首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Summary Discrepancies about the role of L-type voltage-gated calcium channels (VGCC) in acetylcholine (ACh)-induced [Ca2+]i oscillations in tracheal smooth muscle cells (TSMCs) have been seen in recent reports. We demonstrate here that ACh-induced [Ca2+]i oscillations in TMCS were reversibly inhibited by three VGCC blockers, nicardipine, nifedipine and verapamil. Prolonged (several minutes) application of VGCC blockers, led to tachyphylaxis; that is, [Ca2+]i oscillations resumed, but at a lower frequency. Brief (15–30 s) removal of VGCC blockers re-sensitized [Ca2+]i oscillations to inhibition by the agents. Calcium oscillations tolerant to VGCC blockers were abolished by KB-R7943, an inhibitor of the reverse mode of Na+/Ca2+ exchanger (NCX). KB-R7943 alone also abolished ACh-induced [Ca2+]i oscillations. Enhancement of the reverse mode of NCX via removing extracellular Na+ reversed inhibition of ACh-induced [Ca2+]i oscillations by VGCC blockers. Inhibition of non-selective cation channels using Gd3+ slightly reduced the frequency of ACh-induced [Ca2+]i oscillations, but did not prevent the occurrence of tachyphylaxis. Altogether, these results suggest that VGCC and the reverse mode of NCX are two primary Ca2+ entry pathways for maintaining ACh-induced [Ca2+]i oscillations in TSMCs. The two pathways complement each other, and may account for tachyphylaxis of ACh-induced [Ca2+]i oscillations to VGCC blockers.  相似文献   

2.
The force-frequency relationship (FFR) in papillary muscles of the heart of active ground squirrel in different seasons was studied. For comparison, similar preparations from rat and rabbit were used. It was shown that the FFR of papillary muscles of active ground squirrel undergo significant seasonal changes. In summer and a part of autumn squirrels, a negative staircase (a decrease in the isometric force with increasing stimulation frequency) similar to that in adult rat was revealed. The FFR of the majority of autumn, winter and spring squirrels were polyphasic and contained both positive and negative components. Changes in the force in response to the introduction of pauses at a constant stimulation frequency were recorded. Two types of the post-rest recovery pattern were revealed in the myocardium of ground squirrels. For frequencies range with the negative direction of FFR, a typical pattern of rest-potentiation similar to that in rat papillary muscles was observed. The amplitude of the first post-rest contraction (F1) was usually higher than that of the preceding steady-state contraction. In papillary muscles of autumn animals the F1 value was greater that in summer, which suggests an enhanced release of Ca2+ from the sarcoplasmic reticulum. There was no post-rest potentiation in the range of frequencies with positive direction of FFR, and the post-rest recovery pattern in these cases was principally different from those of rat and rabbit preparations. It was proposed that seasonal differences of the FFR of active ground squirrel heart are associated with changes in the ratio of activities of the calcium-transporting system in the hibernation period.  相似文献   

3.
The Ca2+ paradox represents a good model to study Ca2+ overload injury in ischemic heart diseases. We and others have demonstrated that contracture and calpain are involved in the Ca2+ paradox-induced injury. This study aimed to elucidate their roles in this model. The Ca2+ paradox was elicited by perfusing isolated rat hearts with Ca2+-free KH media for 3 min or 5 min followed by 30 min of Ca2+ repletion. The LVDP was measured to reflect contractile function, and the LVEDP was measured to indicate contracture. TTC staining and the quantification of LDH release were used to define cell death. Calpain activity and troponin I release were measured after Ca2+ repletion. Ca2+ repletion of the once 3-min Ca2+ depleted hearts resulted in almost no viable tissues and the disappearance of contractile function. Compared to the effects of the calpain inhibitor MDL28170, KB-R7943, an inhibitor of the Na+/Ca2+ exchanger, reduced the LVEDP level to a greater extent, which was well correlated with improved contractile function recovery and tissue survival. The depletion of Ca2+ for 5 min had the same effects on injury as the 3-min Ca2+ depletion, except that the LVEDP in the 5-min Ca2+ depletion group was lower than the level in the 3-min Ca2+ depletion group. KB-R7943 failed to reduce the level of LVEDP, with no improvement in the LVDP recovery in the hearts subjected to the 5-min Ca2+ depletion treatment; however, KB-R7943 preserved its protective effects in surviving tissue. Both KB-R7943 and MDL28170 attenuated the Ca2+ repletion-induced increase in calpain activity in 3 min or 5 min Ca2+ depleted hearts. However, only KB-R7943 reduced the release of troponin I from the Ca2+ paradoxic heart. These results provide evidence suggesting that contracture is the main cause for contractile dysfunction, while activation of calpain mediates cell death in the Ca2+ paradox.  相似文献   

4.
KB-R7943, an inhibitor of a reversed Na+/Ca2+ exchanger, exhibits neuroprotection against glutamate excitotoxicity. Taking into consideration that prolonged exposure of neurons to glutamate induces delayed calcium deregulation (DCD) and irreversible decrease of mitochondrial membrane potential (Δψmit), we examined the effect of KB-R7943 on glutamate and kainate-induced [Ca2+]i and on Δψmit changes in rat cultured cerebellar granule neurons. 15 μmol/l KB-R7943 significantly delayed the onset of DCD in response to kainate but not in response to glutamate. In spite of [Ca2+]i overload, KB-R7943 considerably improved the [Ca2+]i recovery and restoration of Δψmit after glutamate and kainate washout and increased cell viability after glutamate exposure. In resting neurons, KB-R7943 induced a statistically significant decrease in Δψmit. KB-R7943 also depolarized isolated brain mitochondria and slightly inhibited mitochondrial Ca2+ uptake. These findings suggest that mild mitochondrial depolarization and diminution of Ca2+ accumulation in the organelles might contribute to neuroprotective effect of KB-R7943.  相似文献   

5.
Cardiac hypertrophy plays a major role in heart failure and is related to patient morbidity and mortality. Calcium overloading is a main risk for cardiac hypertrophy, and Na+/K+-ATPase (NKA) has been found that it could not only regulate intracellular Na+ levels but also control the intracellular Ca2+ ([Ca2+]i) level through Na+/Ca2+-exchanger (NCX). Recent studies have reported that klotho could affect [Ca2+]i level. In this study, we aimed at exploring the role of klotho in improving isoproterenol-induced hypertrophic response of H9C2 cells. The H9C2 cells were randomly divided into control and isoproterenol (ISO) (10 μM) groups. Klotho protein (10 μg/ml) or NKAα2 siRNA was used to determine the changes in isoproterenol-induced hypertrophic response. The alterations of [Ca2+]i level were measured by spectrofluorometry. Our results showed that H9C2 cells which were treated with isoproterenol presented a higher level of [Ca2+]i and hypertrophic gene expression at 24 and 48 h compared with the control group. Moreover, the expressions of NKAα1 and NKAα2 were both increased in control and ISO groups after treating with klotho protein; meanwhile, the NKA activity was increased and NCX activity was decreased after treatment. Consistently, the [Ca2+]i level and hypertrophic gene expression were decreased in ISO group after klotho protein treatment. However, these effects were both prevented by transfecting with NKAα2 siRNA. In conclusion, these findings demonstrated that klotho inhibits isoproterenol-induced hypertrophic response in H9C2 cells by activating NKA and inhibiting the reverse mode of NCX and this effect may be associated with the upregulation of NKAα2 expression.  相似文献   

6.
Earlier we showed that the Na+/Ca2+ exchanger inhibitor, KB-R7943, potently blocks the odor-evoked activity of lobster olfactory receptor neurons. Here we extend that finding to recombinant mosquito olfactory receptors stably expressed in HEK cells. Using whole-cell and outside-out patch clamping and calcium imaging, we demonstrate that KB-R7943 blocks both the odorant-gated current and the odorant-evoked calcium signal from two different OR complexes from the malaria vector mosquito, Anopheles gambiae, AgOr48 + AgOrco and AgOr65 + AgOrco. Both heteromeric and homomeric (Orco alone) OR complexes were susceptible to KB-R7943 blockade when activated by VUAA1, an agonist that targets the Orco channel subunit, suggesting the Orco subunit may be the target of the drug’s action. KB-R7943 represents a valuable tool to further investigate the functional properties of arthropod olfactory receptors and raises the interesting specter that activation of these ionotropic receptors is directly or indirectly linked to a Na+/Ca2+ exchanger, thereby providing a template for drug design potentially allowing improved control of insect pests and disease vectors.  相似文献   

7.
Powered by the mitochondrial membrane potential, Ca2+ permeates the mitochondria via a Ca2+ channel termed Ca2+ uniporter and is pumped out by a Na+/Ca2+ exchanger, both of which are located on the inner mitochondrial membrane. Mitochondrial Ca2+ transients are critical for metabolic activity and regulating global Ca2+ responses. On the other hand, failure to control mitochondrial Ca2+ is a hallmark of ischemic and neurodegenerative diseases. Despite their importance, identifying the uniporter and exchanger remains elusive and their inhibitors are non-specific. This review will focus on the mitochondrial exchanger, initially describing how it was molecularly identified and linked to a novel member of the Na+/Ca2+ exchanger superfamily termed NCLX. Molecular control of NCLX expression provides a selective tool to determine its physiological role in a variety of cell types. In lymphocytes, NCLX is essential for refilling the endoplasmic reticulum Ca2+ stores required for antigendependent signaling. Communication of NCLX with the store-operated channel in astroglia controls Ca2+ influx and thereby neuro-transmitter release and cell proliferation. The refilling of the Ca2+ stores in the sarcoplasmic reticulum, which is controlled by NCLX, determines the frequency of action potential and Ca2+ transients in cardiomyocytes. NCLX is emerging as a hub for integrating glucose-dependent Na+ and Ca2+ signaling in pancreatic β cells, and the specific molecular control of NCLX expression resolved the controversy regarding its role in neurons and β cells. Future studies on an NCLX knockdown mouse model and identification of human NCLX mutations are expected to determine the role of mitochondrial Ca2+ efflux in organ activity and whether NCLX inactivation is linked to ischemic and/or neurodegenerative syndromes. Structure-function analysis and protein analysis will identify the NCLX mode of regulation and its partners in the inner membrane of the mitochondria.  相似文献   

8.
9.
Earlier we have shown that regulation of rhythm and strength of the frog heart contractions, mediated by transmitters of the autonomic nervous system, is of the Ca2+-dependent character. In the present work, we studied chronoand inotropic effect of verapamil—an inhibitor of Ca2+-channels of the L-type, of nickel chloride-an inhibitor of Ca2+—channels of the T-type and of Na+,Ca2+exchangers as well as of adrenaline and acetylcholine (ACh) after nickel chloride. It has been found that the intracardially administered NiCh2 at a dose of 0.01 μg/kg produced a sharp fall of amplitude of action potential (AP) and an almost twofold deceleration of heart rate (HR). The intracardiac administration of NiCh2 (0.01 μg/kg) on the background of action of verapamil (6 mg/kg, i/m) led as soon as after 3 min to even more prominent HR deceleration and to further fall of the AP amplitude by more than 50% as compared with norm. An intracardiac administration of adrenaline (0.5 mg/kg) partly restored the cardiac activity. However, preservation of the myocardium electrical activity in such animals was brief and its duration did not exceed several minutes. Administration of Ni2+ on the background of acetylcholine (3.6 mg/kg) led to almost complete cessation of cardiac activity. As soon as 3 min after injection of this agent the HR decreased to 2 contractions/min. On electrograms (EG), the 10-fold fall of the AP amplitude was recorded. To elucidate role of extraand intracellular Ca2+ in regulation of strength of heart contractions, isometric contraction of myocardium preparations was studied in response to action of NiCl2 (10–200 μM), verapamil (70 μM), adrenaline (5 μM), and acetylcholine (0.2 μM) after NiCl2. It has been found that Ni2+ causes a dose-dependent increase of the muscle contraction amplitude. Minimal change of the contraction amplitude (on average, by 14.9% as compared with control) was recorded at a Ni2+ concentration of 100 μM. An increase of Ni2+ in the sample to 200 μM increased the cardiac contraction strength, on average, by 41%. The negative inotropic action of verapamil was essentially reduced by 100 μM Ni2+. Adrenaline added to the sample after Ni2+ produced stimulating effect on the cardiac muscle, with an almost twofold rise of the contraction amplitude. ACh (0.2 μM) decreased the cardiac contraction amplitude, on average, by 56.3%, whereas Ni2+ (200 μM) administered after ACh not only restored, but also stimulated partly the myocardial work. Within several parts of percent there was an increase of such isometric contraction parameters as amplitude of the effort developed by muscle, maximal rate, maximal acceleration, time of semirise and semifall. The obtained experimental results indicate that the functional activity of the frog pacemaker and contractile cardiomyocytes is regulated by Ca2+-dependent mechanisms. Structure of these mechanisms includes the potential-controlled Land T-channels of the plasma membrane as well as Na+,Ca2-exchangers characteristic exclusively of contractile cardiomyocytes. The existence of these differences seems to be due to the cardiomyocyte morphological peculiarities that appeared in evolution at the stage of the functional cell specialization.  相似文献   

10.
Exposing bovine chromaffin cells to a single 5 ns, high-voltage (5 MV/m) electric pulse stimulates Ca2+ entry into the cells via L-type voltage-gated Ca2+ channels (VGCC), resulting in the release of catecholamine. In this study, fluorescence imaging was used to monitor nanosecond pulse-induced effects on intracellular Ca2+ level ([Ca2+]i) to investigate the contribution of other types of VGCCs expressed in these cells in mediating Ca2+ entry. ω-Conotoxin GVIA and ω-agatoxin IVA, antagonists of N-type and P/Q-type VGCCs, respectively, reduced the magnitude of the rise in [Ca2+]i elicited by a 5 ns pulse. ω-conotoxin MVIIC, which blocks N- and P/Q-type VGCCs, had a similar effect. Blocking L-, N-, and P\Q-type channels simultaneously with a cocktail of VGCC inhibitors abolished the pulse-induced [Ca2+]i response of the cells, suggesting Ca2+ influx occurs only via VGCCs. Lowering extracellular K+ concentration from 5 to 2 mM or pulsing cells in Na+-free medium suppressed the pulse-induced rise in [Ca2+]i in the majority of cells. Thus, both membrane potential and Na+ entry appear to play a role in the mechanism by which nanoelectropulses evoke Ca2+ influx. However, activation of voltage-gated Na+ channels (VGSC) is not involved since tetrodotoxin (TTX) failed to block the pulse-induced rise in [Ca2+]i. These findings demonstrate that a single electric pulse of only 5 ns duration serves as a novel stimulus to open multiple types of VGCCs in chromaffin cells in a manner involving Na+ transport across the plasma membrane. Whether Na+ transport occurs via non-selective cation channels and/or through lipid nanopores remains to be determined.  相似文献   

11.
Hyperglycemia is the major cause of diabetic angiopathy. The aim of our study was to evaluate the impact of KB-R7943, an inhibitor of Na+/Ca2+ exchanger (NCX) on cell growth and function of human “diabetic” endothelial cells (EC). Intercellular adhesion molecule-1 (ICAM-1) expression and NCX activity were determined after EC were exposed to high glucose in the absence and presence of KB-R7943. Coincubation of EC with high glucose for 24 h resulted in a significant increase of monocyte-endothelial cell adhesion and the expression of ICAM-1. These effects were abolished by KB-R7943 and KB-R7943 significantly decreased the activation of NCX induced by high glucose. These findings suggested that KB-R7943 may play a role in inhibiting expression of adhesion molecules by inhibiting the reverse activation of NCX.  相似文献   

12.
The effects of the Na+-Ca2+ exchange inhibitor 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulfonate (KB-R7943) on depolarization-induced Ca2+ signal and [3H]noradrenaline release were examined in SH-SY5Y cells. KB-R7943 at 10 M significantly inhibited high K+-induced increase in intracellular Ca2+ concentration. KB-R7943 also inhibited high K+-evoked release of [3H]noradrenaline from the cells. These findings suggest that the Na+-Ca2+ exchanger in the reverse mode is involved at least partly in depolarization-induced transmitter release.  相似文献   

13.
Expression of transient receptor potential canonical channels (TRPC) and the effects of transforming growth factor-β1 (TGF-β1) on Ca2+ signals and fibroblast proliferation were investigated in human cardiac fibroblasts. The conventional and quantitative real-time RT-PCR, western blot, immunocytochemical analysis, and intracellular Ca2+ concentration [Ca2+]i measurement were applied. Cell proliferation and cell cycle progression were assessed using MTT assays and fluorescence activated cell sorting. Human cardiac fibroblasts have the expression of TRPC1,3,4,6 mRNA and proteins. 1-oleoyl-2-acetyl-sn-glycerol (OAG) and thapsigargin induced extracellular Ca2+-mediated [Ca2+]i rise. siRNA for knock down of TRPC6 reduced OAG-induced Ca2+ entry. Hyperforin as well as angiotensin II (Ang II) induced Ca2+ entry. KB-R7943, a reverse-mode Na+/Ca2+ exchanger (NCX) inhibitor, and/or replacement of Na+ with NMDG+ inhibited thapsigargin-, OAG- and Ang II-induced Ca2+ entry. Treatment with TGF-β1 increased thapsigargin-, OAG- and Ang II-induced Ca2+ entry with an enhancement of TRPC1,6 protein expression, suppressed by KB-R7943. TGF-β1 and AngII promoted cell cycle progression from G0/G1 to S/G2/M and cell proliferation. A decrease of the extracellular Ca2+ and KB-R7943 suppressed it. Human cardiac fibroblasts contain several TRPC-mediated Ca2+ influx pathways, which activate the reverse-mode NCX. TGF-β1 enhances the Ca2+ influx pathways requiring Ca2+ signals for its effect on fibroblast proliferation.  相似文献   

14.
Na+/Ca2+ exchange (NCX) is a major Ca2+ extrusion system in cardiac myocytes, but can also mediate Ca2+ influx and trigger sarcoplasmic reticulum Ca2+ release. Under conditions such as digitalis toxicity or ischemia/reperfusion, increased [Na+]i may lead to a rise in [Ca2+]i through NCX, causing Ca2+ overload and triggered arrhythmias. Here we used an agent which selectively blocks Ca2+ influx by NCX, KB-R7943 (KBR), and assessed twitch contractions and Ca2+ transients in rat and guinea pig ventricular myocytes loaded with indo-1. KBR (5 M) did not alter control steady-state twitch contractions or Ca2+ transients at 0.5 Hz in rat, but significantly decreased them in guinea pig myocytes. When cells were Na+-loaded by perfusion of strophanthidin (50 M), the addition of KBR reduced diastolic [Ca2+]i and abolished spontaneous Ca2+ oscillations. In guinea pig papillary muscles exposed to substrate-free hypoxic medium for 60 min, KBR (10 M applied 10 min before and during reoxygenation) reduced both the incidence and duration of reoxygenation-induced arrhythmias. KBR also enhanced the recovery of developed tension after reoxygenation. It is concluded that (1) the importance of Ca2+ influx via NCX for normal excitation-contraction coupling is species-dependent, and (2) Ca2+ influx via NCX may be critical in causing myocardial Ca2+ overload and triggered activities induced by cardiac glycoside or reoxygenation.  相似文献   

15.
The aim of the study was to find out whether low phospholamban level in atria as compared with ventricles is associated with differences in sarcoplasmic reticular Ca2+-uptake and contractile performance. Relationship between phospholamban and -adrenergic stimulation in rat left atria and papillary muscles were examined by means of contractile measurements, sarcoplasmic reticular oxalate-supported Ca2+-uptake, and Western blotting of phosphorylated phospholamban. Phosphoprotein determination after -adrenergic stimulation demonstrated that the levels of Ser16 and Thr17 phosphorylated phospholamban in atria remained at about one-third of that in ventricles. However, comparison of sarcoplasmic reticular Ca2+-uptake in control and isoproterenol perfused preparations demonstrated that the effect of -adrenergic stimulation on sarcoplasmic reticular Ca2+-uptake was stronger in atrial preparations. Moreover, atria responded to isoproterenol with much larger increases in developed tension, contractility and relaxation rates than papillary muscles. Thus, despite lower level of phospholamban, the -adrenergic activation of sarcoplasmic reticular Ca2+-uptake and contractile indices are higher in atria.  相似文献   

16.
The effect of ANG II on pHi, [Ca2+]i and cell volume was investigated in T84 cells, a cell line originated from colon epithelium, using the probes BCECF-AM, Fluo 4-AM and acridine orange, respectively. The recovery rate of pHi via the Na+/H+ exchanger was examined in the first 2 min following the acidification of pHi with a NH4Cl pulse. In the control situation, the pHi recovery rate was 0.118 ± 0.001 (n = 52) pH units/min and ANG II (10−12 M or 10−9 M) increased this value (by 106% or 32%, respectively) but ANG II (10−7 M) decreased it to 47%. The control [Ca2+]i was 99 ± 4 (n = 45) nM and ANG II increased this value in a dose-dependent manner. The ANG II effects on cell volume were minor and late and should not interfere in the measurements of pHi recovery and [Ca2+]i. To document the signaling pathways in the hormonal effects we used: Staurosporine (a PKC inhibitor), W13 (a calcium-dependent calmodulin antagonist), H89 (a PKA inhibitor) or Econazole (an inhibitor of cytochrome P450 epoxygenase). Our results indicate that the biphasic effect of ANG II on Na+/H+ exchanger is a cAMP-independent mechanism and is the result of: 1) stimulation of the exchanger by PKC signaling pathway activation (at 10−12 – 10−7 M ANG II) and by increases of [Ca2+]i in the lower range (at 10−12 M ANG II) and 2) inhibition of the exchanger at high [Ca2+]i levels (at 10−9 – 10−7 M ANG II) through cytochrome P450 epoxygenase-dependent metabolites of the arachidonic acid signaling pathway.  相似文献   

17.
The sodium–calcium exchanger (NCX) plays a major role in the regulation of cytosolic Ca2+ in muscle cells. In this work, we performed force experiments to explore the role of NCX during contraction and relaxation of Cch-stimulated guinea pig tracheal smooth muscle strips. This tissue showed low sensitivity to NCX inhibitor KB-R7943 (IC50, 57 ± 2 μM), although a complete relaxation was obtained by NCX inhibition at 100 μM. Interestingly, relaxation after washing the agonist was prolonged in the absence of external Na+, whereas washing without Na+ and in the presence of KB-R7943 resembled control conditions with physiological solution. Altogether, this suggests the reversal of NCX to a Ca2+ influx mode by the manipulation on the Na+ gradient, which can be inhibited by KB-R7943. In order to understand the low sensitivity to KB-R7943, we studied the molecular aspects of the NCX expressed in this tissue and found that the isoform of NCX expressed is 1.3, similar to that described in human tracheal smooth muscle. Sequencing revealed that amino acid 19 in exon B is phenylalanine, whereas in its human counterpart is leucine, and that the first amino acid after exon D is aspartate instead of glutamate in humans. Results herein presented are discussed in term of their possible functional implications in the exchanger activity and thus in airway physiology.  相似文献   

18.
To date, it has been established that the symbiosome membrane (SM), i.e., plant-derived membrane of symbiosomes, nitrogen-fixing compartments of legume root nodules, is equipped with Ca2+-ATPase transporting Ca2+ ions through the SM from the cytosol of infected cells into the symbiosome space (SS). Earlier in the experiments on the SM vesicles isolated from broad bean root nodules some data indicating the action of the Ca2+-ATPase as ATP-driven Ca2+/H+ antiporter were obtained. In the present work performed on isolated symbiosomes from the same plant object, further evidence in favor of calcium-proton countertransport mechanism of the pump operation was obtained. These were expressed in vanadate-sensitive alkalinization of the SS coupled with Ca2+ uptake by symbiosomes catalyzed by the SM Ca2+-ATPase, stimulation of the kinetics of the latter process in the response to artificial acidification of the SS and expectable modulation of ITP-hydrolyzing activity of this enzyme caused by the variation of pH within this compartment. The above findings are discussed in the framework of the model describing the mechanism of Ca2+-ATPase operation as an ATP-driven Ca2+/H+ exchanger and on this base allow us to put forward the hypothesis about the involvement of this enzyme in symbiosome signaling in a Ca2+- and pH-dependent manner.  相似文献   

19.
Ryanodine receptors (RyRs) are the Ca2+ release channels in the sarcoplasmic reticulum in striated muscle which play an important role in excitation-contraction coupling and cardiac pacemaking. Single channel recordings have revealed a wealth of information about ligand regulation of RyRs from mammalian skeletal and cardiac muscle (RyR1 and RyR2, respectively). RyR subunit has a Ca2+ activation site located in the luminal and cytoplasmic domains of the RyR. These sites synergistically feed into a common gating mechanism for channel activation by luminal and cytoplasmic Ca2+. RyRs also possess two inhibitory sites in their cytoplasmic domains with Ca2+ affinities of the order of 1 μM and 1 mM. Magnesium competes with Ca2+ at these sites to inhibit RyRs and this plays an important role in modulating their Ca2+-dependent activity in muscle. This review focuses on how these sites lead to RyR modulation by Ca2+ and Mg2+ and how these mechanisms control Ca2+ release in excitation-contraction coupling and cardiac pacemaking.  相似文献   

20.
The paper describes our concept about the existence of a certain strategy of rearrangements of ionic mechanisms of he intracellular trigger signal transmission in muscles during their contractile function evolution. It is shown that the rearrangements of muscles to accelerate the single (discrete) contraction cycle is accompanied by a change of mechanisms of external stimulus transduction into an intracellular trigger signal: direct activation of intracellular effectors by extracellular Ca2+ is replaced by indirect mechanisms of Ca2+-, then Ca2+- and Na+-induced, and in skeletal muscle fibers of vertebrates (SMFV) of Na+-induced Ca2+ release from the intracellular depot, sarcoplasmic reticulum. These rearrangements promoted an intensification of the Ca2+ intracellular mobilization to provide for the most complete pulse control of SMFV phasic contractions by the CNS and their protection from undesirable peripheral influences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号