首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Marine bioadhesives perform in ways that manmade products simply cannot match, especially in wet environments. Despite their technological potential, bioadhesive molecular mechanisms are still largely understudied, and sea urchin adhesion is no exception. These animals inhabit wave-swept shores, relying on specialized adhesive organs, tube feet, composed by an adhesive disc and a motile stem. The disc encloses a duo-gland adhesive system, producing adhesive and deadhesive secretions for strong reversible substratum attachment. The disclosure of sea urchin Paracentrotus lividus tube foot disc proteome led to the identification of a secreted adhesion protein, Nectin, never before reported in adult adhesive organs but, that given its adhesive function in eggs/embryos, was pointed out as a putative substratum adhesive protein in adults. To further understand Nectin involvement in sea urchin adhesion, Nectin cDNA was amplified for the first time from P. lividus adhesive organs, showing that not only the known Nectin mRNA, called Nectin-1 (GenBank AJ578435), is expressed in the adults tube feet but also a new mRNA sequence, called Nectin-2 (GenBank KT351732), differing in 15 missense nucleotide substitutions. Nectin genomic DNA was also obtained for the first time, indicating that both Nectin-1 and Nectin-2 derive from a single gene. In addition, expression analysis showed that both Nectins are overexpressed in tube feet discs, its expression being significantly higher in tube feet discs from sea urchins just after collection from the field relative to sea urchin from aquarium. These data further advocate for Nectin involvement in sea urchin reversible adhesion, suggesting that its expression might be regulated according to the hydrodynamic conditions.  相似文献   

6.
Using yeast genome databases and literature data, phylogenetic analysis of pectinase PGU genes from 112 Saccharomyces strains assigned to the biological species S. arboricola, S. bayanus (var. uvarum), S. cariocanus, S. cerevisiae, S. kudriavzevii, S. mikatae, S. paradoxus, and the hybrid taxon S. pastorianus (syn. S. carlsbergensis) was carried out. A superfamily of divergent PGU genes was found. Natural interspecies transfer of the PGU gene both from S. cerevisiae to S. bayanus and from S. paradoxus to S. cerevisiae may, however, occur. Within the Saccharomyces species, identity of the PGU nucleotide sequences was 98.8–100% for S. cerevisiae, 86.1–95.7% for S. bayanus (var. uvarum), 94–98.3% for S. kudriavzevii, and 96.8–100% for S. paradoxus/S. cariocanus. For the first time, a family of polymeric PGU1b, PGU2b, PGU3b and PGU4b genes is documented for the yeast S. bayanus var. uvarum, a variety important for winemaking.  相似文献   

7.
8.
9.
10.
11.
Weitschataster intermedius gen. et sp. nov., is described from the Upper Campanian (Upper Cretaceous) of Hannover (Lower Saxony, N Germany). The new species is characterized by its conspicuous rimmed pedicellariae scars covering almost the complete actinal surface and by small body size. W. intermedius represents a transitional state between W. decipiens comb. nov. from the Lower Campanian and the well-known W. undulatus comb. nov. from the Lower Maastrichtian of NW Europe. Among Spencer’s types of W. undulatus, one paratype is recognized as belonging to the genus Parametopaster.  相似文献   

12.
MicroRNAs (miRNAs) are a class of noncoding RNA molecules that function as negative regulators of gene expression and play important roles in a wide spectrum of biological processes, including in immune response. However, the physiological regulation function of Pinctada fucata miRNAs, specially their immunomodulation has not been explored yet. Here, two small RNA libraries from hemocytes of P. fucata with or without Vibrio alginolyticus infection were constructed and sequenced using the high-throughput Illumina deep sequencing technology. In total, 11,939,992 and 11,083,327 raw reads, corresponding to 10,993,546 and 9,988,179 clean reads, were respectively obtained in the control and infected libraries. A total of 276 miRNAs, including 225 known miRNAs and 51 putative novel miRNAs, were identified by bioinformatic analysis. By using pairwise comparison between two libraries, 93 miRNAs were found to be significantly differentially expressed, with 42 and 51 miRNAs exhibiting up-regulation and down-regulation, respectively. Thereinto, some known miRNAs were considered to be immune-related. Real-time PCR were implemented for 6 miRNAs co-expressed in the control and infected samples, and agreement was confirmed between the high-throughput sequencing and real-time PCR data. After miRNA targets were predicted, GO and KEGG pathway enrichment analysis were performed, and the results indicated that ten of the differentially expressed miRNAs were involved in immune-related pathways, and might participate in the host immune response to V. alginolyticus. These results of identification and comparative analysis of miRNAs might deepen our understanding of host-pathogen interactions and immune defense mechanisms in P. fucata.  相似文献   

13.
14.
15.
16.
17.
Soil salinity is a major abiotic stress that affects global agricultural productivity. Exploring the mechanisms that halophytes employ to thrive and flourish under saline environments is essential to increase the salt tolerance in sensitive crop species. Of the three halophytes used in this study Salicornia brachiata and Suaeda maritima belong to the same family Chenopodiaceae, while Sesuvium portulacastrum, a mangrove-associated halophyte, belongs to the family Aizoaceae. Assuming that halophytes of same family share similar salt tolerance mechanisms, we generated a suppression subtractive hybridization (SSH1) cDNA library from salt-treated leaf tissues of S. brachiata as tester and that of S. maritima as driver to identify salt-responsive genes unique to S. brachiata. To elucidate the difference in salt-tolerance mechanisms, and to identify salt-tolerance mechanisms amongst different families of halophytes, SSH2 library was generated from salt-treated leaf tissue of S. brachiata as tester and that of S. portulacastrum as driver. Totally, 87 and 49 EST clones representing unique genes were obtained from SSH1 and SSH2 libraries, respectively. Examination of the expression patterns of 17 (SSH1) and 15 (SSH2) differentially expressed genes using semi-quantitative RT-PCR confirmed up-regulation of these genes in shoots in response to salt treatment and elevated CO2 condition, but to a different extent. This study has provided insights into the molecular responses of S. brachiata to salt stress and elevated CO2 conditions.  相似文献   

18.
19.

Background

The Asteraceae represents an important plant family with respect to the numbers of species present in the wild and used by man. Nonetheless, genomic resources for Asteraceae species are relatively underdeveloped, hampering within species genetic studies as well as comparative genomics studies at the family level. So far, six BAC libraries have been described for the main crops of the family, i.e. lettuce and sunflower. Here we present the characterization of BAC libraries of chicory (Cichorium intybus L.) constructed from two genotypes differing in traits related to sexual and vegetative reproduction. Resolving the molecular mechanisms underlying traits controlling the reproductive system of chicory is a key determinant for hybrid development, and more generally will provide new insights into these traits, which are poorly investigated so far at the molecular level in Asteraceae.

Findings

Two bacterial artificial chromosome (BAC) libraries, CinS2S2 and CinS1S4, were constructed from Hin dIII-digested high molecular weight DNA of the contrasting genotypes C15 and C30.01, respectively. C15 was hermaphrodite, non-embryogenic, and S2S2 for the S-locus implicated in self-incompatibility, whereas C30.01 was male sterile, embryogenic, and S1S4. The CinS2S2 and CinS1S4 libraries contain 89,088 and 81,408 clones. Mean insert sizes of the CinS2S2 and CinS1S4 clones are 90 and 120 kb, respectively, and provide together a coverage of 12.3 haploid genome equivalents. Contamination with mitochondrial and chloroplast DNA sequences was evaluated with four mitochondrial and four chloroplast specific probes, and was estimated to be 0.024% and 1.00% for the CinS2S2 library, and 0.028% and 2.35% for the CinS1S4 library. Using two single copy genes putatively implicated in somatic embryogenesis, screening of both libraries resulted in detection of 12 and 13 positive clones for each gene, in accordance with expected numbers.

Conclusions

This indicated that both BAC libraries are valuable tools for molecular studies in chicory, one goal being the positional cloning of the S-locus in this Asteraceae species.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号