首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Anesthetics such as isoflurane are known to cause apoptosis in the developing mammalian brain. However, isoflurane may have protective effects on the heart via relieving ischemia and downregulating genes related to apoptosis. Ischemic preconditioning, e.g. through the use of low levels of carbon monoxide (CO), has promise in preventing ischemia-reperfusion injury and cell death. However, it is still unclear how it either triggers the stress response in neonatal hearts. For this reason, thirty-three microRNAs (miRNAs) known to be differentially expressed following anesthesia and/or ischemic or hypoxic heart damage were investigated in the hearts from neonatal mice exposed to isoflurane or low level of CO, using an air-exposed control group. Only miR-93-5p increased with isoflurane exposure, which may be associated with the suppression of cell death, autophagy, and inflammation. By contrast, twelve miRNAs were differentially expressed in the heart following CO treatment. Many miRNAs previously shown to be responsible for suppressing cell death, autophagy, and myocardial hypertrophy were upregulated (e.g., 125b-3p, 19-3p, and 21a-5p). Finally, some miRNAs (miR-103-3p, miR-1a-3p, miR-199a-1-5p) which have been implicated in regulating energy balance and cardiac contraction were also differentially expressed. Overall, this study demonstrated that CO-mediated miRNA regulation may promote ischemic preconditioning and cardioprotection based on the putative protective roles of the differentially expressed miRNAs explored herein and the consistency of these results with those that have shown positive effects of CO on heart viability following anesthesia and ischemia-reperfusion stress.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12192-021-01199-0.  相似文献   

2.
ABSTRACT: BACKGROUND: MicroRNA (miRNA) expression is known to be deregulated in ovarian carcinomas. However, limited data is available about the miRNA expression pattern for the benign or borderline ovarian tumors as well as differential miRNA expression pattern associated with histological types, grades or clinical stages in ovarian carcinomas. We defined patterns of microRNA expression in tissues from normal, benign, borderline, and malignant ovarian tumors and explored the relationship between frequently deregulated miRNAs and clinicopathologic findings, response to therapy, survival, and association with Her-2/neu status in ovarian carcinomas. METHODS: We measured the expression of nine miRNAs (miR-181d, miR-30a-3p, miR-30c, miR-30d, miR-30e-3p, miR-368, miR-370, miR-493-5p, miR-532-5p) in 171 formalin-fixed, paraffin-embedded ovarian tissue blocks as well as six normal human ovarian surface epithelial (HOSE) cell lines using Taqman-based real-time PCR assays. Her-2/neu overexpression was assessed in ovarian carcinomas (n = 109 cases) by immunohistochemistry analysis. RESULTS: Expression of four miRNAs (miR-30c, miR-30d, miR-30e-3p, miR-370) was significantly different between carcinomas and benign ovarian tissues as well as between carcinoma and borderline tissues. An additional three miRNAs (miR-181d, miR-30a-3p, miR-532-5p) were significantly different between borderline and carcinoma tissues. Expression of miR-532-5p was significantly lower in borderline than in benign tissues. Among ovarian carcinomas, expression of four miRNAs (miR-30a-3p, miR-30c, miR-30d, miR-30e-3p) was lowest in mucinous and highest in clear cell samples. Expression of miR-30a-3p was higher in well-differentiated compared to poorly differentiated tumors (P = 0.02), and expression of miR-370 was higher in stage I/II compared to stage III/IV samples (P = 0.03). In multivariate analyses, higher expression of miR-181d, miR-30c, miR-30d, and miR-30e-3p was associated with significantly better disease-free or overall survival. Finally, lower expression of miR-30c, miR-30d, miR-30e-3p and miR-532-5p was significantly associated with overexpression of Her-2/neu. CONCLUSIONS: Aberrant expression of miRNAs is common in ovarian tumor suggesting involvement of miRNA in ovarian tumorigenesis. They are associated with histology, clinical stage, survival and oncogene expression in ovarian carcinoma.  相似文献   

3.
Major depression is a debilitating disease. To date, the development of biomarkers of major depressive disorder (MDD) remains a challenge. Recently, alterations in the expression of microRNAs (miRNAs) from post-mortem brain tissue and peripheral blood have been linked to MDD. The goals of this study were to detect the differential miRNAs in cerebrospinal fluid (CSF) and serum of MDD patients. First, the relative expression levels of 179 miRNAs (relative high levels in serum) were analyzed by miRNA PCR Panel in the CSF of MDD patients. Then, the differentially altered miRNAs from CSF were further assessed by qRT-PCR in the serum of the same patients. Finally, the serum differentially altered miRNAs were further validated by qRT-PCR in the serum of another MDD patients. The CSF-results indicated that 11 miRNAs in MDD patients were significantly higher than these in control subjects, and 5 miRNAs were significantly lower than these in control subjects. The serum-results from the same patients showed that 3 miRNAs (miR-221-3p, miR-34a-5p, and let-7d-3p) of the 11 miRNAs were significantly higher than these in control subjects, and 1 miRNA (miR-451a) of 5 miRNAs was significantly lower than these in control subjects. The up-regulation of miR-221-3p, miR-34a-5p, let-7d-3p and down-regulation of miR-451a was further validated in another 32 MDD patients. ROC analysis showed that the area under curve of let-7d-3p, miR-34a-5p, miR-221-3p and miR-451a was 0.94, 0.98, 0.97 and 0.94, with specificity of 90.48%, 95.24%, 90.48% and 90.48%, and sensitivity of 93.75%, 96.88%, 90.63% and 84.85%, respectively. In addition, target gene prediction found that the altered miRNAs are involved in affecting some important genes and pathway related to MDD. Our results suggested that differentially altered miRNAs in CSF might be involved in MDD, and serum miR-221-3p, miR-34a-5p, let-7d-3p, and miR-451a might be able to serve as biomarkers for MDD.  相似文献   

4.

Background

Despite diverging levels of amyloid-β (Aβ) and TAU pathology, different mouse models, as well as sporadic AD patients show predictable patterns of episodic memory loss. MicroRNA (miRNA) deregulation is well established in AD brain but it is unclear whether Aβ or TAU pathology drives those alterations and whether miRNA changes contribute to cognitive decline.

Methods

miRNAseq was performed on cognitively intact (4 months) and impaired (10 months) male APPtg (APPswe/PS1L166P) and TAUtg (THY-Tau22) mice and their wild-type littermates (APPwt and TAUwt). We analyzed the hippocampi of 12 mice per experimental group (n =?96 in total), and employed a 2-way linear model to extract differentially expressed miRNAs. Results were confirmed by qPCR in a separate cohort of 4 M and 10 M APPtg and APPwt mice (n =?7–9 per group) and in human sporadic AD and non-demented control brain. Fluorescent in situ hybridization identified their cellular expression. Functional annotation of predicted targets was performed using GO enrichment. Behavior of wild-type mice was assessed after intracerebroventricular infusion of miRNA mimics.

Results

Six miRNAs (miR-10a-5p, miR-142a-5p, miR-146a-5p, miR-155-5p, miR-211-5p, miR-455-5p) are commonly upregulated between APPtg and TAUtg mice, and four of these (miR-142a-5p, miR-146a-5p, miR-155-5p and miR-455-5p) are altered in AD patients. All 6 miRNAs are strongly enriched in neurons. Upregulating these miRNAs in wild-type mice is however not causing AD-related cognitive disturbances.

Conclusion

Diverging AD-related neuropathologies induce common disturbances in the expression of neuronal miRNAs. 4 of these miRNAs are also upregulated in AD patients. Therefore these 4 miRNAs (miR-142a-5p, miR-146a-5p, miR-155-5p and miR-455-5p) appear part of a core pathological process in AD patients and APPtg and TAUtg mice. They are however not causing cognitive disturbances in wild-type mice. As some of these miRNA target AD relevant proteins, they may be, in contrast, part of a protective response in AD.
  相似文献   

5.
6.
7.
目的:探讨肝癌细胞外泌体中差异表达的microRNAs(miRNAs)在肝细胞癌(HCC)诊断中的应用价值。方法:通过高通量测序筛选肝癌细胞外泌体中差异表达的miRNAs。实时定量PCR验证差异表达分子;检测差异表达的miRNAs在健康人(Health)、慢性乙型肝炎患者(CHB)、肝硬化患者(LC)及乙型肝炎病毒阳性的肝细胞癌患者(HCC)血清外泌体中的表达。结果:高通量测序筛选到肝癌细胞外泌体中差异表达的miRNA共88种,其中58种表达上调,30种表达下调。选择其中8种差异表达的miRNAs进行q RT-PCR验证,结果显示,此8种miRNAs在细胞上清外泌体、细胞内、癌与癌旁组织中的表达趋势与测序结果一致。miR-221-3p和miR-224-5p在HCC组外泌体中的表达水平显著高于Health组、CHB组和LC组(P0.01),miR-124-3p和let-7a-5p在HCC组外泌体中的表达水平显著低于其他各组(P0.05)。四个组中,miR-21-5p、miR-191-5p、miR-34a-5p和miR-122-5p的表达水平不存在显著性差异(P0.05)。结论:血清外泌体中的miR-221-3p、miR-224-5p、miR-124-3p和let-7a-5p可能成为肝细胞癌的候选标志物。  相似文献   

8.
9.
10.

Introduction

We have examined expression of microRNAs (miRNAs) in ependymomas to identify molecular markers of value for clinical management. miRNAs are non-coding RNAs that can block mRNA translation and affect mRNA stability. Changes in the expression of miRNAs have been correlated with many human cancers.

Materials and Methods

We have utilized TaqMan Low Density Arrays to evaluate the expression of 365 miRNAs in ependymomas and normal brain tissue. We first demonstrated the similarity of expression profiles of paired frozen tissue (FT) and paraffin-embedded specimens (FFPE). We compared the miRNA expression profiles of 34 FFPE ependymoma samples with 8 microdissected normal brain tissue specimens enriched for ependymal cells. miRNA expression profiles were then correlated with tumor location, histology and other clinicopathological features.

Results

We have identified miRNAs that are over-expressed in ependymomas, such as miR-135a and miR-17-5p, and down-regulated, such as miR-383 and miR-485-5p. We have also uncovered associations between expression of specific miRNAs which portend a worse prognosis. For example, we have identified a cluster of miRNAs on human chromosome 14q32 that is associated with time to relapse. We also found that miR-203 is an independent marker for relapse compared to the parameters that are currently used. Additionally, we have identified three miRNAs (let-7d, miR-596 and miR-367) that strongly correlate to overall survival.

Conclusion

We have identified miRNAs that are differentially expressed in ependymomas compared with normal ependymal tissue. We have also uncovered significant associations of miRNAs with clinical behavior. This is the first report of clinically relevant miRNAs in ependymomas.  相似文献   

11.
12.
Membranous glomerulonephropathy (MGN) is a glomerulopathy characterized by subepithelial deposits of immune complexes on the extracapillary side of the glomerular basement membrane. Insertion of C5b-9 (complement membrane-attack complex) into the membrane leads to functional impairment of the glomerular capillary wall. Knowledge of the molecular pathogenesis of MGN is actually scanty. MicroRNA (miRNA) profiling in MGN and unaffected tissues was performed by TaqMan Low-Density Arrays. Expression of miRNAs and miRNA targets was evaluated in Real-Time polymerase chain reaction (PCR). In vitro transient silencing of miRNAs was achieved through transfection with miRNA inhibitors. Ten miRNAs (let-7a-5p, let-7b-5p, let-7c-5p, let-7d-5p, miR-107, miR-129-3p, miR-423-5p, miR-516-3p, miR-532-3p, and miR-1275) were differentially expressed (DE) in MGN biopsies compared to unaffected controls. Interleukin 6 (IL6) and MYC messenger RNAs (mRNAs; targets of DE miRNAs) were significantly downregulated in biopsies from MGN patients, and upregulated in A498 cells following let-7a-5p or let-7c-5p transient silencing. Gene ontology analysis showed that DE miRNAs regulate pathways associated with MGN pathogenesis, including cell cycle, proliferation, and apoptosis. A significant correlation between DE miRNAs and mRNAs and clinical parameters (i.e., antiphospholipid antibodies, serum creatinine, estimated glomerular filtration, proteinuria, and serum cholesterol) has been detected. Based on our data, we propose that DE miRNAs and their downstream network may be involved in MGN pathogenesis and could be considered as potential diagnostic biomarkers of MGN.  相似文献   

13.

Objective

Plasma miRNAs represent potential minimally invasive biomarkers to monitor and predict outcomes from chemotherapy. The primary goal of the current study—consisting of patients with recurrent, platinum-resistant ovarian cancer—was to identify the changes in circulating miRNA concentrations associated with decitabine followed by carboplatin chemotherapy treatment. A secondary goal was to associate clinical response with changes in circulating miRNA concentration.

Methods

We measured miRNA concentrations in plasma samples from 14 patients with platinum-resistant, recurrent ovarian cancer enrolled in a phase II clinical trial that were treated with a low dose of the hypomethylating agent (HMA) decitabine for 5 days followed by carboplatin on day 8. The primary endpoint was to determine chemotherapy-associated changes in plasma miRNA concentrations. The secondary endpoint was to correlate miRNA changes with clinical response as measured by progression free survival (PFS).

Results

Seventy-eight miRNA plasma concentrations were measured at baseline (before treatment) and at the end of the first cycle of treatment (day 29). Of these, 10 miRNAs (miR-193a-5p, miR-375, miR-339-3p, miR-340-5p, miR-532-3p, miR-133a-3p, miR-25-3p, miR-10a-5p, miR-616-5p, and miR-148b-5p) displayed fold changes in concentration ranging from -2.9 to 4 (p<0.05), in recurrent platinum resistant ovarian cancer patients, that were associated with response to decitabine followed by carboplatin chemotherapy. Furthermore, lower concentrations of miR-148b-5p after this chemotherapy regimen were associated (P<0.05) with the PFS.

Conclusions

This is the first report demonstrating altered circulating miRNA concentrations following a combination platinum plus HMA chemotherapy regiment. In addition, circulating miR-148b-5p concentrations were associated with PFS and may represent a novel biomarker of therapeutic response, with this chemotherapy regimen, in women with recurrent, drug-resistant ovarian cancer.  相似文献   

14.
Pan Z  Guo Y  Qi H  Fan K  Wang S  Zhao H  Fan Y  Xie J  Guo F  Hou Y  Wang N  Huo R  Zhang Y  Liu Y  Du Z 《PloS one》2012,7(3):e32571
The M(3) subtype of muscarinic acetylcholine receptors (M(3)-mAChR) plays a protective role in myocardial ischemia and microRNAs (miRNAs) participate in many cardiac pathophysiological processes, including ischemia-induced cardiac injury. However, the role of miRNAs in M(3)-mAChR mediated cardioprotection remains unexplored. The present study was designed to identify miRNAs that are involved in cardioprotective effects of M(3)-mAChR against myocardial ischemia and elucidate the underlying mechanisms. We established rat model of myocardial ischemia and performed miRNA microarray analysis to identify miRNAs involved in the cardioprotection of M(3)-mAChR. In H9c2 cells, the viability, intracellular free Ca(2+) concentration ([Ca(2+)]i), intracellular reactive oxygen species (ROS), miR-376b-5p expression level, brain derived neurophic factor (BDNF) and nuclear factor kappa-B (NF-κB) levels were measured. Our results demonstrated that M(3)-mAChR protected myocardial ischemia injury. Microarray analysis and qRT-PCR revealed that miR-376b-5p was significantly up-regulated in ischemic heart tissue and the M(3)-mAChRs agonist choline reversed its up-regulation. In vitro, miR-376b-5p promoted H(2)O(2)-induced H9c2 cell injuries measured by cells viability, [Ca(2+)]i and ROS. Western blot and luciferase assay identified BDNF as a direct target of miR-376b-5p. M(3)-mAChR activated NF-κB and thereby inhibited miR-376b-5p expression. Our data show that a novel M(3)-mAChR/NF-κB/miR-376b-5p/BDNF axis plays an important role in modulating cardioprotection. MiR-376b-5p promotes myocardial ischemia injury possibly by inhibiting BDNF expression and M(3)-mAChR provides cardioprotection at least partially mediated by the downregulation of miR-376b-5p through NF-κB. These findings provide new insight into the potential mechanism by which M(3)-mAChR provides cardioprotection against myocardial ischemia injury.  相似文献   

15.
MicroRNAs (miRNAs) are small single-stranded non-coding RNAs that have an important regulatory function in animal growth and developmental processes. However, the differential expression of miRNA and the role of these miRNAs in heat-stressed Holstein cows are still unknown. In this study, the profile of differentially expressed miRNAs and the target genes analysis in the serum of heat-stressed and normal Holstein cows were investigated by a Solexa deep-sequencing approach and bioinformatics. The data identified 52 differentially expressed miRNAs in 486 known miRNAs which were changed significantly between heat-stressed and normal Holstein cows (fold change >2, P < 0.001). Target genes analysis showed that at least 7 miRNAs (miR-19a, miR-19b, miR-146a, miR-30a-5p, miR-345-3p, miR-199a-3p, and miR-1246) were involved in the response to stress, oxidative stress, development of the immune system, and immune response among the identified 52 differentially expressed miRNAs. Five miRNAs (miR-27b, miR-181a, miR-181b, miR-26a, and miR-146b) were involved in stress and immune responses and the expression of five miRNAs was striking (P < 0.001). In addition, RT-qPCR and deep-sequencing methods showed that 8 miRNAs among the 12 selected miRNAs (miR-19a, miR-19b, miR-27b, miR-30a-5p, miR-181a, miR-181b, miR-345-3p, and miR-1246) were highly expressed in the serum of heat-stressed Holstein cows. GO and KEGG pathway analysis showed that these differentially expressed miRNAs were involved in a pathway that may differentially regulate the expression of stress response and immune response genes. Our study provides an overview of miRNAs expression profile and the interaction between miRNAs and their target genes, which will lead to further understanding of the important roles of miRNAs in heat-stressed Holstein cows.  相似文献   

16.
17.
目的:观察缺血后处理对Wistar大鼠肾组织miRNAs表达的影响。方法:将20 只Wistar 大鼠随机分为缺血再灌注组(I/R 组)和缺血后处理组(IPO 组),每组10 只。I/R 组行剖腹手术,分离双肾动脉后切除右肾,夹闭左肾动脉阻断血供,45 min 后恢复; IPoC组行剖腹手术,分离左肾动脉后将其夹闭,在阻断血液供应45 min 后恢复血供时采取10 s再灌、10 s停灌处理,反复5个周 期。在所有实验完成6 小时后,处死大鼠切除左肾,分别提取两组肾组织中的总RNA和miRNA,利用miRNA微阵列对其进行杂 交检测,通过芯片扫描和数据聚类分析,获取两组大鼠肾脏组织miRNAs 表达谱,并进行qRT-PCR 验证,筛选差异表达的 miRNAs。结果:通过qRT-PCR 验证共筛选出7 种表达差异较大的miRNAs,其中下调的三种,分别是miR-27a,miR-665, miR-let7f,上调的四种,分别为miR-532-3p,miR-205,miR-122,miR-291b。结论:差异表达miRNAs 可能参与缺血后处理减弱缺血 再灌注损伤的作用机制中。  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号