首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sediment record of cladoceran remains was analysed in a 543 cm long core from Ple?né jezero (Ple?né Lake), the Bohemian Forest, Czech Republic. The core covered the time period from the Oldest Dryas to the present. Littoral and benthic Cladocera included 11 species of the family Chydoridae while three species (Bosmina longispina, Daphnia cf. pulicaria and D. cf. longispina) lived in the open water. Remains of Alona quadrangularis and Chydrous sphaericus occurred in the oldest sediment layers from the beginning of the Bølling chronozone. Bosmina longispina and Daphnia cf. pulicaria appeared about 400 years later. Inorganic sediment accumulated at a relatively high rate of ~ 90 mg cm?2 yr?1 at that time, diluting cladoceran remains and organic matter. Remains of Cladocera accumulated at 0.1 to 0.01 of the Holocene rate, making it difficult to observe effects of climate variation on the species structure of Cladocera in the Late-Glacial. Production of remains increased after warming during the Younger Dryas-Preboreal transition at ~11.6 kyr BP, and the proportion of littoral species increased. The most important change in cladoceran fauna occurred at ~10.5 kyr BP and culminated with afforestation of the catchment around 10.3 kyr BP. The domaination of Bosmina longispina lasted for ~250 years. The afforestation occurred concurrently with a decrease in lake water pH. Bosmina longispina and Daphnia cf. pulicaria disappeared, production of cladoceran remains decreased, but biodiversity increased. Planktonic Cladocera were represented by Daphnia cf. longispina during most of the rest of the Holocene. The production of Cladocera never reached the Preboreal level. Since ~ 5 cal. kyr BP, the inferred pH continuously decreased. The final decline was likely caused by cooling during the Little Ice Age and by sulphur emissions from ore smelting. The recent acidification of lake water and impoverishment of aquatic fauna was brought about by emissions of sulphur and nitrogen compounds in the 20th century.  相似文献   

2.
Indirect effects of fish on the demographic parameters of cladoceran species were studied under eutrophic conditions. Laboratory experiments were performed with water from control and fish mesocosms to avoid the direct impact of fish predation. In the experiments with the water from the fish mesocosms, fish indirectly negatively affected the demographic parameters of large cladocerans (Daphnia magna and D. pulicaria) due to the enhanced abundance of blue-green algae in the phytoplankton. However, small Ceriodaphnia quadrangula and littoral species Simocephalus vetulus did not respond to the presence of blue-greens. Due to this mechanism, the total abundance of cladoceran species can be sustained during the development of blue-green algae because large and small bodied species differ in their resistence to high concentratons of blue-green algae. Fish chemical signals (kairomones) did not influence the demographic parameters of any cladoceran species.  相似文献   

3.
Dormant stages (“resting eggs”) produced by cladocerans can persist for long periods of time in sediments and restore populations once the environmental conditions become favorable again. Lake Blanca, a subtropical shallow eutrophic lake, hosts a cladoceran community dominated by small-sized species. Previous studies on zooplankton resting eggs suggested that the cladoceran genera Daphnia and Simocephalus were present, but they had never been found before in water samples. In the present study, we compared a biweekly active community sampling with the resting egg bank (passive cladoceran community) from littoral and pelagic zones. Moreover, we tested the amount of samples required to have a representative reconstruction of the diversity in both compartments (water and sediment). Lake Blanca showed a relatively high cladoceran species richness (24) in the water column, with rapid temporal replacement. Several species were present in water samples during short temporal windows; therefore, to detect these species a strong sampling effort in terms of temporal frequency and spatial distribution was required. Contrary to our expectations, resting egg community showed a lower diversity than the active community; however, we demonstrated that the analysis of resting egg bank composition can help detect general community structure patterns.  相似文献   

4.
In our study, we focused on littoral Cladocera living and feeding in shallow shore parts of 46 mountain lakes in the Tatra Mountains (Slovakia and Poland). The studied lakes underwent a major acidification event in the 1980s and are now in the process of recovery. Lakes were divided into three categories based on their sensitivity to acidification: 5 extremely sensitive (ES), 11 acid sensitive (AS), and 30 non-sensitive (NS) lakes. In our study, we included historical data from the literature, and data from sediment core and littoral samples, which together represent the evolution of the littoral communities from a pre-industrial period up to the present. In total, 11 littoral species were found belonging to three cladoceran families. Most of the species were members of the family Chydoridae: Alona affinis, A. quadrangularis, A. rectangula, A. guttata, Acroperus harpae, Alonella excisa, A. nana, Chydorus sphaericus, and Eurycercus lamellatus. One species belonged to each family Daphniidae (Ceriodaphnia quadrangula) and Polyphemidae (Polyphemus pediculus). The most numerous littoral taxa were Alona affinis, Acroperus harpae, and Chydorus sphaericus. All species reacted to decreased pH levels during peak acidification in the 1980s by disappearing from most of the lakes of all categories; the only persisting species was Chydorus sphaericus. Most species returned to the lakes when pH started to increase in the 1990s, although their return was noticeably slower in AS lakes. Alona quadrangularis decreased its distribution range over the studied period; Polyphemus pediculus was mostly detected in the 1910s only. The number of species was highest in all lake categories when dwarf pine was present in the lake catchment. On the whole, the littoral community was richest in NS lakes.  相似文献   

5.
Three lakes were studied in the High Tatra Mountains at altitudes from 2000 to 2157 m a.s.l., which represent three categories of acidity status recognised in the Tatra lakes in the 1980s: non-acidified, acidified, and strongly acidified. Subfossil chironomid remains from dated sediment cores covering ca. throughout 200 years were analysed. The chironomid thanatocoenoses of all cores layers reflected ultra-oligotrophic non-acidified conditions in L’adové pleso. Nevertheless, the finding of the acid-tolerant species Zalutschia tatrica in littoral samples in 1980s indicates that the littoral zone was more influenced by acidification than deeper areas of the lake. Three stages of lake developmental history can be distinguished in the acidified lake Vy?né Wahlenbergovo pleso based on the chironomid subfossil record: the pre-acidification stage before the 1920s, the anthropogenic acidification stage between the 1920–1980s, and the recovery of the lake from the end of the 1980s. The period of acidification was accompanied by a decline in chironomid numbers, while chironomid fauna composition was unchanged during the whole investigated history of the lake. None of the chironomid taxa present prior to the acidification period disappeared during the peak of acidification. The most apparent change in the sediment record taken from the strongly acidified lake Starolesnianske pleso was recognised in the layers corresponding to the period 1960–1980. It is characterised by the disappearance of the dominant acid-sensitive Tanytarsus lugens group and the dominance of acidtolerant Tanytarsus gregarius group. The most recent chironomid assemblage probably benefits from the amount of food resources as a result of increased lake productivity induced by acidification.  相似文献   

6.
A faunal record of chironomid remains was analyzed in the upper 280 cm of a 543 cm long sediment core from Ple?né jezero (Ple?né Lake), the Bohemian Forest (?umava, Böhmerwald), Czech Republic. The chronology of the sediment was established by means of 5 AMS-dated plant macroremains. The resolution of individual 3-cm sediment layers is ~115 years and the analyzed upper 280 cm of the sediment core represent 10.4 cal. ka BP. As the results of DCA show, two marked changes were recorded in the otherwise relatively stable Holocene chironomid composition: (1) at the beginning of the Holocene (ca. 10.4-10.1 cal. ka BP) only oligotrophic and cold-adapted taxa (Diamesa sp., M. insignilobus-type, H. grimshawi-type) were present in the chironomid assemblages, clearly reflecting a cool climate oscillation during the Preboreal period, and (2) during an event dated in the interval 1540–1771 AD, when most taxa vanished entirely and only Zavrelimyia sp. and Procladius sp. were alternately present accompanied by Tanytarsus sp. Although, the age of this event is in agreement with the dating of the Little Ice Age, the most probable reason for the elimination of many chironomid taxa was very low sums recorded in this part of the sediment, rather than cool conditions connected with the LIA. Variations in the chironomid fauna after the Preboreal period were reflected mainly by changes in abundances of dominant taxa rather than by changes in species composition. These variations could be explained by: (1) climatic changes, namely temperature and amount of rainfall resulting in oscillations in lake level, with changes in the occurrence of macrophytes in the littoral and (2) increasingly dense afforestation which led to a considerable input of organic material into the lake and a subsequent increase in the trophic status of the lake water.  相似文献   

7.
The timely characterization of high-altitude freshwater habitats allows an assessment of the diversity of its biota and provides the basis for monitoring community change. In this study, we investigate the Cladocera fauna of 29 water bodies (pools, freshwater lakes, and surrounding swamps sampled at various occasions between 2005 and 2009) in the Rwenzori Mountains (Uganda, D. R. Congo), which are part of the East African Sky Island Complex. All sites except one are located above 3700 m altitude. We include notes on the morphology, taxonomy, distribution, and ecology of each recorded taxon and describe a new species of the Alona rustica-group (Alona sphagnophila n.sp.; Chydoridae). We found 11 species of which seven are restricted to Lake Mahoma, the lowest lake in our study area (2990 m) (Alona affinis barbata, A. intermedia, Alonella exisa, Alonella nana, Daphnia cf. obtusa, Pleuroxus aduncus) and/or Lake Bujuku (Daphnia cf. curvirostris, P. aduncus) (3900 m). Two taxa (Ilyocryptus cf. gouldeni, A. sphagnophila n.sp.) are restricted to Carex/Sphagnum bogs surrounding lakes in the afroalpine zone. Pigmented populations of Chydorus cf. sphaericus occur in all the sites. It is the only cladoceran species surviving the extreme alpine and nival conditions in the Rwenzori. The species is joined by A. guttata at locations at lower altitudes (ca. 3000–4000 m), present in about half of the sites. The Rwenzori Cladocera fauna is characterized by a strong extratropical temperate component and a low level of speciation/endemism. Harboring an impoverished boreal cladoceran community, Lake Mahoma is given closer attention. At 2990 m, the lake is a cold-temperate aquatic island in the tropics and may function as a stepping stone for Palaearctic taxa. We introduce a new term for high-altitude, cold-water habitats in the tropics, which act as climatic islands for extratropical freshwater faunas, Löffler Islands, in honor of Dr Heinz Löffler. In comparison to surveys in 1961, we list five new records in Lake Mahoma, which could indicate cladoceran community changes over the past few decades at ca. 3000 m in the Rwenzori. Since the species distributions correlate to temperature and catchment properties of the lakes, the Rwenzori cladoceran fauna can be expected as sensitive indicators for local changes.  相似文献   

8.
A pollen record obtained from a 2.2-m sediment succession deposited in a small lake in the province of Västerbotten, north-eastern Sweden, reveals the presence of continuous forest cover since 8,500 calendar years before present (cal b.p.). Forest with abundant Pinus (pine) and Betula (birch) initially colonized the area, followed by a dominance of deciduous trees, primarily Betula, from ca. 8,000 to ca. 3,200 cal b.p. Pollen accumulation rates of Quercus (oak), Ulmus (elm) and Tilia (linden) suggest the possible local presence of these thermophilous tree species during this period. The climate gradually became colder and moister around 3,500 cal b.p. and an increased abundance of Sphagnum spores indicates paludification. Picea (spruce) became established around 3,200 cal b.p. and less than 500 years later this was the dominant tree species around the lake. The fire frequency as inferred from charcoal particles exhibits a general increase from ca. 3,000 cal b.p. with subsequent charcoal accumulation maxima at around 2,800 cal b.p., 1,700 cal b.p. and in recent time. The human influence on vegetation was significant during the last 200–300 years. Soil erosion increased substantially and fern spores amount to ca. 55% of the total pollen assemblage in the uppermost samples. These results suggest an extensive anthropogenic impact on the local forest ecosystem, with abundant logging, burning and ditching in the vicinity of the lake. Independent evidence of sub-recent human-induced environmental change is provided by historical accounts. Complementary information on catchment soil development and aquatic nutrient status was provided by records of magnetic susceptibility and elemental carbon, and nitrogen contents obtained from the same sediment core.  相似文献   

9.
All species of Daphnia (Cladocera) produce, at some stage in their life cycle, diapausing eggs, which can remain viable for decades or centuries forming a “seed bank” in lake sediments. Because of their often good preservation in lake sediment, they are useful in paleolimnology and microevolutionary studies. The focus of this study was the analysis of cladoceran resting eggs stored in the sediment in order to examine the ephippial eggs bank of Daphnia pulicaria Forbes in six mountain lakes in the High Tatra Mountains, the Western Carpathians (northern Slovakia and southern Poland). Firstly, we analyzed distribution, abundance and physical condition of resting eggs in the sediment for their later used in historical reconstruction of Daphnia populations by genetic methods. To assess changes in the genetic composition of the population through time, we used two microsatellite markers. Although DNA from resting eggs preserved in the High Tatra Mountain lake sediments was extracted by various protocols modified for small amounts of ancient DNA, DNA from eggs was not of sufficient quality for microsatellite analyses. Distribution curves of resting eggs from sediment cores correspond to the environmental changes that have occurred in the High Tatra Mountains area during last two centuries (atmospheric acid deposition, fish introduction) and demonstrate their influence on natural populations. Evaluation of ephippia physical condition (the most common category was empty ephippial covers) suggests that the majority of resting eggs hatched to produce a new generation of Daphnia or may be due to failed deposition of resting eggs by Daphnia to the chitinous case. In conclusion, age, low quantity and poor physical condition of resting eggs from these Tatra lake sediments proved to be unsuitable not just for use in genetic analyses, but also the possibilities of autogenous restoration of Daphnia populations from the resting egg banks in the Tatra sediments are negligible.  相似文献   

10.
Microscopic crustaceans (cladocerans and copepods) and rotifers are the principal zooplankton components of the pelagic food webs in lakes. They play important ecological roles, functioning as essential links between primary producers and planktivorous fish. Individuals zooplankton are important nodes of matter flow in pelagic ecosystems. The zooplankton community structure can provide useful indicators of top–down processes, such as the magnitude or strength of planktivorous predators and the extent of zooplankton grazing. Here we report the abundance of zooplankton taxa (crustaceans and rotifers) that were recorded monthly, from January 1980 to September 2015, at two stations on Lake Kasumigaura, a shallow eutrophic lake that is the second largest lake in Japan. The data include information on 12 copepod species (taxa), 20 cladoceran species (taxa), 40 rotifer species (taxa), and the opossum shrimp (Neomysis intermedia). In the 1980s, the plankton of the lake were characterized by cyanobacterial blooms and the co-dominance of Bosmina and Diaphanosoma in the summer. In addition, the two cladoceran genera, Daphnia galeata and Chydorus sphaericus were often prominent. The plankton profile changed dramatically in the middle (1997–2004) of the present long-term monitoring period, when cyanobacteria disappeared and diatoms became dominant even in the summer; concurrently, only the Diaphanosoma cladocerans were evident. However, in the past 10 years, cyanobacterial blooms, the co-dominance of Bosmina and Diaphanosoma, and D. galeata have re-emerged. Zooplankton monitoring forms part of the Lake Kasumigaura Long-Term Environmental Monitoring Program, which has been conducted by the National Institute for Environmental Studies (NIES) since 1977. Data on other planktonic components (phytoplankton and the elements of microbial food webs) noted during monitoring and on primary production were published in Takamura and Nakagawa (Ecol Res 27:839 2012a, Ecol Res 27:837 2012b, Ecol Res 31:287 2016). Lake Kasumigaura is a core site of the Japan Long-term Ecological Research Network, a member of the International Long-term Ecological Research Network. Our quantitative dataset spanning several decades is unique in terms of the work on lakes and the plankton therein, and is freely available. The dataset has been used in ecological and environmental programs, as well as in studies on lake management.  相似文献   

11.
Zooplankton may preferentially graze small, edible diatom species and therefore affect fossils relative to live assemblages by selective removal or increased sedimentation via egestion. Cladoceran zooplankton remains and diatom edibility were analyzed in sediment cores from Moon Lake and Coldwater Lake (North Dakota, USA) to assess changes in potential grazing pressure on algae and influence on diatom-inferred salinity (DIS) reconstructions. Sedimentary zooplankton in Moon Lake were dominated by littoral Cladocera, whereas Coldwater Lake assemblages were primarily small-bodied pelagic and littoral species. Relationships between cladocerans and environmental parameters over the past century varied by site and by species, with Chydorus brevilabris related most closely to drought at Moon and Bosmina sp. related to drought at Coldwater. A higher percentage of inedible diatoms occurred in the sediments of Moon Lake as compared to Coldwater Lake. DIS correlations with drought records improved in Moon Lake when only inedible diatom taxa were used to build a transfer function, but no improvement was seen for Coldwater Lake with this approach. These data suggest grazing pressure on diatoms differed between lakes and that zooplankton–phytoplankton interactions may affect the accuracy of drought reconstructions in the Great Plains.  相似文献   

12.
Lake ecosystems are nowadays often subjected to multi-stressors, such as eutrophication, climate change, and fish manipulations, the effects of which can be difficult to disentangle, not least from the usual short-term limnological time-series that are available. However, multi-proxy paleoecological approaches may offer such opportunities, especially in the study of remote island lakes characterized by being species poor and buffered somewhat against the recent climate change. We used a paleoecological multi-proxy approach to determine the relative importance of nutrient loading, meteorological forcing, and fish species introduction for recent lake ecosystem development in Lake Furnas on the island of São Miguel, the Azores. The lake was stocked with cyprinids in the late nineteenth century and recently also with piscivorous fish, and has been affected by increasing agricultural activities in its catchment. We analyzed marker pigments, cladoceran remains, and subfossil diatoms in a 46-cm core representing the last 40 years. Remains of large-bodied cladocerans were virtually absent until the introductions of piscivorous pike and pikeperch in 1980 and 1982, respectively, after which the zooplankton community composition changed abruptly. First Ceriodaphnia sp. appeared (ca. 1980), followed by Daphnia a few years later. Carotenoids from cyanobacteria (myxoxanthophyll, aphanizophyll) were regularly present in the lake sediment with a major shift occurring around 1994, from N2-fixing to non-fixing groups. This shift coincided with the onset of anoxia in the lake water, evidenced by the presence of pigments from Chlorobiaceae (BChl-e homologues and isorenieratene), and with a rapid decrease in benthic-tychoplanktonic diatoms and an increase in cyanobacteria, chlorophytes, dinoflagellates, and cryptophytes. The composition of microbial and algal assemblages changed rapidly after Daphnia appearance, and the covariance between fish stocking, nutrient loading, and enhanced temperatures captured most of the variability in algae accumulation, and thus likely in lake primary production as well. Thus, lake production apparently did not respond strongly to specific changes in temperature, food-web structure, or nutrient input, but rather to the combined effects of all the three forcing mechanisms, emphasizing the role of multi-stressors in lake ecosystem functioning. Our study demonstrates the sensitivity of these remote species-poor lakes to increased nutrient loading, introduction of non-native species, such as fish and climate change.  相似文献   

13.
The spiny cladoceran (Bythotrephes longimanus) is an invasive, predaceous zooplankter that is expanding from Great Lakes coastal waters into inland lakes within a northern latitudinal band. In a large, Boundary Water lake complex (largely within Voyageurs National Park), we use two comparisons, a 2-year spatial and a 12-year temporal, to quantify seasonal impacts on food webs and biomass, plus a preliminary calculation of secondary production decline. Bythotrephes alters the seasonal biomass pattern by severely depressing microcrustaceans during summer and early fall, when the predator is most abundant. Cladoceran and cyclopoid copepods suffer the most serious population declines, although the resistant cladoceran Holopedium is favored in spatial comparisons. Microcrustacean biomass is reduced 40–60 % and secondary production declines by about 67 %. The microcrustacean community shifts towards calanoid copepods. The decline in secondary production is due both to summer biomass loss and to the longer generation times of calanoid copepods (slower turnover). The Bythotrephes “top-down” perturbation appears to hold across small, intermediate, and large-sized lakes (i.e. appears scale-independent), and is pronounced when Bythotrephes densities reach 20–40 individuals L?1. Induction tests with small cladocerans (Bosmina) suggest that certain native prey populations do not sense the exotic predator and are “blind-sided”. Failure of prey to deploy defenses could explain the disproportionate community impacts in New World versus Old World lakes.  相似文献   

14.
To predict selenium cycling in sediments, it is crucial to identify and quantify the processes leading to selenium sequestration in sediments. More specifically, it is essential to obtain environmentally-relevant kinetic parameters for selenium reduction and information on how they spatially vary in sediments. The Salton Sea (California, USA) is an ideal model system to examine selenium processes in sediments due to its semi-enclosed conditions and increasing selenium concentration over the last century. Selenium enters the Salton Sea mainly as selenate and might be sequestered in the sediment through microbial reduction. To determine the potential selenium sequestration of Salton Sea littoral sediments and which sediment properties are controlling selenate reduction kinetics, we determined the centimeter-scale vertical distribution of potential selenate reduction rates and apparent kinetic parameters (maximum selenate reduction rates, Vmax, and selenate half-saturation concentration, Km) using flow-through reactor (FTR) experiments. We compared sediments from two littoral sites (South and North) and four depth intervals (0–2, 2–4, 4–6 and 6–8 cm). Furthermore, we characterized the selenium fractions in the sediment recovered from the FTR experiments to identify the processes leading to the sequestration of selenium. Our results reveal higher potential for selenium reduction and sequestration in the topmost sediment (0–2 cm) suggesting that microorganisms inhabiting surface sediment are well adapted to reduce selenate entering the Salton Sea. As apparent Km values (103–2144 µM) exceed the average selenium concentration in the overlying water (6–25 nM), in situ selenate reduction is limited by the low availability of selenate and the resident selenate-reducing microorganisms operate well below their Vmax (11 and 43 nmol cm?3 h?1). Selenium speciation after FTR experiments confirms the primary sequestration of reduced biomass-associated and elemental selenium (68–99% of total selenium) in the sediment. Further, the absence of correlation between the tested sediment physical (porosity, bulk density, clay content), chemical (Corg, Ntot, total selenium content) and biological characteristics (abundance of culturable selenate-reducers) with the kinetic parameters of selenate reduction indicates that these sediment characteristics cannot be used as predictors of apparent Vmax or Km. Conclusively, microbial selenate reduction is an important, if not the primary process, leading to the sequestration of reduced selenium in the Salton Sea sediments and making the surficial Salton Sea sediments an important selenium sink.  相似文献   

15.
Vlasta Jankovská 《Biologia》2006,61(20):S371-S385
Pollen analysis has been carried out on a 549 cm thick sediment profile from lake Ple?né jezero (Ple?né Lake) in the Bohemian Forest (?umava, Czech Republic; 1090 m a.s.l.; 48°47′ N; 13°52′ E). Analyses of 67 samples characterise the development of the lake biotope and the surrounding landscape during the last ca. 14,000 years. The pollen diagram shows a very distinct transition between the Late Glacial and the Holocene biostratigraphic units at a depth of ca. 312 cm. In the surroundings of Ple?né Lake the vegetation was treeless during the entire Late Glacial. The alpine tree limit, formed by Betula and Pinus with undergrowth of shrubs, might have been at ca. 500 m a.s.l. Pollen transported from long distances was significant due to the openness of the landscape, coming from southern Europe and even Africa, and including high numbers of Artemisia, Poaceae, Chenopodiaceae, and some other herbs and shrubs from steppe and forest-steppe areas in southern Europe or Africa (likely Ephedra, certainly Lygeum spartum). The expansion of shrubs, particularly Juniperus, preceded the expansion of trees near the end of the Late Glacial. Afforestation of the region by thin stands of Betula and Pinus occurred during the Preboreal. Significant warming in the Boreal resulted in the expansion of Corylus, Quercetum mixtum (QM) trees, and probably also Picea and Alnus. Picea as well as QM trees were further expanding during the Early Atlantic. Picea was the dominant tree during the Late Atlantic and Fagus started to spread towards its end. Abrupt expansion of Abies marks the Subboreal. A high degree of afforestation (Abies, Fagus, Picea) was characteristic for the Early Subatlantic. During Late Subatlantic, pollen of synanthropic plants appears. Phases of the lake biotope development were defined on the basis of coccal green algae and Isoëtes.  相似文献   

16.
The purpose of this study was to determine how zebra mussels affected cladoceran community structure under eutrophic conditions. We conducted a mesocosm study where we manipulated the presence of zebra mussels and the presence of large-bodied Daphnia (Daphnia magna and Daphnia pulicaria). We also conducted a complimentary life-table experiment to determine how water from the zebra mussel treatment affected the life history characteristics of the cladoceran species. We anticipated that small- and large-bodied cladoceran species would respond differently to changes in algal quality and quantity under the effects of zebra mussels. Large-bodied Daphnia successfully established in the zebra mussel treatment but failed to grow in the control. We did not observe positive relationships between food concentrations and cladoceran abundances. However, the phosphorus content in the seston indicated that food quality was below the threshold level for large-bodied cladocerans at the beginning of the experiment. We believe that zebra mussels quickly enhanced the phosphorus content in the seston due to the excretion of inorganic phosphorus, thus facilitating the development of large-bodied Daphnia. In conclusion, our results suggest that zebra mussels can alter the phosphorus content of seston in lakes and this can affect the dynamics of crustacean zooplankton.  相似文献   

17.
Species composition of planktonic Crustacea in 102 lakes in the West and High Tatra Mountains, studied during the peak of anthropogenic acidification (1978–1996), is presented in this work. Zooplankton of the Tatra lakes have been studied since the middle of the 19th century, which later enabled the recognition of lake acidification and the assessment of its effect on the plankton community of lake ecosystems. In the pre-acidification period, the distribution of zooplankton was determined namely by the lake altitude and orientation (north vs. south) and by the catchment character. Crustacean zooplankton in larger lakes consisted of a limited number of species, with Acanthodiaptomus denticornis and Daphnia longispina dominating lakes in the forest zone, and Arctodiaptomus alpinus, Cyclops abyssorum, Daphnia longispina, Daphnia pulicaria, and Holopedium gibberum dominating lakes in the alpine zone. Ceriodaphnia quadrangula, Daphnia obtusa, Daphnia pulex, and Mixodiaptomus tatricus occurred in lakes with high concentrations of dissolved organic matter and in strongly acidified waters. Anthropogenic acidification has caused drastic changes in both the chemistry and biology of the Tatra lakes. Based on their status during the acidification peak, lakes were divided into three categories: non-acidified (with no change in the species composition of crustacean zooplankton due to the acidification), acidified (planktonic Crustacea disappeared in lakes with meadow-rocky catchments), and strongly acidified lakes where original Crustacea in meadow-rocky catchment lakes disappeared and were replaced by populations of the acid-tolerant littoral species Acanthocyclops vernalis, Chydorus sphaericus, and Eucyclops serrulatus. The acidification-induced processes of oligotrophication and toxicity of aluminium played a key role in the extinction of species. Despite the first signs of biological recovery observed in the early 2000s, acidification remains the most important factor governing the structure of plankton in the Tatra lakes.  相似文献   

18.
We tested the hypotheses that the ciliate assemblages in moderately eutrophic lake are controlled by the effective crustacean predation, and the high abundances of planktonic ciliates in highly eutrophic and turbid lake are due to insufficient regulation by crustacean zooplankton. A food tracer method coupled with natural assemblage of microciliates labeled with fluorescent microparticles was used to measure the cladoceran and copepod predation rates on planktonic ciliates and to estimate the carbon flow between the ciliate–crustacean trophic links. The results revealed that the microciliates (15–40 μm) were consumed by all dominant cladoceran and copepod species in both the lakes studied, mainly by Chydorus sphaericus and cyclopoid copepods in Lake Võrtsjärv, and by Daphnia spp. and Bosmina spp. in Lake Peipsi. The grazing loss in moderately eutrophic Peipsi indicated strong top-down control of ciliates mainly by cladocerans. The extraordinary abundant population of planktonic ciliates having a predominant role in the food web in highly eutrophic and turbid Võrtsjärv is explained by the measured low crustacean predation rates on ciliates. The estimated carbon flow from the ciliates to crustaceans suggest that in eutrophic lakes majority of the organic matter channeled via metazooplankton to higher trophic levels may originate from the microbial loop.  相似文献   

19.
Akifumi Ohtaka 《Limnology》2018,19(3):367-373
In surveys conducted during 2000–2005, 39 taxa of aquatic oligochaetes belonging to the families Enchytraeidae and Naididae were found in Lake Tonle Sap in the Mekong River Basin, Cambodia. Dominated by naidines and pristinines (29 taxa), they mainly comprised widely distributed species as well as South Asian and Southeast Asian species. Among the four areas studied, the littoral regions of the lake—where inundated forests and aquatic vegetation developed during the flooded seasons—presented the highest number of species. Submerged vegetation in the littoral Lake Tonle Sap harbored abundant epiphytic oligochaetes, especially Stylaria fossularis. In contrast to the rich abundance of naidine and pristinine fauna, tubificines and ryhacodrilines were scarce in and around the lake, irrespective of the vegetation in their habitats. Several Aulodrilus species and Branchiura sowerbyi were the main representatives of the benthic oligochaete assemblages throughout the offshore zone of the lake without vegetation. It is noteworthy that the widely distributed tubificines Tubifex tubifex and Limnodrilus hoffmeisteri were not found in any surveyed locality.  相似文献   

20.
Although the area of Lake Yeniça?a is a potential candidate for RAMSAR convention, several anthropogenic factors compromise its biological diversity. This is mostly due to nutrient-rich water released from both point and nonpoint sources. Thirteen ostracod taxa (Candona neglecta, C. candida, Ilyocypris bradyi, Darwinula stevensoni, Cypridopsis vidua, Physocypria kraepelini, Cypria ophtalmica, Prionocypris zenkeri, Eucypris virens, Herpetocypris reptans, Pseudocandona compressa, Fabaeformiscandona fabaeformis Potamocypris cf. fulva) were found during this study. Potamocypris cf. fulva is a new record for the Turkish freshwater ostracod fauna. The first nine of these species have broad geographic ranges, implying high tolerance levels to different environmental variables. Based on the estimated species optima and tolerance levels, two species exhibited higher effective number of occurrences (C. neglecta, and D. stevensoni, respectively) than the other species. Three species (C. neglecta, D. stevensoni, I. bradyi) did not show significant correlation with any environmental variable we used. Both Canonical correspondence (CCA) and Pearson correlation analyses showed that temperature was the most effective predictor of species occurrence, followed by electrical conductivity and redox potential. In contrast, pH and dissolved oxygen of water were the least effective predictors. Approximately 71% of the correlation between community composition and environmental variables was explained by the first axis of the CCA diagram, which had a relatively low (7.7%) cumulative variance of species. The lower (560 μg/l) and the upper (2030 μg/l) levels of ammonia (NH3) exceeded the limits during winter season. The concentrations of total coliform and Escherichia coli bacteria were measured up to 10 × 107 cfu/ml and 10 × 103 cfu/ml, respectively. Results of physicochemical measurements, microbiological counts, and species data indicate that water quality of Lake Yeniça?a has been rapidly deteriorated by anthropogenic factors that are the main threat for not only the lake’s aquatic diversity but also human health around the lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号