family living and sampling design on higher level estimates. Relatedness estimates of putative family groups showed an average relatedness ofR=0.26. There was no indication of inbreeding. In contrast to social spiders, genetic variation was abundant,He&;approx;0.10. The population genetic structure was intermediate between social and asocial spiders. Genetic variance increased continually across hierarchical levels. Family structured neighbourhoods biased differentiation estimates among level 5 samples (FST=0.04) and level 3 and 4 samples (0.07<FST<0.18), and apparent inbreeding among level 3 and 4 samples,FIS>0, was caused by disjunct sampling from separate neighbourhoods. Larger scale samples were highly differentiated 0.12<FST<0.26, depending on level and sampling design. Due to a distance effect family living did not influence estimates of the higher level 1. Although the dispersing sex among social spiders and the subsocialE. cinnebarinusdiffer, females versus males, female behaviour of both sociality classes lead to high genetic variance.  相似文献   

8.
9.
An important driver of evolution in viruses is natural selection to optimize the use of their hosts’ genetic network. To learn how viruses respond to this pressure, we disrupted the genetic network of Escherichia coli to inhibit replication of its virus, bacteriophage lambda, and then observed how λ evolved to compensate. We deleted E. coli's dnaJ gene, which lambda uses to initiate DNA replication. Lambda partially restored its ability to reproduce with just two adaptive mutations associated with genes J and S. The location of the mutations was unexpected because they were not in genes that directly interact with DnaJ, rather they affected seemingly unrelated life history traits. A nonsynonymous J mutation increased lambda's adsorption rate and an S regulatory mutation delayed lysis timing. Lambda also recovered some of its reproductive potential through intracellular mutualism. This study offers two important lessons: first, viruses can rapidly adapt to disruptive changes in their host's genetic network. Second, organisms can employ mechanisms thought to operate at the population scale, such as evolution of life history traits and social interactions, in order to overcome hurdles at the molecular level. As life science research progresses and new fields become increasingly specialized, these results remind us of the importance of multiscale and interdisciplinary approaches to understand adaptation.  相似文献   

10.
    
Behavioral shifts can initiate morphological evolution by pushing lineages into new adaptive zones. This has primarily been examined in ecological behaviors, such as foraging, but social behaviors may also alter morphology. Swallows and martins (Hirundinidae) are aerial insectivores that exhibit a range of social behaviors, from solitary to colonial breeding and foraging. Using a well‐resolved phylogenetic tree, a database of social behaviors, and morphological measurements, we ask how shifts from solitary to social breeding and foraging have affected morphological evolution in the Hirundinidae. Using a threshold model of discrete state evolution, we find that shifts in both breeding and foraging social behavior are common across the phylogeny of swallows. Solitary swallows have highly variable morphology, while social swallows show much less absolute variance in all morphological traits. Metrics of convergence based on both the trajectory of social lineages through morphospace and the overall morphological distance between social species scaled by their phylogenetic distance indicate strong convergence in social swallows, especially socially foraging swallows. Smaller physical traits generally observed in social species suggest that social species benefit from a distinctive flight style, likely increasing maneuverability and foraging success and reducing in‐flight collisions within large flocks. These results highlight the importance of sociality in species evolution, a link that had previously been examined only in eusocial insects and primates.  相似文献   

11.
Dispersed pair-living primates provide a unique model for illuminating the evolution of mechanisms regulating spacing and cohesiveness in permanently cohesive groups. We present for the first time data on the spatiotemporal distribution and loud-calling behavior of the Milne Edwards' sportive lemur, known to forage solitarily during the night, but to form stable male-female sleeping groups during the day. Data include radio-tracking observations of sleeping associations, and focal follows of pair partners during dispersal in the evenings and reunions in the mornings. Male-female pairs forming stable sleeping associations during the day were pair-bonded. They used sleeping sites and home ranges exclusively, and exchanged loud calls at potentially restricted resources during dispersal in the evenings and during reunion in the mornings. Direct agonistic conflicts between pairs and others were rare. The acoustic analysis of loud calls revealed nine major call types. They carry signatures for sex and pair identity, and provide the substrate for signaling and the potential for recognizing pair ownership. Thus, pairs use loud call exchanges as a vocal display for signaling territory ownership, thus limiting direct aggressive encounters between neighbors and strangers. Altogether, our findings provide the first empirical evidence for the hypothesis that loud calling has evolved as a key mechanism for regulating space use and cohesiveness in dispersed pair-living primates.  相似文献   

12.
    
Female multiple mating (or polyandry) is considered to act as a genetic bet-hedging mechanism, by which females can reduce the assessment error in regard to mates genetic quality when only uncertain information is available. In spite of frequent verbal arguments, no theoretical examination has been carried out to determine the effectiveness of bet-hedging by multiple mating. In the present paper, I show that three factors, female population size, remating costs and environmental fluctuation, all affect the effectiveness of bet-hedging. A mathematical model predicts that bet-hedging effectively works only in small populations, and computer simulations were used to confirm this prediction. The results of simulations differed according to the degree of environmental fluctuation. In relatively stable environments, if there is no remating cost, the fixation probability of a multiple mating strategy is slightly higher than that of a single mating strategy, independent of female population size. However, with very slight fitness costs, multiple mating drastically loses its advantage as population size increases, and almost always becomes extinct within large populations. This means that the evolution of polyandry solely by the mechanism of bet-hedging is unlikely in stable environments. However, in unpredictable environments, or when negative frequency-dependent selection on fitness-related loci is introduced, a multiple mating strategy is sometimes successful against a single mating strategy, even if it entails a small fitness cost. Therefore, female multiple mating may possibly evolve only in these limited conditions. In most cases, some deterministic mechanisms such as postcopulatory sperm selection by multiply mated females (or direct material benefits) are more reasonable as the evolutionary causes of polyandry.  相似文献   

13.
    
Sexual selection is thought to favor the evolution of secondary sexual traits in males that contribute to mating success. In species where females mate with more than one male, sexual selection also continues after copulation in the form of sperm competition and cryptic female choice. Theory suggests that sperm competition should favor traits such as testes size and sperm production that increase a male's competitive fertilization success. Studies of experimental evolution offer a powerful approach for assessing evolutionary responses to variation in sexual selection pressures. Here we removed sexual selection by enforcing monogamy on replicate lines of a naturally polygamous horned beetle, Onthophagus taurus, and monitoring male investment in their testes for 21 generations. Testes size decreased in monogamous lines relative to lines in which sexual selection was allowed to continue. Differences in testes size were dependent on selection history and not breeding regime. Males from polygamous lines also had a competitive fertilization advantage when in sperm competition with males from monogamous lines. Females from polygamous lines produced sons in better condition, and those from monogamous lines increased their sons condition by mating polygamously. Rather than being costly for females, multiple mating appears to provide females with direct and/or indirect benefits. Neither body size nor horn size diverged between our monogamous and polygamous lines. Our data show that sperm competition does drive the evolution of testes size in onthophagine beetles, and provide general support for sperm competition theory.  相似文献   

14.
Soldier‐producing polyembryonic waSPS are the only social animals that develop as parasites inside the bodies of other insects. Characterizing the kin composition of broods is central to understanding the evolution of the soldier caste in these unique social insects. Here we studied the role of soldiers in mediating the outcome of competition among clones of the polyembryonic wasp Copidosoma floridanum. Soldier‐producing female clones usually monopolized host resources, whereas soldierless male clones usually coexisted in hosts. Behavioural experiments further indicated that early‐emerging soldiers are specialized to combat intraspecific competitors and later‐emerging soldiers are specialized for defence against interspecific competitors. Taken together, our results point to intraspecific competition as a major selective force in the evolution of the soldier caste. Our data also present an evolutionary conundrum: given the benefit of soldiers, why are male clones functionally soldierless?  相似文献   

15.
The Stenogastrinae are a subfamily of the Vespidae. The main difference between these and other social wasps (Polistinae and Vespinae) is a jelly-like substance that the Stenogastrinae secrete from the Dufour 's gland and use in many functions of their biology. It is suggested that this substance greatly contributed to the evolution of social life in these wasps by making it possible to nourish the brood with liquid food and store it in the nest, thus favoring also the evolution of the behavioral mechanisms which facilitated interactions between adults. Social organization of the colonies may have been kept at a low level through a basic system of continuous temporary helper replacement, while the evolution of large colonies was restrained, as well as by the poor quality of construction material, low egg-laying capacity and limited production of abdominal substance, imperfect social regulatory mechanisms, and the absence of defensive mechanisms of the colonies against large predators.  相似文献   

16.
    
Although the importance of epistasis in evolution has long been recognized, remarkably little is known about the processes by which epistatic interactions evolve in real time in specific biological systems. Here, we have characterized how the epistatic fitness relationship between a social gene and an adapting genome changes radically over a short evolutionary time frame in the social bacterium Myxococcus xanthus. We show that a highly beneficial effect of this social gene in the ancestral genome is gradually reduced—and ultimately reversed into a deleterious effect—over the course of an experimental adaptive trajectory in which a primitive form of novel cooperation evolved. This reduction and reversal of a positive social allelic effect is driven solely by changes in the genetic context in which the gene is expressed as new mutations are sequentially fixed during adaptive evolution, and explicitly demonstrates a significant evolutionary change in the genetic architecture of an ecologically important social trait.  相似文献   

17.
The selective forces shaping mating systems have long been of interest to biologists. One particular selective pressure that has received comparatively little attention is sexually transmitted infections (STIs). While it has been hypothesized that STIs could drive the evolutionary emergence of monogamy, there is little theoretical support. Here we use an evolutionary invasion analysis to determine what aspects of pathogen virulence and transmission are necessary for serial monogamy to evolve in a promiscuous population. We derive a biologically intuitive invasion condition in terms of population-specific quantities. From this condition, we obtain two main results. First, when pathogen virulence causes mortality rather than sterility, monogamy is more likely to evolve. Second, we find that at intermediate pathogen transmission rates, monogamy is the most selectively advantageous, whereas at high- and low-transmission rates, monogamy is generally selected against. As a result, it is possible for a pathogen to be highly virulent, yet for promiscuity to persist.  相似文献   

18.
    
There is growing evidence that communicable diseases constitute a strong selective force on the evolution of social systems. It has been suggested that infectious diseases may determine upper limits of host sociality by, for example, inducing territoriality or early juvenile dispersal. Here we use game theory to model the evolution of host sociality in the context of communicable diseases. Our model is then augmented with the evolution of virulence to determine coevolutionarily stable strategies of host sociality and pathogen virulence. In contrast to a controversial hypothesis by Ewald (1994), our analysis indicates that pathogens may become more virulent when contact rates are low, and their prevalence can ultimately induce greater sociality.  相似文献   

19.
Selection on life history traits such as the timing of maturation and the size at maturity strongly depends on the mating system. In spiders, the mating system hypothesized to Be determined by spermathecal morphology and the related sperm precedence pattern. In a natural population of the eresid spider Stegodyphus lineatus , predictions concerning the timing of maturation, male mating behaviour and success were tested. Eresid spiders are supposed to show protandry, prematuration mate guarding and strong male-male competition resulting in selection for large body size and early maturation. In contrast to these predictions, male and female maturation overlapped largely. Males did not guard premature females nor was there evidence for male-male competition. Among mating pairs, male did not relate to female size, nor to duration of cohabitation. Evidence for an advantage of first over second or large over small males is weak. In males, body size at maturity and the time of maturation were negatively correlated although a trade off between timing of maturation and the body size reached by then should result in a positive correlation. Possible causes are discussed.  相似文献   

20.
The polygyny threshold model states that if costs incurred areless than the benefits gained from mating polygynously in termsof breeding-situation quality, then polygyny is favored andcould evolve. We constructed mathematical models and computersimulations to evaluate this hypothesis. In the basic model,there is a single locus with two alleles, which regulates whetherthe female is receptive to polygyny. There are two breedingsituations of differing quality on which males randomly assort.Females then select a mate based on the associated breedingsituation and whether the male already has mates. This basicmodel is extended mathematically to include a cost for the initialfemale of a male with multiple mates and again to include geneexpression in males. The computer simulations extend the basicmodel to multiple loci and alleles and to multiple breedingsituations. The results presented here suggest that the polygynythreshold model is valid in a population genetic context: ifthe fitness of females that actually mate polygynously is greaterthan the fitness of monogamous females on poorer breeding situations,polygyny evolves. However, this approach reveals interestingdynamics not apparent from the verbal model. If the trait isexpressed in males and females, then polygyny can evolve evenif females mating polygynously have a lower fitness than femalesmating monogamously. In the multiple breeding-situations model,the polygyny allele increases to some equilibrium value abovewhich it experiences no selection. Surprisingly, as the costof polygyny increases, the equilibrium frequency of the polygynyallele also increases. The difference between this evolutionarymodel and the ideal free distribution is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号