首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been shown in some cases that nitrogen (N) addition to soil will increase abundance of plant invaders because many invaders have traits that promote rapid growth in response to high resource supply. Similarly, it has been suggested, and sometimes shown, that decreasing soil N via carbon (C) additions can facilitate native species recovery. Yet all species are unlikely to respond to resource supply in the same way. We asked how soil nutrients and competition affect native and exotic woody species in a restoration experiment where we added N or C, and crossed soil manipulation with the manipulation of dominant exotic grass abundance in a Hawaiian subtropical woodland. We related changes in survival and growth of outplanted individuals to native/exotic status and plant traits. As a group, N-fixers showed reduced survival compared to non-fixers in response to added N, with Morella faya (exotic) and Acacia koa (native) having dramatic negative responses. Among non-fixers, species with greater foliar %N had more positive survival responses to increasing soil N. Specific leaf area was not predictive of responses to nutrients or competition. In general, responses to carbon addition were weak, although reducing competition from existing exotic grasses was beneficial for all outplanted species, with N-fixers showing the most positive response. We conclude that commonly used restoration strategies to clear exotic species or lower soil resources with C addition will most greatly benefit N-fixing species, which themselves may be unwanted invaders. Thus statements about the influence of increased soil N on invasions should be carefully dissected by considering the traits (such as N-fixation status) of the regional species pool.  相似文献   

2.
Plant zonation patterns across New England salt marshes have been investigated for years, but how nutrient availability differs between zones has received little attention. We investigated how N availability, P availability, and plant N status varied across Juncus gerardii, Spartina patens, and mixed forb zones of a Northern New England high salt marsh. We also investigated relationships between several edaphic factors and community production and diversity across the high marsh. P availability, soil salinity, and soil moisture were higher in the mixed forb zone than in the two graminoid zones. NH+ 4-N availability was highest in the J. gerardii zone, but NO 3-N availability and mid season net N mineralization rates did not vary among zones. Plant tissue N concentrations were highest in the mixed forb zone and lowest in the S. patens zone, reflecting plant physiologies more so than soil N availability. Community production was highest in the J. gerardii zone and was positively correlated with N availability and negatively correlated with soil moisture. Plant species diversity was highest in the mixed forb zone and was positively correlated with P availability and soil salinity. Thus, nutrient availability, plant N status, and plant species diversity varied across zones of this high marsh. Further investigation is needed to ascertain if soil nutrient availability influences or is a result of the production and diversity differences that exist between vegetation zones of New England high salt marshes.  相似文献   

3.
Biological nitrogen fixation is the primary supply of N to most ecosystems, yet there is considerable uncertainty about how N-fixing bacteria will respond to global change factors such as increasing atmospheric CO2 and N deposition. Using the nifH gene as a molecular marker, we studied how the community structure of N-fixing soil bacteria from temperate pine, aspen, and sweet gum stands and a brackish tidal marsh responded to multiyear elevated CO2 conditions. We also examined how N availability, specifically, N fertilization, interacted with elevated CO2 to affect these communities in the temperate pine forest. Based on data from Sanger sequencing and quantitative PCR, the soil nifH composition in the three forest systems was dominated by species in the Geobacteraceae and, to a lesser extent, Alphaproteobacteria. The N-fixing-bacterial-community structure was subtly altered after 10 or more years of elevated atmospheric CO2, and the observed shifts differed in each biome. In the pine forest, N fertilization had a stronger effect on nifH community structure than elevated CO2 and suppressed the diversity and abundance of N-fixing bacteria under elevated atmospheric CO2 conditions. These results indicate that N-fixing bacteria have complex, interacting responses that will be important for understanding ecosystem productivity in a changing climate.  相似文献   

4.
Question: How does responsiveness to water and Nitrogen (N) availability vary across the compositional and functional diversity that exists in a mesic California annual grassland plant community? Location: Northern California annual grassland. Methods: A mesocosm system was used to simulate average annual precipitation totals and dry and wet year extremes observed in northern California mesic grasslands. The effects of precipitation and N availability on biomass and fecundity were measured on three different vegetation types, a mixed grass forb community, and a forb and a grass monoculture. The treatment effects on plant community composition were examined in the mixed species community. Results: While growth and seed production of the three vegetation types was inherently different, their responses to variation in precipitation and N were statistically similar. Plant density, shoot biomass, and seed production tended to increase with greater water availability in all vegetation types, with the exception of a consistent growth reduction in high precipitation (1245 mm) plots in the first year of the study. Shoot biomass responded positively to N addition, an effect that increased with greater water availability. Nitrogen addition had little effect on plant density or seed production. In the mixed grass‐forb community, biomass responsiveness to water and N treatments were consistently driven by the shoot growth of Avena barbata, the dominant grass species. Conclusions: Vegetation responses to changes in precipitation and N availability were consistent across a range of composition and structural diversity in this study. Plant growth and seed production were sensitive to both increased and decreased precipitation totals, and the magnitude of these responses to N availability varied depending on soil moisture conditions. Our results suggest the impacts of changing precipitation regimes and N deposition on annual productivity of California grasslands may be predictable under different climate scenarios across a range of plant communities.  相似文献   

5.
Controls of nitrogen limitation in tallgrass prairie   总被引:5,自引:0,他引:5  
Summary The relationship between fire frequency and N limitation to foliage production in tallgrass prairie was studied with a series of fire and N addition experiments. Results indicated that fire history affected the magnitude of the vegetation response to fire and to N additions. Sites not burned for over 15 years averaged only a 9% increase in foliage biomass in response to N enrichment. In contrast, foliage production increased an average of 68% in response to N additions on annually burned sites, while infrequently burned sites, burned in the year of the study, averaged a 45% increase. These findings are consistent with reports indicating that reduced plant growth on unburned prairie is due to shading and lower soil temperatures, while foliage production on frequently burned areas is constrained by N availability. Infrequent burning of unfertilized prairie therefore results in a maximum production response in the year of burning relative to either annually burned or long-term unburned sites.Foliage biomass of tallgrass prairie is dominated by C4 grasses; however, forb species exhibited stronger production responses to nitrogen additions than did the grasses. After four years of annual N additions, forb biomass exceeded that of grass biomass on unburned plots, and grasses exhibited a negative response to fertilizer, probably due to competition from the forbs. The dominant C4 grasses may out-compete forbs under frequent fire conditions not only because they are better adapted to direct effects of burning, but because they can grow better under low available N regimes created by frequent fire.  相似文献   

6.
Zhang G  Han X  Elser JJ 《Oecologia》2011,167(1):253-264
Mosses play an integral role in the hydrologic regimes of ecosystems where they cover the soil surface, and thus affect biogeochemical cycling of elements influenced by soil oxidation–reduction (redox) reactions, including the plant growth-limiting nutrients, nitrogen and phosphorus (P). In rich fens where P often limits plant growth, we hypothesized that feedbacks between mosses and redox conditions would determine P availability to shallow-rooted forb species that constitute much of these wetlands’ unusually high plant species diversity. In a moss removal experiment in three fens, forb tissue P and microbial P were greater while anion exchange membrane (AEM) resin P was lower where mosses occurred than where they were removed, suggesting both higher availability and greater demand for P in moss-covered soils. Coupled physicochemical and biological mechanisms drove moss effects on P cycling, ultimately through effects on soil oxygenation or reduction: higher redox potential underlying mosses corresponded to greater microbial activity, phosphatase enzyme activity, and colonization by arbuscular mycorrhizal fungi (AMF), all of which can promote greater P availability to plants. These more oxidized soils stimulated: (1) greater microbial activity and root vigor; (2) correspondingly greater P demand via microbial uptake, forb uptake, and iron (Fe)-P reactions; and (3) greater P supply through soil and root phosphatase activity and AMF colonization. This work demonstrates that mosses improve vascular plant P acquisition by alleviating stresses caused by reducing conditions that would otherwise prevail in shallow underlying soils, thus providing a mechanism by which mosses facilitate plant species diversity in rich fens.  相似文献   

7.
A large remaining source of uncertainty in global model predictions of future climate is how ecosystem carbon (C) cycle feedbacks to climate change. We conducted a field manipulative experiment of warming and nitrogen (N) addition in a temperate steppe in northern China during two contrasting hydrological growing seasons in 2006 [wet with total precipitation 11.2% above the long‐term mean (348 mm)] and 2007 (dry with total precipitation 46.7% below the long‐term mean). Irrespective of strong intra‐ and interannual variations in ecosystem C fluxes, responses of ecosystem C fluxes to warming and N addition did not change between the two growing seasons, suggesting independence of warming and N responses of net ecosystem C exchange (NEE) upon hydrological variations in the temperate steppe. Warming had no effect on NEE or its two components, gross ecosystem productivity (GEP) and ecosystem respiration (ER), whereas N addition stimulated GEP but did not affect ER, leading to positive responses of NEE. Similar responses of NEE between the two growing seasons were due to changes in both biotic and abiotic factors and their impacts on ER and GEP. In the wet growing season, NEE was positively correlated with soil moisture and forb biomass. Negative effects of warming‐induced water depletion could be ameliorated by higher forb biomass in the warmed plots. N addition increased forb biomass but did not affect soil moisture, leading to positive effect on NEE. In the dry growing season, NEE showed positive dependence on grass biomass but negative dependence on forb biomass. No changes in NEE in response to warming could result from water limitation on both GEP and ER as well as little responses of either grass or forb biomass. N addition stimulated grass biomass but reduced forb biomass, leading to the increase in NEE. Our findings highlight the importance of changes in abiotic (soil moisture, N availability) and biotic (growth of different plant functional types) in mediating the responses of NEE to climatic warming and N enrichment in the semiarid temperate steppe in northern China.  相似文献   

8.
研究水分和养分添加对植物功能性状的影响, 对于揭示植物对环境变化的响应和适应规律至关重要。该文采用盆栽试验的方法, 进行不同水平水分处理(增水50%, 减水50%, 以498 mm降水量作为对照)和养分添加(无养分添加, 单施氮肥, 单施磷肥, 氮磷共施), 研究羊草(Leymus chinensis)的10种功能性状和地上生物量对水分和养分添加的响应。得出以下结论: (1)双因素方差分析结果表明, 水分主效应对羊草株高、分蘖数、茎生物量、叶生物量、叶面积、叶质量、净光合速率、蒸腾速率、水分利用效率存在显著影响; 养分主效应对羊草分蘖数、茎生物量、净光合速率、蒸腾速率、水分利用效率存在显著影响; 水分和养分的交互作用对羊草分蘖数、茎生物量、蒸腾速率、水分利用效率存在显著影响。(2)各功能性状对降水量的响应在不同养分添加水平是不同的, 分蘖数和叶面积在单施氮肥和氮磷共施条件下随降水量增加而增加, 而在无养分添加和单施磷肥条件下无显著变化; 茎生物量在无养分添加、单施氮肥和单施磷肥条件下随降水量增加而增加, 而在氮磷共施条件下无增加趋势; 比叶面积在单施氮肥条件下增水处理显著低于对照组, 而在其他养分添加条件下无明显变化。(3)短期氮磷处理显著影响羊草叶片光合生理性状, 而对叶形态性状影响不显著。(4)羊草地上生物量随降水量的增加呈现上升趋势, 并且在单施氮肥条件下, 增水处理使地上生物量达到最高, 为522.55 g·m -2。总之, 羊草的功能性状对降水量增加表现出明显的响应, 响应格局在不同养分条件下不同, 反映了其对水肥环境变化的适应。  相似文献   

9.
资源利用方式的分化可以减小物种间对相同资源的竞争,是群落物种多样性维持的主要机制。在全球变化背景下,土壤温度和水分条件的变化可能影响高寒草甸生态系统植物的氮素(N)营养。该实验在经N、水处理3年的高寒草甸开展,通过15NH415NO3的15N稳定性同位素注射,比较高寒草甸主要植物种对N、水处理的响应方式,以及N吸收能力、分配和根冠比特点,研究其营养吸收和资源分配方式的分化。结果发现不同植物种对N、水处理响应差异显著,N吸收能力、根N含量和根冠比等功能性状种间差异显著;回归分析发现植物种N吸收能力和根N含量之间的关系不显著,和根冠比之间呈显著线性负相关。说明高寒草甸生态系统不同植物种间N吸收具有生态位分化,并且存在N营养吸收能力和资源分配策略的权衡。  相似文献   

10.
典型草原建群种羊草对氮磷添加的生理生态响应   总被引:1,自引:0,他引:1       下载免费PDF全文
由于人类活动和气候变化的共同作用, 大气氮(N)沉降日益加剧, 使得陆地生态系统中的可利用性N显著增加, 生态系统更易受其他元素如磷(P)的限制。然而, 目前关于N、P养分添加对草原生态系统不同组织水平的影响研究较少, 相关机制尚不清楚。该文以内蒙古典型羊草(Leymus chinensis)草原为研究对象, 通过连续两年(2011-2012年)的N和P养分添加实验, 研究建群种羊草的生理生态性状、种群生物量和群落初级生产力对N、P添加的响应及其适应机制。结果表明: 羊草草原不同组织水平对N、P添加的响应不同。群落水平上, 地上净初级生产力在不同降水年份均受N和P元素的共同限制, N、P共同添加显著提高了地上净初级生产力; 物种水平上, N、P添加对羊草种群生物量和密度, 以及相对生物量均没有显著影响, 表明羊草能够维持种群的相对稳定; 个体水平上, 在正常降水年份(2011年), 羊草生长主要受N素限制, 而在湿润年份(2012年), 降水增加使得羊草生长没有受到明显的养分限制。羊草通过增加比叶面积、叶片大小和叶片N含量, 提高整体光合能力, 以促进个体生长。总之, 内蒙古典型草原群落净初级生产力受N、P元素共同限制, 作为建群种的羊草, 其对N、P添加的响应因组织水平而异, 也受年际间降水变化的影响。  相似文献   

11.
Perennially frozen soil in high latitude ecosystems (permafrost) currently stores 1330–1580 Pg of carbon (C). As these ecosystems warm, the thaw and decomposition of permafrost is expected to release large amounts of C to the atmosphere. Fortunately, losses from the permafrost C pool will be partially offset by increased plant productivity. The degree to which plants are able to sequester C, however, will be determined by changing nitrogen (N) availability in these thawing soil profiles. N availability currently limits plant productivity in tundra ecosystems but plant access to N is expected improve as decomposition increases in speed and extends to deeper soil horizons. To evaluate the relationship between permafrost thaw and N availability, we monitored N cycling during 5 years of experimentally induced permafrost thaw at the Carbon in Permafrost Experimental Heating Research (CiPEHR) project. Inorganic N availability increased significantly in response to deeper thaw and greater soil moisture induced by Soil warming. This treatment also prompted a 23% increase in aboveground biomass and a 49% increase in foliar N pools. The sedge Eriophorum vaginatum responded most strongly to warming: this species explained 91% of the change in aboveground biomass during the 5 year period. Air warming had little impact when applied alone, but when applied in combination with Soil warming, growing season soil inorganic N availability was significantly reduced. These results demonstrate that there is a strong positive relationship between the depth of permafrost thaw and N availability in tundra ecosystems but that this relationship can be diminished by interactions between increased thaw, warmer air temperatures, and higher levels of soil moisture. Within 5 years of permafrost thaw, plants actively incorporate newly available N into biomass but C storage in live vascular plant biomass is unlikely to be greater than losses from deep soil C pools.  相似文献   

12.
Climate change can cause changes in expression of organismal traits that influence fitness. In flowering plants, floral traits can respond to drought, and that phenotypic plasticity has the potential to affect pollination and plant reproductive success. Global climate change is leading to earlier snow melt in snow-dominated ecosystems as well as affecting precipitation during the growing season, but the effects of snow melt timing on floral morphology and rewards remain unknown. We conducted crossed manipulations of spring snow melt timing (early vs. control) and summer monsoon precipitation (addition, control, and reduction) that mimicked recent natural variation, and examined plastic responses in floral traits of Ipomopsis aggregata over 3 years in the Rocky Mountains. We tested whether increased summer precipitation compensated for earlier snow melt, and if plasticity was associated with changes in soil moisture and/or leaf gas exchange. Lower summer precipitation decreased corolla length, style length, corolla width, sepal width, and nectar production, and increased nectar concentration. Earlier snow melt (taking into account natural and experimental variation) had the same effects on those traits and decreased inflorescence height. The effect of reduced summer precipitation was stronger in earlier snow melt years for corolla length and sepal width. Trait reductions were explained by drier soil during the flowering period, but this effect was only partially explained by how drier soils affected plant water stress, as measured by leaf gas exchange. We predicted the effects of plastic trait changes on pollinator visitation rates, pollination success, and seed production using prior studies on I. aggregata. The largest predicted effect of drier soil on relative fitness components via plasticity was a decrease in male fitness caused by reduced pollinator rewards (nectar production). Early snow melt and reduced precipitation are strong drivers of phenotypic plasticity, and both should be considered when predicting effects of climate change on plant traits in snow-dominated ecosystems.  相似文献   

13.
1. Ants are widely regarded as ‘ecosystem engineers’ because their nest construction and contributions to nutrient cycling change the biological, chemical, and physical properties of the soil around their nests. Despite increasing attention to ant manipulation of soil ecosystems, the extent to which many common species influence soil properties, as well as nutrient uptake and community composition of plants near nests, is still unknown. 2. This study tested hypotheses that activities of a common subalpine ant, Formica podzolica, alter soil moisture and pH, redistribute nitrogen around nests, and affect plant species abundance and ground cover. 3. A combination of field sampling techniques showed that distance from a nest had a positive relationship with soil moisture and a negative relationship with plant abundance next to and downhill from nests. Slope aspect also affected plant communities, with downhill transects having higher plant cover and above‐ground biomass than uphill transects. A stable isotope analysis did not reveal that plants near nests had enriched 15N, but there were substantial differences in 15N among sites. 4. Overall, this study uncovers significant impacts of F. podzolica on the subalpine microhabitats directly surrounding their nests.  相似文献   

14.
The effects of herbivores and their interactions with nutrient availability on primary production and plant community composition in grassland systems is expected to vary with herbivore type. We examined the effects of invertebrate and small vertebrate herbivores and their interactions with nutrient availability on grassland plant community composition and aboveground biomass in a tallgrass prairie ecosystem. The abundance of forbs relative to grasses increased with invertebrate herbivore removals. This increase in forb abundance led to a shift in community composition, where invertebrate removals resulted in greater plant species evenness as well as a divergence in composition among plots. In contrast, vertebrate herbivore removals did not affect plant community composition or aboveground biomass. Nutrient additions alone resulted in a decrease in plant species richness and an increase in the abundance of the dominant grass, but the dominant grass species did not greatly increase in abundance when nutrient additions were combined with invertebrate removals. Rather, several subdominant forbs came to dominate the plant community. Additionally, the combined nutrient addition and invertebrate herbivore removal treatment increased forb biomass, suggesting that invertebrate herbivores suppress the responses of forb species to chronic nutrient additions. Overall, the release of forbs from invertebrate herbivore pressure may result in large shifts in species composition, with consequences for aboveground biomass and forage quality due to altered grass:forb ratios in grassland systems.  相似文献   

15.
The environmental changes arising from nitrogen (N) deposition and precipitation influence soil ecological processes in forest ecosystems. However, the corresponding effects of environmental changes on soil biota are poorly known. Soil nematodes are the important bioindicator of soil environmental change, and their responses play a key role in the feedbacks of terrestrial ecosystems to climate change. Therefore, to explore the responsive mechanisms of soil biota to N deposition and precipitation, soil nematode communities were studied after 3 years of environmental changes by water and/or N addition in a temperate forest of Changbai Mountain, Northeast China. The results showed that water combined with N addition treatment decreased the total nematode abundance in the organic horizon (O), while the opposite trend was found in the mineral horizon (A). Significant reductions in the abundances of fungivores, plant-parasites and omnivores-predators were also found in the water combined with N addition treatment. The significant effect of water interacted with N on the total nematode abundance and trophic groups indicated that the impacts of N on soil nematode communities were mediated by water availability. The synergistic effect of precipitation and N deposition on soil nematode communities was stronger than each effect alone. Structural equation modeling suggested water and N additions had direct effects on soil nematode communities. The feedback of soil nematodes to water and nitrogen addition was highly sensitive and our results indicate that minimal variations in soil properties such as those caused by climate changes can lead to severe changes in soil nematode communities.  相似文献   

16.

Background and aims

Soil factors are driving forces that influence spatial distribution and functional traits of plant species. We test whether two anchor morphological traits—leaf mass per area (LMA) and leaf dry matter content (LDMC)—are significantly related to a broad range of leaf nutrient concentrations in Mediterranean woody plant species. We also explore the main environmental filters (light availability, soil moisture and soil nutrients) that determine the patterns of these functional traits in a forest stand.

Methods

Four morphological and 19 chemical leaf traits (macronutrients and trace elements and δ13C and δ15N signatures) were analysed in 17 woody plant species. Community-weighted leaf traits were calculated for 57 plots within the forest. Links between LMA, LDMC and other leaf traits were analysed at the species and the community level using standardised major axis (SMA) regressions

Results

LMA and LDMC were significantly related to many leaf nutrient concentrations, but only when using abundance-weighted values at community level. Among-traits links were much weaker for the cross-species analysis. Nitrogen isotopic signatures were useful to understand different resource-use strategies. Community-weighted LMA and LDMC were negatively related to light availability, contrary to what was expected.

Conclusion

Community leaf traits have parallel shifts along the environmental factors that determine the community assembly, even though they are weakly related across individual taxa. Light availability is the main environmental factor determining this convergence of the community leaf traits.  相似文献   

17.
Background: Gradients in the amounts and duration of snowpack and resulting soil moisture gradients have been associated with different plant communities across alpine landscapes.

Aims: The extent to which snow additions could alter plant community structure, both alone and in combination with nitrogen (N) and phosphorus (P) additions, provided an empirical assessment of the strength of these variables on structuring the plant communities of the alpine tundra at Niwot Ridge, Colorado Front Range.

Methods: A long-term snow fence was used to study vegetation changes in responses to snowpack, both alone and in conjunction with nutrient amendments, in plots established in dry and moist meadow communities in the alpine belt. Species richness, diversity, evenness and dissimilarity were evaluated after 20 years of treatments.

Results: Snow additions, alone, reduced species richness and altered species composition in dry meadow plots, but not in moist meadow; more plant species were found in the snow-impacted areas than in nearby controls. Changes in plant community structure to N and N + P additions were influenced by snow additions. Above-ground plant productivity in plots not naturally affected by snow accumulation was not increased, and the positive responses of plant species to nutrient additions were reduced by snow addition. Plant species showed individualistic responses to changes in snow and nutrients, and indirect evidence suggested that competitive interactions mediated responses. A Permanova analysis demonstrated that community dissimilarity was affected by snow, N, and P additions, but with these responses differing by community type for snow and N. Snow influenced community patterns generated by N, and finally, the communities impacted by N + P were significantly different than those affected by the individual nutrients.

Conclusions: These results show that changes in snow cover over a 20-year interval produce measureable changes in community composition that concurrently influence and are influenced by soil nutrient availability. Dry meadow communities exhibit more sensitivity to increases in snow cover whereas moist meadow communities appear more sensitive to N enrichment. This study shows that the dynamics of multiple limiting resources influence both the productivity and composition of alpine plant communities, with, species, life form, and functional traits mediating these responses.  相似文献   

18.
Nutrient rich conditions often promote plant invasions, yet additions of non-nitrogen (N) nutrients may provide a novel approach for conserving native symbiotic N-fixing plants in otherwise N-limited ecosystems. Lupinus oreganus is a threatened N-fixing plant endemic to prairies in western Oregon and southwest Washington (USA). We tested the effect of non-N fertilizers on the growth, reproduction, tissue N content, and stable isotope δ15N composition of Lupinus at three sites that differed in soil phosphorus (P) and N availability. We also examined changes in other Fabaceae (primarily Vicia sativa and V. hirsuta) and cover of all plant species. Variation in background soil P and N availability shaped patterns of nutrient limitation across sites. Where soil P and N were low, P additions increased Lupinus tissue N and altered foliar δ15N, suggesting P limitation of N fixation. Where soil P was low but N was high, P addition stimulated growth and reproduction in Lupinus. At a third site, with higher soil P, only micro- and macronutrient fertilization without N and P increased Lupinus growth and tissue N. Lupinus foliar δ15N averaged −0.010‰ across all treatments and varied little with tissue N, suggesting consistent use of fixed N. In contrast, foliar δ15N of Vicia spp. shifted towards 0‰ as tissue N increased, suggesting that conditions fostering N fixation may benefit these exotic species. Fertilization increased cover, N fixation, and tissue N of non-target, exotic Fabaceae, but overall plant community structure shifted at only one site, and only after the dominant Lupinus was excluded from analyses. Our finding that non-N fertilization increased the performance of Lupinus with few community effects suggests a potential strategy to aid populations of threatened legume species. The increase in exotic Fabaceae species that occurred with fertilization further suggests that monitoring and adaptive management should accompany any large scale applications.  相似文献   

19.
Big sagebrush (Artemisia tridentata Nutt.) plant communities are widespread in western North America and, similar to all shrub steppe ecosystems worldwide, are composed of a shrub overstory layer and a forb and graminoid understory layer. Forbs account for the majority of plant species diversity in big sagebrush plant communities and are important for ecosystem function. Few studies have explored geographic patterns of forb species richness and composition and their relationships with environmental variables in these communities. Our objectives were to examine the fine and broad-scale spatial patterns in forb species richness and composition and the influence of environmental variables. We sampled forb species richness and composition along transects at 15 field sites in Colorado, Idaho, Montana, Nevada, Oregon, Utah, and Wyoming, built species-area relationships to quantify differences in forb species richness at sites, and used Principal Components Analysis, non-metric multidimensional scaling, and redundancy analysis to identify relationships among environmental variables and forb species richness and composition. We found that species richness was most strongly correlated with soil texture, while species composition was most related to climate. The combination of climate and soil texture influences water availability, which our results indicate has important consequences for forb species richness and composition, and suggests that climate change-induced modification of soil water availability may have important implications for plant species diversity in the future.  相似文献   

20.
Aims Vegetation type is important in determining variations in soil carbon (C) efflux under grassland managements. This study was conducted to examine the effects of mowing and nitrogen (N) addition on soil respiration and their dependences upon vegetation types in an oldfield grassland of northern China.Methods Soil respiration, temperature, moisture and aboveground net primary productivity (ANPP) and belowground net primary productivity (BNPP) were examined in response to mowing and N addition among the three patches dominated by different species (named as grass, forb and mixed patches, respectively) in the growing seasons (May–October) from 2006 to 2008.Important findings Across the 3 years, soil respiration in the grass patch was greater than those in the forb and mixed patches, which could have been ascribed to the higher soil moisture (SM) in the grass patch. Mowing had no impact on soil respiration due to unaltered SM and plant growth. Soil respiration was stimulated by 6.53% under N addition, and the enhancement was statistically significant in 2006 but not in 2007 or 2008 because of the limited water availability in the later 2 years. There were no interactive effects between mowing and N addition on soil respiration. Soil respiration showed positive dependence upon SM, ANPP and BNPP across plots. The results suggest that soil water availability and plant growth could be the primary factors in controlling the temporal and spatial variations in soil respiration and its response to different treatments. Our observations indicate that grassland managements (i.e. mowing for hay once a year) may have little influence on soil respiration of the oldfield grassland in northern China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号