首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in precipitation in the Amazon Basin resulting from regional deforestation, global warming, and El Niño events may affect emissions of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and nitric oxide (NO) from soils. Changes in soil emissions of radiatively important gases could have feedback implications for regional and global climate. Here, we report the final results of a 5‐year, large‐scale (1 ha) throughfall exclusion experiment, followed by 1 year of recovery with natural throughfall, conducted in a mature evergreen forest near Santarém, Brazil. The exclusion manipulation lowered annual N2O emissions in four out of five treatment years (a natural drought year being the exception), and then recovered during the first year after the drought treatment stopped. Similarly, consumption of atmospheric CH4 increased under drought treatment, except during a natural drought year, and it also recovered to pretreatment values during the first year that natural throughfall was permitted back on the plot. No treatment effect was detected for NO emissions during the first 3 treatment years, but NO emissions increased in the fourth year under the extremely dry conditions of the exclusion plot during a natural drought. Surprisingly, there was no treatment effect on soil CO2 efflux in any year. The drought treatment provoked significant tree mortality and reduced the allocation of C to stems, but allocation of C to foliage and roots were less affected. Taken together, these results suggest that the dominant effect of throughfall exclusion on soil processes during this 6‐year period was on soil aeration conditions that transiently affected CH4, N2O, and NO production and consumption.  相似文献   

2.
This paper estimates CO2 emission and net ecosystem exchange (NEE) between the atmosphere and the surface of bog in the south taiga of the European part of Russia for the summer periods of 2013–2015. Flux measurements are carried out by the static chamber method every 7–10 days in three experimental sites with homogenous conditions of soil moisture and vegetation type. Statistically significant differences in CO2 fluxes and NEE are found between different experimental sites. It is shown that an assessment of the significance of bogs in CO2 balance with the atmosphere must be made with consideration for the spatial heterogeneity of bogs.  相似文献   

3.

Key message

Mixed tree plantations are potential silvicultural systems to increase soil carbon storage through altering litter and root inputs and soil physiochemical properties.

Abstract

Afforestation and reforestation are major strategies for global climate change mitigation. Different tree species composition can induce diverse changes in soil CO2 emission and soil carbon sequestration in tree plantation. This study employed three plantations of monoculture and mixed Pinus yunnanensis and Eucalyptus globulus to estimate the effect of tree species composition on soil CO2 emission and soil organic carbon storage in subtropical China. We found that tree species composition had a significant effect on the soil CO2 emission and soil organic carbon storage. Soil CO2 emission was lower in the mixed plantation than in the P. yunnanensis plantation, whereas it was higher than in the E. globulus plantation. Differences in soil CO2 emission among the three plantations were determined by leaf litterfall mass, fine root biomass, soil available nitrogen, pH, soil bulk density, and soil C:N ratio. Soil organic carbon storage was 34.5 and 23.2 % higher in the mixed plantation than in the P. yunnanensis and E. globulus plantations, respectively. Higher soil organic carbon stock in the mixed plantation was attributed to lower C/N ratio of leaf litter and soil, greater fine root biomass and soil organic carbon content, and lower soil CO2 emission. We conclude that mixed tree plantation can enhance soil carbon sequestration, but can decrease or increase soil CO2 emission through altering litter and root inputs and soil physiochemical properties.
  相似文献   

4.
为了更好理解若尔盖高原不同微生境下沼泽湿地生态系统CO2排放通量的变化特征,以若尔盖高原湿地自然保护区为研究对象,2013和2014年生长季期间,采用了静态箱和快速温室气体法原位观测了3种湿地5种微生境下沼泽湿地CO2排放通量时空变化规律。结果表明:长期淹水微地貌草丘区湿地(PHK)和洼地区湿地(PHW) CO2排放通量变化范围分别为38.99-1731.74 mg m-2 h-1和46.69-335.22 mg m-2 h-1,季节性淹水区微地貌草丘区湿地(SHK)和洼地区湿地(SHW) CO2排放通量变化范围分别为193.90-2575.60 mg m-2 h-1和49.93-1467.45 mg m-2 h-1,而两者过渡区的无淹水区沼泽湿地(Lawn) CO2排放通量变化范围194.20-898.75 mg m-2 h-1。相关性分析表明5种微地貌区沼泽湿地CO2排放通量季节性变化与不同深度土壤温度均存在显著正相关,与水位存在显著负相关(PHW、SHW、SHK、Lawn)或不相关(PHK),并且水位和温度(5 cm)共同解释了CO2排放通量季节性变化的87%。3种湿地5种微生境下沼泽湿地CO2排放通量存在空间变化规律,主要受水位影响,但植物也影响沼泽湿地CO2排放通量空间变化规律,并且表明沼泽湿地CO2排放通量与水位平均值存在显著负相关。  相似文献   

5.
Soil CO2 concentrations and emissions from tropical forests are modulated seasonally by precipitation. However, subseasonal responses to meteorological events (e.g., storms, drought) are less well known. Here, we present the effects of meteorological variability on short‐term (hours to months) dynamics of soil CO2 concentrations and emissions in a Neotropical wet forest. We continuously monitored soil temperature, moisture, and CO2 for a three‐year period (2015–2017), encompassing normal conditions, floods, a dry El Niño period, and a hurricane. We used a coupled model (Hydrus‐1D) for soil water propagation, heat transfer, and diffusive gas transport to explain observed soil moisture, soil temperature, and soil CO2 concentration responses to meteorology, and we estimated soil CO2 efflux with a gradient‐flux model. Then, we predicted changes in soil CO2 concentrations and emissions under different warming climate change scenarios. Observed short‐term (hourly to daily) soil CO2 concentration responded more to precipitation than to other meteorological variables (including lower pressure during the hurricane). Observed soil CO2 failed to exhibit diel patterns (associated with diel temperature fluctuations in drier climates), except during the drier El Niño period. Climate change scenarios showed enhanced soil CO2 due to warmer conditions, while precipitation played a critical role in moderating the balance between concentrations and emissions. The scenario with increased precipitation (based on a regional model projection) led to increases of +11% in soil CO2 concentrations and +4% in soil CO2 emissions. The scenario with decreased precipitation (based on global circulation model projections) resulted in increases of +4% in soil CO2 concentrations and +18% in soil CO2 emissions, and presented more prominent hot moments in soil CO2 outgassing. These findings suggest that soil CO2 will increase under warmer climate in tropical wet forests, and precipitation patterns will define the intensity of CO2 outgassing hot moments.  相似文献   

6.
In regions characterized by arid seasons, such as the Mediterranean basin, soil moisture is a major driver of ecosystem CO2 efflux during periods of drought stress. Here, a rain event can induce a disproportional respiratory pulse, releasing an amount of CO2 to the atmosphere that may significantly contribute to the annual ecosystem carbon balance. The mechanisms behind this pulse are unclear, and it is still unknown whether it is due to the stimulation of autotrophic, heterotrophic and/or inorganic CO2 fluxes. On the Mediterranean island of Pianosa, eddy flux measurements showed respiratory pulses after rain events following prolonged drought periods, which occurred in the summer of 2003 and 2006. To investigate the mechanisms of this observed enhanced respiration fluxes and partition of the soil CO2 sources, two water manipulation experiments were performed. The first was designed to estimate the effect of soil rewetting on soil CO2 efflux, in the different ecosystem types existing on the island (i.e. woodland, ex‐agricultural and Mediterranean shrubland). The second was a soil CO2 partitioning experiment to investigate the relative contribution of inorganic and organic CO2 sources to soil respiration, under dry and wet soil conditions. Our results suggest that the pulse in the CO2 efflux is primarily due to the enhancement of heterotrophic respiration, likely caused by the degradation of easily decomposable substrates, accumulated in soils during the dry period. In fact, the vegetation at the site was senescent and did not play any significant role in CO2 exchange, as suggested by the absence of diurnal CO2 uptake in eddy covariance measurements. In addition, soil rewetting did not significantly enhance inorganic CO2 efflux.  相似文献   

7.
Isoprene is the most abundant volatile hydrocarbon emitted by many tree species and has a major impact on tropospheric chemistry, leading to formation of pollutants and enhancing the lifetime of methane, a powerful greenhouse gas. Reliable estimates of global isoprene emission from different ecosystems demand a clear understanding of the processes of both production and consumption. Although the biochemistry of isoprene production has been studied extensively and environmental controls over its emission are relatively well known, the study of isoprene consumption in soil has been largely neglected. Here, we present results on the production and consumption of isoprene studied by measuring the following different components: (1) leaf and soil and (2) at the whole ecosystem level in two distinct enclosed ultraviolet light‐depleted mesocosms at the Biosphere 2 facility: a cottonwood plantation with trees grown at ambient and elevated atmospheric CO2 concentrations and a tropical rainforest, under well watered and drought conditions. Consumption of isoprene by soil was observed in both systems. The isoprene sink capacity of litter‐free soil of the agriforest stands showed no significant response to different CO2 treatments, while isoprene production was strongly depressed by elevated atmospheric CO2 concentrations. In both mesocosms, drought suppressed the sink capacity, but the full sink capacity of dry soil was recovered within a few hours upon rewetting. We conclude that soil uptake of atmospheric isoprene is likely to be modest but significant and needs to be taken into account for a comprehensive estimate of the global isoprene budget. More studies investigating the capacity of soils to uptake isoprene in natural conditions are clearly needed.  相似文献   

8.
In the next few decades, climate of the Amazon basin is expected to change, as a result of deforestation and rising temperatures, which may lead to feedback mechanisms in carbon (C) cycling that are presently unknown. Here, we report how a throughfall exclusion (TFE) experiment affected soil carbon dioxide (CO2) production in a deeply weathered sandy Oxisol of Caxiuanã (Eastern Amazon). Over the course of 2 years, we measured soil CO2 efflux and soil CO2 concentrations, soil temperature and moisture in pits down to 3 m depth. Over a period of 2 years, TFE reduced on average soil CO2 efflux from 4.3±0.1 μmol CO2 m−2 s−1 (control) to 3.2±0.1 μmol CO2 m−2 s−1 (TFE). The contribution of the subsoil (below 0.5 m depth) to the total soil CO2 production was higher in the TFE plot (28%) compared with the control plot (17%), and it did not differ between years. We distinguished three phases of drying after the TFE was started. The first phase was characterized by a translocation of water uptake (and accompanying root activity) to deeper layers and not enough water stress to affect microbial activity and/or total root respiration. During the second phase a reduction in total soil CO2 efflux in the TFE plot was related to a reduction of soil and litter decomposers activity. The third phase of drying, characterized by a continuing decrease in soil CO2 production was dominated by a water stress‐induced decrease in total root respiration. Our results contrast to results of a drought experiment on clay Oxisols, which may be related to differences in soil water retention characteristics and depth of rooting zone. These results show that large differences exist in drought sensitivity among Amazonian forest ecosystems, which primarily seem to be affected by the combined effects of texture (affecting water holding capacity) and depth of rooting zone.  相似文献   

9.
Soil carbon dioxide (CO2) emission is one of the largest fluxes in the global carbon cycle. Therefore small changes in the size of this flux can have a large effect on atmospheric CO2 concentrations and potentially constitute a powerful positive feedback to the climate system. Soil CO2 fluxes in the alpine steppe ecosystem of Northern Tibet and their responses to short-term experimental warming were investigated during the growing season in 2011. The results showed that the total soil CO2 emission fluxes during the entire growing season were 55.82 and 104.31 g C m-2 for the control and warming plots, respectively. Thus, the soil CO2 emission fluxes increased 86.86% with the air temperature increasing 3.74°C. Moreover, the temperature sensitivity coefficient (Q 10) of the control and warming plots were 2.10 and 1.41, respectively. The soil temperature and soil moisture could partially explain the temporal variations of soil CO2 fluxes. The relationship between the temporal variation of soil CO2 fluxes and the soil temperature can be described by exponential equation. These results suggest that warming significantly promoted soil CO2 emission in the alpine steppe ecosystem of Northern Tibet and indicate that this alpine ecosystem is very vulnerable to climate change. In addition, soil temperature and soil moisture are the key factors that controls soil organic matter decomposition and soil CO2 emission, but temperature sensitivity significantly decreases due to the rise in temperature.  相似文献   

10.
We examined the effects of growth carbon dioxide (CO2)concentration and soil nutrient availability on nitrogen (N)transformations and N trace gas fluxes in California grasslandmicrocosms during early-season wet-up, a time when rates of Ntransformation and N trace gas flux are high. After plant senescenceand summer drought, we simulated the first fall rains and examined Ncycling. Growth at elevated CO2 increased root productionand root carbon:nitrogen ratio. Under nutrient enrichment, elevatedCO2 increased microbial N immobilization during wet-up,leading to a 43% reduction in gross nitrification anda 55% reduction in NO emission from soil. ElevatedCO2 increased microbial N immobilization at ambientnutrients, but did not alter nitrification or NO emission. ElevatedCO2 did not alter soil emission of N2O ateither nutrient level. Addition of NPK fertilizer (1:1:1) stimulatedN mineralization and nitrification, leading to increased N2Oand NO emission from soil. The results of our study support a mechanisticmodel in which elevated CO2 alters soil N cycling and NOemission: increased root production and increased C:N ratio in elevatedCO2 stimulate N immobilization, thereby decreasingnitrification and associated NO emission when nutrients are abundant.This model is consistent with our basic understanding of how C availabilityinfluences soil N cycling and thus may apply to many terrestrial ecosystems.  相似文献   

11.
Vegetation dynamics plays a critical role in causing the decadal variability of precipitation over the Sahel region of West Africa. However, the potential impact of changes in CO2 concentration on vegetation dynamics and precipitation variability of this region has not been addressed by previous studies. In this paper, we explore the role of CO2 concentration in the regional climate system of West Africa using a zonally symmetric, synchronously coupled biosphere‐atmosphere model. We first document the response of precipitation and vegetation to incremental changes of CO2 concentration; the impact of CO2 concentration on the variability of the regional biosphere‐atmosphere system is then addressed using the second half of the twentieth century as an example. An increase of CO2 concentration causes the regional biosphere‐atmosphere system to become wetter and greener, with the radiative effect of CO2 and improved plant‐water relation dominant in the Sahelian grassland region and the direct enhancement of leaf carbon assimilation dominant in the tree‐covered region to the south. Driven by the observed sea surface temperature (SST) of the tropical Atlantic Ocean during the period 1950–97 and with CO2 concentration prescribed at a pre‐industrial level 300ppmv, the model simulates a persistent Sahel drought during the period of 1960s?1990s. The simulated drought takes place in the form of a transition of the coupled biosphere‐atmosphere system from a wet/green regime in the 1950s to a dry/barren regime after the 1960s. This climate transition is triggered by SST forcing and materialized through vegetation‐climate interactions. The same SST forcing does not produce such a persistent drought when a constant modern CO2 concentration of 350ppmv is specified, indicating that the biosphere‐atmosphere system at higher CO2 level is more resilient to drought‐inducing external forcings. This finding suggests that the regional climate in Sahel, which tends to alternate between dry and wet spells, may experience longer (or more frequent) wet episodes and shorter (or less frequent) dry episodes in the future than in the past. Our study has significant implications regarding the impact of climate change on regional socio‐economic development.  相似文献   

12.
Following a summer drought, intact cores of peat soil from two cool temperate peatlands (a rain-fed bog and a groundwater-fed swamp) were exposed experimentally to three different water table levels. The goal was to examine recovery of anaerobic methanogenesis and to evaluate peat soil decomposition to methane (CH4), carbon dioxide (CO2), and dissolved organic carbon (DOC) upon rewetting. Methane emission from soils to the atmosphere was greatest (mean = 80 μmol m?2 s?1) when the entire peat core was rewetted quickly; emission was negligible at low water level and when peat cores were rewetted gradually. Rates of CO2 emission (mean = 1.0 μmol m?2 s?1) were relatively insensitive to water level. Concentrations of CH4 in soil air spaces suggest that onset of methanogenesis induces, but later represses, aerobic oxidation of CH4 above the water table. Concentrations of CO2 suggest production at the soil surface of swamp peat versus at greater depths in bog peat. Portions of peat soil incubated in vitro without oxygen (O2) exhibited a lag before the onset of methanogenesis, and the lag time was less in peat from the cores rewetted quickly. The inhibition of methanogenesis by the selective inhibitor 2-bromoethanesulfonic acid (BES) decreased CO2 production by 20 to 30% but resulted in an increase in concentrations of DOC by 2 to 5 times. The results show that methanogens in peat soils tolerate moderate drought, and recovery varies among different peat types. In peat soils, the inhibition of methanogenesis might enhance DOC availability.  相似文献   

13.
Changes in precipitation in the Amazon Basin resulting from regional deforestation, global warming, and El Niño events may affect emissions of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and nitric oxide (NO) from soils. Changes in soil emissions of radiatively important gases could have feedback implications for regional and global climates. Here we report results of a large‐scale (1 ha) throughfall exclusion experiment conducted in a mature evergreen forest near Santarém, Brazil. The exclusion manipulation lowered annual N2O emissions by >40% and increased rates of consumption of atmospheric CH4 by a factor of >4. No treatment effect has yet been detected for NO and CO2 fluxes. The responses of these microbial processes after three rainy seasons of the exclusion treatment are characteristic of a direct effect of soil aeration on denitrification, methanogenesis, and methanotrophy. An anticipated second phase response, in which drought‐induced plant mortality is followed by increased mineralization of C and N substrates from dead fine roots and by increased foraging of termites on dead coarse roots, has not yet been detected. Analyses of depth profiles of N2O and CO2 concentrations with a diffusivity model revealed that the top 25 cm soil is the site of most of the wet season production of N2O, whereas significant CO2 production occurs down to 100 cm in both seasons, and small production of CO2 occurs to at least 1100 cm depth. The diffusivity‐based estimates of CO2 production as a function of depth were strongly correlated with fine root biomass, indicating that trends in belowground C allocation may be inferred from monitoring and modeling profiles of H2O and CO2.  相似文献   

14.
由于全球气候变化,预计未来我国亚热带地区干旱频率和持续时间将会增加。森林土壤CO2的释放是陆地生态系统碳循环的重要组成部分,然而,有关不同深度土壤CO2通量对干旱响应的理解仍相当有限。选择武夷山针叶林(Coniferous Forest,CF)和常绿阔叶林(Evergreen Broadleaved Forest,EBF)为研究对象,于2014年6月至2015年12月,采用梯度法计算10、30 cm和50 cm深度各层土壤CO2通量,探讨模拟干旱对其影响。结果表明:CF和EBF样地土壤CO2浓度均随土壤深度的增加而升高。CF和EBF样地对照(CK)处理10 cm深度土壤CO2生产量分别占总CO2生产量的53.5%和55.7%,表明土壤CO2生产量主要来源于浅层土壤,这可能与浅层土壤有高的有机碳含量及细根生物量主要分布区有关。干旱处理使CF和EBF样地不同深度土壤CO2通量均显著减少。在两个样地土壤CO2通量的温度敏感性(Q10)值均随着土壤深度的增加而减少。干旱处理显著减少了CF样地浅层土壤的Q10值(P=0.02),对深层土壤影响不显著(30 cm:P=0.30;50 cm:P=0.23);而在EBF样地干旱处理显著减少了深层土壤的Q10值(30 cm:P=0.02;50 cm:P=0.01),对浅层土壤影响不显著(P=0.32)。  相似文献   

15.
间伐是森林经营的有效措施之一,其能减少林木枯损,有利于林下植被生长和植物种群更新,但也可改变森林小气候,从而影响林地土壤碳释放。以秦岭火地塘林区松栎混交林为研究对象,运用Yasso07模型模拟了不同间伐强度和间伐残留物移除强度下林地土壤CO_2释放。结果表明:(1)针叶树种(油松Pinus tabulaefomis、华山松Pinus armandi)和阔叶树种(锐齿栎Quercus aliena var.acutesrrata)叶凋落物化学组分有较明显差异,针叶树种酒精溶解性化合物(ESC)和水溶性化合物(WSC)含量明显低于阔叶树种,其不溶性化合物(NSC)含量明显高于阔叶树种;(2)凋落物化学组分对林地土壤CO_2释放有显著的影响;(3)在研究两个控制因子中,间伐强度是影响林地土壤CO_2释放的主导因子,间伐后林地土壤CO_2释放量有升高趋势;当间伐强度为12.38%,间伐残留物移除强度为53.18%时,林地土壤CO_2释放量最小,为15.318 Mg hm~(-2)a~(-1)。  相似文献   

16.
Fluxes of CO2 during the snow-covered season contribute to annual carbon budgets, but our understanding of the mechanisms controlling the seasonal pattern and magnitude of carbon emissions in seasonally snow-covered areas is still developing. In a subalpine meadow on Niwot Ridge, Colorado, soil CO2 fluxes were quantified with the gradient method through the snowpack in winter 2006 and 2007 and with chamber measurements during summer 2007. The CO2 fluxes of 0.71 μmol m−2 s−1 in 2006 and 0.86 μmol m−2 s−1 in 2007 are among the highest reported for snow-covered ecosystems in the literature. These fluxes resulted in 156 and 189 g C m−2 emitted over the winter, ~30% of the annual soil CO2 efflux at this site. In general, the CO2 flux increased during the winter as soil moisture increased. A conceptual model was developed with distinct snow cover zones to describe this as well as the three other reported temporal patterns in CO2 flux from seasonally snow-covered soils. As snow depth and duration increase, the factor controlling the CO2 flux shifts from freeze–thaw cycles (zone I) to soil temperature (zone II) to soil moisture (zone III) to carbon availability (zone IV). The temporal pattern in CO2 flux in each zone changes from periodic pulses of CO2 during thaw events (zone I), to CO2 fluxes reaching a minimum when soil temperatures are lowest in mid-winter (zone II), to CO2 fluxes increasing gradually as soil moisture increases (zone III), to CO2 fluxes decreasing as available carbon is consumed. This model predicts that interannual variability in snow cover or directional shifts in climate may result in dramatically different seasonal patterns of CO2 flux from seasonally snow-covered soils.  相似文献   

17.
For many years (1992–2004) monitoring was focused on the features of CO2 emission from agricultural lands contaminated with industrial aerosols emitted by chemical and aluminum plants. The contribution of agroecosystems on different soil types to CO2 release to the atmosphere was evaluated as a function of the anthropogenic load and the nature and level of industrial pollution. CO2 emission from agricultural lands in the zone of local pollution was shown to exceed the direct industrial emissions.  相似文献   

18.
An experimental study to estimate the effect of clear-cutting on CO2 emission from the soil surface was performed using the chamber method. For field measurements, several experimental plots within the clear-cut with different degrees of damage of the upper organic soil layer and different amounts of litter and logging residue on the surface were selected. Soil CO2 fluxes were simultaneously measured both on the clear-cutting plots and on two plots within the spruce forest stand located close to the clear-cut area. The results show a significant seasonal and diurnal variability of soil CO2 emission. It was found that the soil respiration rate varies significantly among plots and depends on the damage to the upper soil layer and the availability of litter and logging residue on the soil surface. It was found that the rate of CO2 emission from soil surface is strongly dependent on the air and soil temperature and moisture of the upper soil layer. Different rates of soil respiration are also revealed on the plots located at different distances from tree trunks within the control forest stand.  相似文献   

19.
We studied the responses of leaf water potential (Ψw), morphology, biomass accumulation and allocation, and canopy productivity index (CPI) to the combined effects of elevated CO2 and drought stress in Caragana intermedia seedlings. Seedlings were grown at two CO2 concentrations (350 and 700 μmol mol−1) interacted with three water regimes (60–70%, 45–55%, and 30–40% of field capacity of soil). Elevated CO2 significantly increased Ψw, decreased specific leaf area (SLA) and leaf area ratio (LAR) of drought-stressed seedlings, and increased tree height, basal diameter, shoot biomass, root biomass as well as total biomass under the all the three water regimes. Growth responses to elevated CO2 were greater in well-watered seedlings than in drought-stressed seedlings. CPI was significantly increased by elevated CO2, and the increase in CPI became stronger as the level of drought stress increased. There were significant interactions between elevated CO2 and drought stress on leaf water potential, basal diameter, leaf area, and biomass accumulation. Our results suggest that elevated CO2 may enhance drought avoidance and improved water relations, thus weakening the effect of drought stress on growth of C. intermedia seedings.  相似文献   

20.
Summary To determine the effects of elevated CO2 and soil moisture status on growth and niche characteristics of birch and maple seedlings, gray birch (Betula populifolia) and red maple (Acer rubrum) were experimentally raised along a soil moisture gradient ranging from extreme drought to flooded conditions at both ambient and elevated atmospheric CO2 levels. The magnitude of growth enhancement due to CO2 was largely contingent on soil moisture conditions, but differently so for maple than for birch seedlings. Red maple showed greatest CO2 enhancements under moderately moist soil conditions, whereas gray birch showed greatest enhancements under moderately dry soil conditions. Additionally, CO2 had a relatively greater ameliorating effect in flooded conditions for red maple than for gray birch, whereas the reverse pattern was true for these species under extreme drought conditions. For both species, elevated CO2 resulted in a reduction in niche breadths on the moisture gradient; 5% for gray birch and 23% for red maple. Species niche overlap (proportional overall) was also lower at elevated CO2 (0.98 to: 0.88: 11%). This study highlights the utility of of experiments crossing CO2 levels with gradients of other resources as effective tools for elucidating the potential consequences of elevated CO2 on species distributions and potential interactions in natural communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号