首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Admittedly, the Lut Desert of Iran has been remained as an unexplored region from a microbiological standpoint. Domain Archaea contains extremophiles that can live in harsh habitats. Extremely halophilic archaea are exposed to different environmental stresses in the hypersaline environments such as high solar irradiance and periodic desiccation. Haloarchaeal diversity in Shoor River, a saline river in the Lut Desert (a salinity of 134.3 g L–1 of dissolved salts), was investigated by a culture-dependent method. A large number of extremely halophilic isolates were obtained and a subset of 59 isolates was considered distinct. Firstly, the isolates were screened for their resistance under desiccation stress in 35 days. Eleven of these strains remained viable during the period in a desiccator containing silica gel. Then, three of them were randomly selected and their resistance against desiccation and ionizing radiation were determined. The isolates MS2, MS17, and MS50 were still recovered after 8 weeks in a desiccator and were moderately resistant to gamma radiation with D10 value between 2 and 3 kGy. Strains MS2, MS17, and MS50 were affiliated with three species in the family Halobacteriaceae using 16S rRNA gene sequence analysis as well as morphological and biochemical characteristics—Haloterrigena jeotgali A29T (99.6% similarity), Natrialba aegyptia 40T (99.4% similarity) and Natrinema pallidum NCIMB 777T (99.3% similarity), respectively. Although resistance to desiccation did not follow the sigmoid survival curve pattern of Deinococcus radiodurans, apparently haloarchaea can show a more resistance to desiccation in more long-term periods of time. This is the first report on isolation of extremely halophilic archaea belonged to the family Halobacteriaceae and their radioresistance and desiccation tolerance properties isolated from the Shoor River.  相似文献   

2.
A yellow pigmented bacterium designated strain MBLN094T within the family Flavobacteriaceae was isolated from a halophyte Salicornia europaea on the coast of the Yellow Sea. This strain was a Gram-stain negative, aerobic, non-spore forming, rod-shaped bacterium. Phylogenetic analysis of the 16S rRNA gene sequence of strain MBLN094T was found to be related to the genus Zunongwangia, exhibiting 16S rRNA gene sequence similarity values of 97.0, 96.8, 96.4, and 96.3% to Zunongwangia mangrovi P2E16T, Z. profunda SM-A87T, Z. atlantica 22II14-10F7T, and Z. endophytica CPA58T, respectively. Strain MBLN094T grew at 20?37°C (optimum, 25?30°C), at pH 6.0?10.0 (optimum, 7.0?8.0), and with 0.5?15.0% (w/v) NaCl (optimum, 2.0?5.0%). Menaquinone MK-6 was the sole respiratory quinone. The polar lipids were phosphatidylethanolamine, two unidentified aminolipids, and four unidentified lipids. Major fatty acids were iso-C17:0 3-OH, summed feature 3 (C16:1ω6c and/or C16:1 ω7c), and iso-C15:0. The genomic DNA G + C content was 37.4 mol%. Based on these polyphasic taxonomic data, strain MBLN094T is considered to represent a novel species of the genus Zunongwangia, for which the name Zunongwangia flava sp. nov. is proposed. The type strain is MBLN094T (= KCTC 62279T = JCM 32262T).  相似文献   

3.
Three Gram-negative, strictly aerobic, chemolithoheterotrophic bacterial strains, designated UCM-30, UCM-33, and UCM-39T, were isolated in South Korea. Based on their 16S rRNA gene sequences, the three isolated strains were found to be similar to Limnobacter thiooxidans CS-K2T (97.41–97.68%), Limnobacter litoralis KP1-19T (95.55–95.76%), and various genera belonging to the class Betaproteobacteria (90.34–93.34%). DNA-DNA hybridization showed 79.3–83.9% similarity between the genomic DNA of UCM-39T, UCM-30, and UCM-33, while the sequence similarity between UCM-39T and L. thiooxidans KACC 13837T or L. litoralis LMG 24869T was 23.7% and 18.6%, respectively. The DNA G+C content of UCM 39T was 59.7 mol%, the major ubiquinone was Q-8, and the optimal oxidation rate was observed at 10 mM thiosulfate. The major fatty acids (≥ 10%) were summed features 3 (C16:1 ω7c and/or C16:1 ω6c) and 8 (C18:1 ω7c and/or C18:1 ω6c), and C16:0. The major polar lipids (diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylglycerol) were found in all members of genus Limnobacter. Based on phenotypic, physiological, and phylogenetic analyses, the UCM-39T strain was found to be significantly distinct to represent a novel species affiliated to the genus Limnobacter. We propose to name it Limnobacter humi sp. nov. with the type strain UCM-39T (=KACC 18574T =NBRC 111650T).  相似文献   

4.
A Gram-stain-negative, strictly aerobic, non-motile and rod-shaped bacterial strain, designated T5T, was isolated from the Chishui River in Maotai town, Guizhou Province, Southwest of China. Strain T5T was found to grow optimally at pH 9.0 and 25 °C. The 16S rRNA gene sequence analysis indicated that strain T5T belongs to the family Sphingomonadaceae within the phylum Proteobacteria; the strain T5T clustered with the type strains of Sphingopyxis contaminans, Sphingorhabdus wooponensis and Sphingorhabdus rigui, with which it exhibits 16S rRNA gene sequence similarity values of 96.2–96.9%. The DNA G+C content was 58.5 mol%. The major respiratory quinone was Q-10 and the major polar lipid was phosphatidylethanolamine. The major polyamine was homospermidine and the major fatty acids were C18:1 ω7c (37.5%) and C16:1 ω7c (30.1%). On the basis of phylogenetic, phenotypic and genetic data, strain T5T represents a novel species of the genus Sphingorhabdus, for which the name Sphingorhabdus buctiana sp. nov. is proposed. The type strain is T5T (= CGMCC 1.12929T = JCM 30114T). It is also proposed that Sphingopyxis contaminans should be reclassified as a member of the genus Sphingorhabdus.  相似文献   

5.
During an investigation of the biodiversity of the cultivable bacterial community associated with paralytic shellfish poisoning toxin-producing marine dinoflagellate, Alexandrium minutum a novel algal-associated bacterium, designated strain AT2-AT was isolated. 16S rRNA gene sequence similarity analysis showed that the strain is a member of the genus Ponticoccus, with high sequence similarity to Ponticoccus litoralis DSM 18986T (97.9%) and Ponticoccus lacteus JCM 30379T (96.0%). However, based on the data obtained for the physiological and biochemical characteristics, and low level of DNA–DNA relatedness analysis, the strain could be genotypically and phenotypically differentiated from two type strains of the genus Ponticoccus. Therefore, this algal-associated bacterial strain is concluded to represent a novel species of the genus Ponticoccus, for which the name Ponticoccus alexandrii sp. nov. is proposed. The type strain is AT2-AT (CCTCC AB 2017228 T = KCTC 52626 T ).  相似文献   

6.
A novel actinomycete strain designated S2T was isolated from Tunisian rhizosphere soil of Lavandula officinalis. This isolate exhibited broad spectrum antibacterial activity against several Gram-positive and Gram-negative bacteria and also antifungal activity against yeast and filamentous fungi. The isolate S2T presents morphological and chemotaxonomic characteristics typical of the members of the genus Streptomyces. Whole cell hydrolysates of S2T were found to contain LL-diaminopimelic acid. The major fatty acids were identified as C16:0, anteiso-C15:0 and iso-C16:0 whereas the predominant menaquinones were found to be MK-9(H6) and MK-9(H8). The polar lipids were identified as diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside and three unidentified compounds. The G+C content of the genomic DNA was determined to be 71.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain S2T belongs to the genus Streptomyces and is closely related to Streptomyces netropsis DSM 40259T with 99.86% sequence similarity. Multi-locus sequence analysis (MLSA) based on four house-keeping gene alleles (gyrB, recA, trpB, rpoB) showed that isolate S2T is closely related to S. netropsis, with an MLSA distance greater than 0.007. The DNA–DNA relatedness between strain S2T and its near phylogenetic neighbour was 63.6 ± 2.3%, which is lower than the 70% threshold value for delineation of genomic prokaryotic species. This isolate was also distinguished from the type strain S. netropsis DSM 40259T, using a combination of morphological and physiological features. Based on its phenotypic and molecular properties, strain S2T is considered to represent a novel species of the genus Streptomyces, for which the name Streptomyces tunisialbus sp. nov. is proposed. The type strain is S2T (= JCM 32165T = DSM 105760T).  相似文献   

7.
8.
Three novel bacterial strains (UCM-2T, UCM-G28T, and UCM-G35T) were obtained while isolating soil bacteria for the development of antibiotics. Cells of these strains were Gram-negative, non-spore forming, motile by means of a single flagellum, and rod shaped. In all strains, the predominant isoprenoid quinone was ubiquinone-8 (Q-8). Cells contained C16:0, summed feature 3 (C16:1ω7c and/or C16:1ω6c), summed feature 8 (C18:1ω7c and/or C18:1ω6c), and C17:0 cyclo as the major fatty acids, and C10:0 3-OH as the major hydroxy fatty acid. The polar lipid profiles of the three novel strains were dominated by diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylglycerol. The genomic DNA G + C contents of strains UCM-2T, UCM-G28T, and UCMG35T were 67.5, 65.9, and 66.4 mol%, respectively. Phylogenetic analyses based on 16S rRNA sequences showed that strain UCM-2T was most closely related to Variovorax soli NBRC 106424T, whereas strains UCM-G28T and UCM-G35T were most similar to Variovorax ginsengisoli Gsoil 3165T. Values indicating DNA-DNA hybridization between the novel isolates and closely related species in the genus Variovorax were lower than the 70% cut-off point. These phenotypic, chemotaxonomic, and phylogenetic data indicate that the three isolates should be classified as new members of the genus Variovorax, for which the names Variovorax ureilyticus sp. nov., Variovorax rhizosphaerae sp. nov., and Variovorax robiniae sp. nov. are proposed. The type strains are UCM-2T (= KACC 18899T = NBRC 112306T), UCMG28T (= KACC 18900T = NBRC 112307T), and UCM-G35T (= KACC 18901T = NBRC 112308T), respectively.  相似文献   

9.
Two novel Gram-stain positive, spore-forming, aerobic actinomycetes, designated NEAU-PCY-1T and NEAU-PCY-2, were isolated from rhizosphere soil of Urtica urens L. collected from Anshan, Liaoning Province, northeast China. The 16S rRNA gene sequence analysis showed that strains NEAU-PCY-1T and NEAU-PCY-2 exhibited 99.8% similarity with each other and are closely related to Streptomyces abietis DSM 42080T (98.2, 98.3%) and Streptomyces fildesensis DSM 41987T (98.0, 98.1%). Phylogenetic analysis based on the 16S rRNA gene sequences indicated that the two strains formed a cluster with these two closely related species. Moreover, DNA–DNA hybridization results and some phenotypic, physiological and biochemical properties differentiated the two strains from their close relatives in the genus Streptomyces. Based on a polyphasic taxonomy study, strains NEAU-PCY-1T and NEAU-PCY-2 are considered to represent a novel species of the genus Streptomyces, for which the name Streptomyces urticae sp. nov. is proposed, with NEAU-PCY-1T (=?DSM 105115T?=?CCTCC AA 2017015T) as the type strain.  相似文献   

10.
Gram-staining-negative, uniflagellated, rod-shaped, designated as DCY110T, was isolated from sludge located in Gangwon province, Republic of Korea. The phylogenetic tree of 16S rRNA gene sequence showed that the strain DCY110T belonged to the genus Rhodoferax with a close similarity to Rhodoferax saidenbachensis DSM 22694T (97.7%), Rhodoferax antarcticus DSM 24876T (97.5%), Rhodoferax ferrireducens DSM 15236T (97.3%), and Rhodoferax fermentans JCM 7819T (96.7%). The predominant isoprenoid quinine was ubiquinone (Q-8). DNA G + C content was 62.8 mol%. The major polar lipids were phosphatidylethanolamine and two unidentified phospholipids. The major fatty acids (> 10%) were C12:0, C16:0, summed feature 3 (which comprised C16:1 ω7c and/or C16:1 ω6c). The DNA-DNA relatedness values between the strain DCY110T and the closely related relatives used in this study were lower than 70%. Based on the following polyphasic analysis, the strain DCY110T is considered as a novel species of the genus Rhodoferax, for which the name Rhodoferax koreense sp. nov. is proposed. The type strain is DCY-110T (= KCTC 52288T = JCM 31441T).  相似文献   

11.
The taxonomic position of bacterial strain, designated 15J16-1T3AT, recovered from a soil sample was established using a polyphasic approach. Phylogenic analysis based on the 16S rRNA gene sequence showed that strain 15J16-1T3AT belonged to the family Cytophagaceae, phylum Bacteroidetes, and was most closely related to ‘Larkinella harenae’ 15J9-9 (95.9% similarity), Larkinella ripae 15J11-11T (95.6%), Larkinella bovis M2TB15T (94.7%), Larkinella arboricola Z0532T (93.9%), and Larkinella insperata LMG 22510T (93.5%). Cells were rod-shaped, Gram-stain-negative, aerobic, and nonmotile. The isolate grew on NA, R2A, TSA, but not on LB agar. The strain was able to grow at temperature range from 10°C to 30°C with an optimum at 25°C and pH 6–8. Menaquinone MK-7 was the predominant respiratory quinone. The major cellular fatty acids comprised C16:1ω5c (48.6%) and C15:0 iso (24.1%). Phosphatidylethanolamine, phosphatidylserine, and an unidentified lipid were the major polar lipids. The G + C content of the genomic DNA was 49.5 mol%. Strain 15J16-1T3AT could be distinguished from its closest phylogenetic neighbors based on its phenotypic, genotypic, and chemotaxonomic features. Therefore, the isolate is considered to represent a novel species in the genus Larkinella, for which the name Larkinella roseus sp. nov. is proposed. The type strain is 15J16-1T3AT (= KCTC 52004T = JCM 31991T).  相似文献   

12.
Strain ZZ-8T, a Gram-negative, aerobic, non-spore-forming, non-motile, yellow-pigmented, rod-shaped bacterium, was isolated from metolachlor-contaminated soil in China. The taxonomic position was investigated using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain ZZ-8T is a member of the genus Flavobacterium and shows high sequence similarity to Flavobacterium humicola UCM-46T (97.2%) and Flavobacterium pedocola UCM-R36T (97.1%), and lower (<?97%) sequence similarity to other known Flavobacterium species. Chemotaxonomic analysis revealed that strain ZZ-8T possessed MK-6 as the major respiratory quinone; and iso-C15:0 (28.5%), summed feature 9 (iso-C17:1 w9c/C16:0 10-methyl, 22.9%), iso-C17:0 3-OH (17.0%), iso-C15:0 3-OH (8.9%), iso-C15:1 G (8.6%) and summed feature 3 (C16:1 w7c/C16:1 w6c, 5.7%) as the predominant fatty acids. The polar lipids of strain ZZ-8T were determined to be lipids, a glycolipid, aminolipids and phosphatidylethanolamine. Strain ZZ-8T showed low DNA–DNA relatedness with F. pedocola UCM-R36T (43.23?±?4.1%) and F. humicola UCM-46T (29.17?±?3.8%). The DNA G+C content was 43.3 mol%. Based on the phylogenetic and phenotypic characteristics, chemotaxonomic data and DNA–DNA hybridization, strain ZZ-8T is considered a novel species of the genus Flavobacterium, for which the name Flavobacterium zaozhuangense sp. nov. (type strain ZZ-8T?=?KCTC 62315 T?=?CCTCC AB 2017243T) is proposed.  相似文献   

13.
A Gram-stain negative, aerobic, motile by flagella, rod-shaped strain (THG-T16T) was isolated from rhizosphere of Hibiscus syriacus. Growth occurred at 10–40 °C (optimum 28–30 °C), at pH 6.0–8.0 (optimum 7.0) and at 0–1.0% NaCl (optimum 0%). Based on 16S rRNA gene sequence analysis, the near phylogenetic neighbours of strain THG-T16T were identified as Nibribacter koreensis KACC 16450T (98.6%), Rufibacter roseus KCTC 42217T (94.7%), Rufibacter immobilis CCTCC AB 2013351T (94.5%) and Rufibacter tibetensis CCTCC AB 208084T (94.4%). The DNA G+C content of strain THG-T16T was determined to be 46.7 mol%. DNA–DNA hybridization values between strain THG-T16T and N. koreensis KACC 16450T, R. roseus KCTC 42217T, R. immobilis CCTCC AB 2013351T, R.tibetensis CCTCC AB 208084T were 33.5?±?0.5% (31.7?±?0.7% reciprocal analysis), 28.1?±?0.2% (25.2?±?0.2%), 17.1?±?0.9% (10.2?±?0.6%) and 8.1?±?0.3% (5.2?±?0.1%). The polar lipids were identified as phosphatidylethanolamine, two unidentified aminophospholipids, an unidentified aminolipid and three unidentified lipids. The quinone was identified as MK-7 and the polyamine as sym-homospermidine. The major fatty acids were identified as C16:1 ω5c, C17:1 ω6c, iso-C15:0, summed feature 3 (C16:1 ω7c and/or C16:1 ω6c) and summed feature 4 (iso-C17:1 I and/or anteiso-C17:1 B). On the basis of the phylogenetic analysis, chemotaxonomic data, physiological characteristics, and DNA–DNA hybridization data, strain THG-T16T represents a novel species of the genus Nibribacter, for which the name Nibribacter flagellatus sp. nov. is proposed. The type strain is THG-T16T(=?KACC 19188T?=?CCTCC AB 2016246T).  相似文献   

14.
A Gram-stain-positive, polar flagella-containing, rod-shaped, obligate aerobic, endospore-forming bacterium, strain TK1655T, was isolated from the traditional Korean food gochujang. The 16S rRNA sequence of strain TK1655T was a member of the genus Oceanobacillus similar to that of the type strain of Oceanobacillus oncorhynchi subsp. incaldanensis DSM 16557T (97.2%), O. oncorhynchi subsp. oncorhynchi JCM 12661T (97.1%), O. locisalsi KCTC 13253T (97.0%), and O. sojae JCM 15792T (96.9%). Strain TK1655T was oxidase and catalase positive. Colonies were circular, smooth, low convex, cream in colour, and measured about 0.5–1.0 mm in diameter. The range for growth was 20–40°C (optimal, 30°C), pH 6.0–10.0 (optimal, 7.0), and 2–16% (w/v) NaCl (optimal, 2%). Additionally, the cells contained meso-DAP, and the predominant isoprenoid quinone was MK-7. The complex polar lipids were consisted of diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylcholine (PC). The major cellular fatty acid components were iso-C15:0, anteiso-C15:0, iso-C16:0, and anteiso-C17:0, and the DNA G+C content was 40.5%. DNA-DNA relatedness of our novel strain and reference strain O. locisalsi KCTC 13253T, O. oncorhynchi subsp. incaldanensis DSM 16557T, O. oncorhynchi subsp. oncorhynchi JCM 12661T was 45.7, 43.8, and 41.9%. From the results of phenotypic, chemotaxonomic, and phylogenetic analyses of strain TK1655T, we propose the novel species Oceanobacillus gochujangensis sp. nov. The type strain is TK1655T (=KCCM 101304T =KCTC 33014T =CIP 110582T =NBRC 109637T).  相似文献   

15.
Sixteen yeast isolates identified as belonging to the genus Sugiyamaella were studied in relation to D-xylose fermentation, xylitol production, and xylanase activities. The yeasts were recovered from rotting wood and sugarcane bagasse samples in different Brazilian regions. Sequence analyses of the internal transcribed spacer (ITS) region and the D1/D2 domains of large subunit rRNA gene showed that these isolates belong to seven new species. The species are described here as Sugiyamaella ayubii f.a., sp. nov. (UFMG-CM-Y607T = CBS 14108T), Sugiyamaella bahiana f.a., sp. nov. (UFMG-CM-Y304T = CBS 13474T), Sugiyamaella bonitensis f.a., sp. nov. (UFMG-CM-Y608T = CBS 14270T), Sugiyamaella carassensis f.a., sp. nov. (UFMG-CM-Y606T = CBS 14107T), Sugiyamaella ligni f.a., sp. nov. (UFMG-CM-Y295T = CBS 13482T), Sugiyamaella valenteae f.a., sp. nov. (UFMG-CM-Y609T = CBS 14109T) and Sugiyamaella xylolytica f.a., sp. nov. (UFMG-CM-Y348T = CBS 13493T). Strains of the described species S. boreocaroliniensis, S. lignohabitans, S. novakii and S. xylanicola, isolated from rotting wood of Brazilian ecosystems, were also compared for traits relevant to xylose metabolism. S. valenteae sp. nov., S. xylolytica sp. nov., S. bahiana sp. nov., S. bonitensis sp. nov., S. boreocarolinensis, S. lignohabitans and S. xylanicola were able to ferment d-xylose to ethanol. Xylitol production was observed for all Sugiyamaella species studied, except for S. ayubii sp. nov. All species studied showed xylanolytic activity, with S. xylanicola, S. lignohabitans and S. valenteae sp. nov. having the highest values. Our results suggest these Sugiyamaella species have good potential for biotechnological applications.  相似文献   

16.
Strain 63MJ-2T was isolated from the feces of broad-winged katydid (Pseudorhynchus japonicus) collected in Korea. The 16S rRNA gene sequence of this strain showed the highest sequence similarity with that of Siphonobacter aquaeclarae P2T (96.1%) and had low similarities (below 86.3%) with those of other members of family ‘Flexibacteraceae’. The strain 63MJ-2T is a strictly aerobic, Gram-stain-negative, non-motile, rod-shaped bacterium. The strain grew at 4–35°C (optimum, 25–30°C), pH of 5.0–9.0 (optimum, 6.0–7.0), and 0–2.0% (optimum, 1.0–2.0) (w/v) NaCl. The DNA G+C content of strain 63MJ-2T was 43.5 mol%. The major fatty acids were C16:1ω5c (42.5%), iso-C17:0 3-OH (18.7%), and summed feature 3 (iso-C15:0 2-OH and/or C16:1ω7c, 18.0%). The major menaquinone was MK-7 and polar lipids were phosphatidylethanolamine, six unknown aminolipids, and five unknown lipids. Based on the evidence from our polyphasic taxonomic study, we conclude that strain 63MJ-2T should be classified as a novel species of the genus Siphonobacter, and propose the name Siphonobacter intestinalis sp. nov. The type strain is 63MJ-2T (=KACC 18663T =NBRC 111883T).  相似文献   

17.
A novel endophytic actinomycete strain, designated KM-1-2T, was isolated from seeds of Ginkgo biloba at Yangling, China. A polyphasic approach was used to study the taxonomy of strain KM-1-2T and it was found to show a range of phylogenetic and chemotaxonomic properties consistent with those of members of the genus Streptomyces. The diamino acid of the cell wall peptidoglycan was identified as LL-diaminopimelic acid. No diagnostic sugars were detected in whole cell hydrolysates. The predominant menaquinones were identified as MK-9(H6) and MK-9(H8). The diagnostic phospholipids were found to be phosphatidylethanolamine and phosphatidylcholine. The DNA G + C content of the novel strain was determined to be 72.9 mol%. The predominant cellular fatty acids (> 10.0?%) were identified as iso-C14?:?0, iso-C16?:?0, C16?:?0 and C17?:?0 cyclo. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the strain is closely related to Streptomyces carpaticus JCM 6915T (99.3%), Streptomyces harbinensis DSM 42076T (98.9%) and Streptomyces cheonanensis JCM 14549T (98.5%). DNA-DNA hybridizations with these three close relatives gave similarity values of 39.1 ± 1.9, 35.8 ± 2.3, and 47.4 ± 2.7%, respectively, which indicated that strain KM-1-2T represents a novel species of the genus Streptomyces. This is consistent with the morphological, physiological and chemotaxonomic data. Cumulatively, these data suggest that strain KM-1-2T represents a novel Streptomyces species, for which the name Streptomyces ginkgonis sp. nov. is proposed, with the type strain KM-1-2T (= CCTCC AA2016004T = KCTC 39801T).  相似文献   

18.
A bacterial isolate was recovered from a soil sample collected in Jeollabuk-do Province, South Korea, and subjected to polyphasic taxonomic assessment. Cells of the isolate, designated strain S1-2-1-2-1T, were observed to be rod-shaped, pink in color, and Gram-stain negative. The strain was able to grow at temperature range from 10 to 30 °C, with an optimum of 25 °C, and growth occurred at pH 6–8. Comparative 16S rRNA gene sequence analysis showed that strain S1-2-1-2-1T belongs to the genus Hymenobacter, with closely related type strains being Hymenobacter daeguensis 16F3Y-2T (95.8% similarity), Hymenobacter rubidus DG7BT (95.8%), Hymenobacter soli PBT (95.7%), Hymenobacter terrenus MIMtkLc17T (95.6%), Hymenobacter terrae DG7AT (95.3%), and Hymenobacter saemangeumensis GSR0100T (95.2%). The genomic DNA G+C content of strain S1-2-1-2-1T was 63.0 mol%. The main polar lipid of this strain was phosphatidylethanolamine, the predominant respiratory quinone was menaquinone-7, and the major fatty acids were C15:0 iso (27.3%), summed feature 3 (C16:1 ω7c/C16:1 ω6c) (16.5%), C15:0 anteiso (15.3%), and C16:0 (14.7%), supporting the affiliation of this strain with the genus Hymenobacter. The results of this polyphasic analysis allowed for the genotypic and phenotypic differentiation of strain S1-2-1-2-1T from recognized Hymenobacter species. On the basis of its phenotypic properties, genotypic distinctiveness, and chemotaxonomic features, strain S1-2-1-2-1T is considered to represent a novel species of the genus Hymenobacter, for which the name Hymenobacter agri sp. nov. is proposed. The type strain is S1-2-1-2-1T (=KCTC 52739T?=?JCM 32194T).  相似文献   

19.
A novel strain, DCY108T was isolated from soil of a Panax ginseng field, Yeoncheon province (38°04′N 126°57′E), Republic of Korea. Strain DCY108T is Gram-negative, non-motile, non-flagellate, rod-shaped, and aerobic. The bacterium grows optimally at 25–30 °C, pH 6.5–7.0 and 1 % NaCl. Phylogenetically, strain DCY108T is closely related to Pedobacter jejuensis JCM 18824T, Pedobacter aquatilis JCM 13454T, Pedobacter kyungheensis LMG 26577T and the type strain of the genus Pedobacter heparinus DSM 2366T. The DNA–DNA relatedness values between strain DCY108T and its close phylogenetic neighbors were below 30.0 %. The DNA G+C content of strain DCY108T was determined to be 45.1 mol%. The predominant quinone was menaquinone 7 (MK-7). The major polar lipids were identified as phosphatidylethanolamine and three unidentified aminolipids AL1, AL13 and AL17. Iso-C15:00, iso-C17:03OH and summed feature 3 (C16:1 ω7c/C16:1 ω6c) were identified as the major fatty acids present in strain DCY108T. The results of physiological and biochemical tests allowed strain DCY108T to be differentiated phenotypically from other recognized species belonging to the genus Pedobacter. Therefore, it is suggested that the newly isolated organism represents a novel species, for which the name Pedobacter panacis sp. nov is proposed with the type strain designated as DCY108T (=CCTCCAB 2015196T = KCTC 42748T).  相似文献   

20.
A Gram-negative, motile, aerobic and rod-shaped bacterial strain designated 119BY6-57T was isolated from spongin. The taxonomic position of the novel isolate was confirmed using the polyphasic approach. Strain 119BY6-57T grew well at 25–30°C on marine agar. On the basis of 16S rRNA gene sequence similarity, strain 119BY6-57T belongs to the family Xanthomonadaceae and is related to Lysobacter aestuarii S2-CT (99.8% sequence similarity), L. maris KMU-14T (97.5%), and L. daejeonensis GH1-9T (97.3%). Lower sequence similarities (97.0%) were found with all of the other recognized members of the genus Lysobacter. The G + C content of the genomic DNA was 69.9 mol%. The major respiratory quinone was Q-8 and the major fatty acids were C16:0 iso, C15:0 iso, summed feature 9 (comprising C17:1 iso ω9c and/or C16:0 10-methyl), summed feature 3 (comprising C16:1ω7c and/or C16:1ω6c), and C11:0 iso 3-OH. The polar lipids were phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, three unidentified phospholipids, and an unidentified polar lipid. DNADNA relatedness values between strain 119BY6-57T and its closest phylogenetically neighbors were below 48.0 ± 2.1%. Based on genotypic and phenotypic characteristics, it is concluded that strain 119BY6-57T is a new member within the genus Lysobacter, for which the name Lysobacter spongiae sp. nov. is proposed. The type strain is 119BY6-57T (= KACC 19276T = LMG 30077T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号