首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Senescence is accompanied by loss of reproductive functions. Here, we studied reproductive ageing in Drosophila melanogaster males and asked whether the expected decline in male reproductive success is due to diminished functionality of the male accessory gland (AG). The male AG produces the majority of seminal fluid proteins (SFPs) transferred to the female at mating. SFPs induce female postmating changes and are key to male reproductive success. We measured age‐dependent gene expression changes for five representative SFP genes in males from four different age groups ranging from 1 to 6 weeks after eclosion. Simultaneously, we also measured male reproductive success in postmating traits mediated by transfer of these five SFPs. We found a decreased in male SFP gene expression with advancing age and an accompanying decline in male postmating success. Hence, male reproductive senescence is associated with a decline in functionality of the male AG. While overall individual SFP genes decreased in expression, our results point towards the idea that the composition of an ejaculate might change with male age as the rate of change was variable for those five genes.  相似文献   

2.
Explanations for the maintenance of variation in reproductive traits influenced by seminal fluid accessory gland proteins (Acps) in male Drosophila melanogaster include nontransitivity in the outcome of sperm competition and/or condition dependence of the traits involved. We investigated the effects of adult male nutrition (five diets) on the expression of Acp- and sperm- mediated traits. We found novel, nonlinear effects, with females showing lower levels of refractoriness to remating after mating with males held on the lowest and highest yeast diets. There were no significant effects of adult male nutrition on male paternity share, but there was a striking, nonlinear effect on second male progeny production, with males kept on intermediate yeast diets fathering the highest number of offspring. Such "bell shaped" responses of life-history traits to nutrition have only previously been reported for longevity. Consistent with previous reports, males maintained on low protein diets had lower premating success and gained fewer rematings with nonvirgins. We show novel and body size independent effects of adult male nutrition on traits influenced by Acps and sperm, which do not fit current condition-dependent handicap models and can affect the strength of sexual selection acting upon such fitness-related traits.  相似文献   

3.
Ejaculate chemicals transferred from males to females during mating cause significant changes in female behaviour and physiology, but the causes of phenotypic variation in these responses is little understood. We tested here the effect of adult female nutrition on the response of female Drosophila melanogaster to a specific ejaculate component, the sex peptide (SP), which is of interest because of its effects on female egg laying, sexual receptivity, feeding rate, immune responses and potential role in mediating sexual conflict. We exposed adult females to five different diets and kept them continuously with males that did or did not transfer SP. Diet altered the presence, magnitude and sign of the effects of SP on different phenotypic traits (egg laying, receptivity and lifespan) and different traits responded in different ways. This showed that the set of responses to mating can be uncoupled and can vary independently in different environments. Importantly, diet also significantly affected whether exposure to SP transferring males was beneficial or costly to females, with beneficial effects occurring more often than expected. Hence, the food environment can also shape significantly the strength and direction of selection on mating responses.  相似文献   

4.
Selective pressure arising from sperm competition has been predicted to influence evolutionary and behavioural adjustment of ejaculate investment, but also may influence developmental adjustment of ejaculate investment. Immature males able to target resources strategically based on the competitive environment they will experience when they become sexually mature should be at a selective advantage. In our study we investigated how the presence of potential competitors or mates affects ejaculate and testes investment during development in the cockroach Nauphoeta cinerea, a species where males control female remating via their ejaculate size (large spermatophores prevent females from remating and therefore function to avoid sperm competition for males) and females store sperm. Our aim was to determine whether the social environment influences developmental adjustment of ejaculate investment and the relative importance of ejaculate components with different functions; avoidance of or engagement in sperm competition. We conclude that the social environment can influence developmental and behavioural flexibility in specific ejaculate components that may function to avoid or engage in sperm competition.  相似文献   

5.
Competition between males creates potential for pre‐ and postcopulatory sexual selection and conflict. Theory predicts that males facing risk of sperm competition should evolve traits to secure their reproductive success. If those traits are costly to females, the evolution of such traits may also increase conflict between the sexes. Conversely, under the absence of sperm competition, one expectation is for selection on male competitive traits to relax thereby also relaxing sexual conflict. Experimental evolution studies are a powerful tool to test this expectation. Studies in multiple insect species have yielded mixed and partially conflicting results. In this study, we evaluated male competitive traits and male effects on female costs of mating in Drosophila melanogaster after replicate lines evolved for more than 50 generations either under enforced monogamy or sustained polygamy, thus manipulating the extent of intrasexual competition between males. We found that in a setting where males competed directly with a rival male for access to a female and fertilization of her ova polygamous males had superior reproductive success compared to monogamous males. When comparing reproductive success solely in double mating standard sperm competition assays, however, we found no difference in male sperm defense competitiveness between the different selection regimes. Instead, we found monogamous males to be inferior in precopulatory competition, which indicates that in our system, enforced monogamy relaxed selection on traits important in precopulatory rather than postcopulatory competition. We discuss our findings in the context of findings from previous experimental evolution studies in Drosophila ssp. and other invertebrate species.  相似文献   

6.
Female Drosophila melanogaster frequently mate with multiple males, and the success of a given male depends not only on his genotype but also on the genotype of his competitor. Here, we assess how natural genetic variation affects male–male interactions for traits influencing pre‐ and postcopulatory sexual selection. Males from a set of 66 chromosome substitution lines were competed against each other in a ‘round‐robin’ design, and paternity was scored using bulk genotyping. We observed significant effects of the genotype of the first male to mate, the second male to mate and an interaction between the males for measures of male mating rate and sperm utilization. We also identified specific combinations of males who show nontransitive patterns of reproductive success and engage in ‘rock‐paper‐scissors’ games. We then tested for associations between 245 polymorphisms in 32 candidate male reproductive genes and male reproductive success. We identified eight polymorphisms in six reproductive genes that associate with male reproductive success independent of the competitor (experimentwise < 0.05). We also identified four SNPs in four different genes where the relative reproductive success of the alternative alleles changes depending on the competing males' genetic background (experimentwise < 0.05); two of these associations include premature stop codons. This may be the first study that identifies the genes contributing to nontransitivity among males and further highlights that ‘rock‐paper‐scissors’ games could be an important evolutionary force maintaining genetic variation in natural populations.  相似文献   

7.
Despite its central role in post-copulatory sexual selection, the female reproductive tract is poorly understood. Here we provide the first experimental study of the adaptive significance of variation in female sperm-storage organ morphology. Using populations of Drosophila melanogaster artificially selected for longer or shorter seminal receptacles, we identify relationships between the length of this primary sperm-storage organ and the number of sperm stored, pattern of progeny production, rate of egg fertilization, remating interval, and pattern of sperm precedence. Costs and benefits of relatively short or long organs were identified. Benefits of longer receptacles include increased sperm-storage capacity and thus progeny production from a single insemination. Results suggest that longer receptacles have not naturally evolved because of developmental time costs and a correlated reduction in longevity of mated females. This latter cost may be a consequence of sexual conflict mediated by ejaculate toxicity. Receptacle length did not alter the pattern of sperm precedence, which is consistent with data on the co-evolution of sperm and female receptacle length, and a pattern of differential male fertilization success being principally determined by the interaction between these male and female traits.  相似文献   

8.
Understanding the evolution of polyandry (mating with multiple males) is a major issue in the study of animal breeding systems. We examined the adaptive significance of polyandry in Drosophila melanogaster, a species with well-documented costs of mating in which males generally cannot force copulations. We found no direct fitness advantages of polyandry. Females that mated with multiple males had no greater mean fitness and no different variance in fitness than females that mated repeatedly with the same male. Subcomponents of reproductive success, including fecundity, egg hatch rate, larval viability, and larval development time, also did not differ between polyandrous and monogamous females. Polyandry had no affect on progeny sex ratios, suggesting that polyandry does not function against costly sex-ratio distorters. We also found no evidence that polyandry functions to favor the paternity of males successful in precopulatory sexual selection. Experimentally controlled opportunities for precopulatory sexual selection had no effect on postcopulatory sperm precedence. Although these results were generally negative, they are supported with substantial statistical power and they help narrow the list of evolutionary explanations for polyandry in an important model species.  相似文献   

9.
In many species, the physical act of mating and exposure to accessory gland proteins (Acps) in male seminal fluid reduces female survival and offspring production. It is not clear what males gain from harming their sexual partners or why females mate frequently despite being harmed. Using sterile strains of Drosophila melanogaster that differ in their production of Acps, we found that both the physical act of mating and exposure to male seminal fluid in mothers increase the fitness of daughters. We show that the changes in daughter fitness are mediated by parental effects, not by sexual selection involving good genes or owing to variation in maternal egg production. These results support the idea that male harm of females might partly evolve through cross-generational fitness benefits.  相似文献   

10.
In Drosophila, long sperm are favoured in sperm competition based on the length of the female's primary sperm storage organ, the seminal receptacle (SR). This sperm–SR interaction, together with a genetic correlation between the traits, suggests that the coevolution of exaggerated sperm and SR lengths may be driven by Fisherian runaway selection. Here, we explore the costs and benefits of long sperm and SR genotypes, both in the sex that carries them and in the sex that does not. We measured male and female fitness in inbred lines of Drosophila melanogaster derived from four populations previously selected for long sperm, short sperm, long SRs or short SRs. We specifically asked: What are the costs and benefits of long sperm in males and long SRs in females? Furthermore, do genotypes that generate long sperm in males or long SRs in females impose a fitness cost on the opposite sex? Answers to these questions will address whether long sperm are an honest indicator of male fitness, male post‐copulatory success is associated with male precopulatory success, female choice benefits females or is costly, and intragenomic conflict could influence evolution of these traits. We found that both sexes have increased longevity in long sperm and long SR genotypes. Males, but not females, from long SR lines had higher fecundity. Our results suggest that sperm–SR coevolution is facilitated by both increased viability and indirect benefits of long sperm and SRs in both sexes.  相似文献   

11.
Sperm competition theory suggests that female remating rate determines the selective regime that dictates the evolution of male ejaculate allocation. To test for correlated evolution between female remating behaviour and male ejaculate traits, we subjected detailed experimental data on female and male reproductive traits in seven-seed beetle species to phylogenetic comparative analyses. The evolution of a larger first ejaculate was positively correlated with the evolution of a more rapid decline in ejaculate size over successive matings. Further, as predicted by theory, an increase in female remating rate correlated with the evolution of larger male testes but smaller ejaculates. However, an increase in female remating was associated with the evolution of a less even allocation of ejaculate resources over successive matings, contrary to classic sperm competition theory. We failed to find any evidence for coevolution between the pattern of male ejaculate allocation and variation in female quality and we conclude that some patterns of correlated evolution are congruent with current theory, whereas some are not. We suggest that this may reflect the fact that much sperm competition theory does not fully incorporate other factors that may affect the evolution of male and female traits, such as trade-offs between ejaculate expenditure and other competing demands and the evolution of resource acquisition.  相似文献   

12.
Recently published evidence based on cytological staining indicates that sperm die rapidly after being stored in female Drosophila melanogaster. However, measuring sperm death in this way has a potential artifact: the death of sperm owing to the extraction, mounting, and staining of sperm. Here we use a protocol that bypasses all of these potential extraneous mortality factors to test the hypothesis that there is high mortality of stored sperm in D. melanogaster. Contrary to the findings from cytological staining, our data indicates that mortality of stored sperm is quite low.  相似文献   

13.
In many species, males have the capacity to directly influence (either positively or negatively) the fitness of their mates and offspring, not only via parental care contributions and/or precopulatory resource provisioning, but also via the post‐copulatory activity of those substances passed on to their mates in their ejaculates. Here, we examine how an individual male's identity may be related to phenotypic variation in short‐term female fecundity in the model species, Drosophila melanogaster. The effect of male identity on short‐term fecundity stimulation of females was repeatable across time and accounted for over a fifth of the total observed phenotypic variation in fecundity in two independent populations. The functional explanations for these results and the implications for our understanding of the factors that contribute to the adaptive significance of mating preferences and/or sexual conflict are discussed.  相似文献   

14.
15.
16.
Sperm competition theory has traditionally focused on how male allocation responds to female promiscuity, when males compete to fertilize a single clutch of eggs. Here, we develop a model to ask how female sperm use and storage across consecutive reproductive events affect male ejaculate allocation and patterns of mating and paternity. In our model, sperm use (a single parameter under female control) is the main determinant of sperm competition, which alters the effect of female promiscuity on male success and, ultimately, male reproductive allocation. Our theory reproduces the general pattern predicted by existing theory that increased sperm competition favors increased allocation to ejaculates. However, our model predicts a negative correlation between male ejaculate allocation and female promiscuity, challenging the generality of a prevailing expectation of sperm competition theory. Early models assumed that the energetic costs of precopulatory competition and the level of sperm competition are both determined by female promiscuity, which leads to an assumed covariation between these two processes. By modeling precopulatory costs and sperm competition independently, our theoretical framework allows us to examine how male allocation should respond independently to variation in sperm competition and energetic trade‐offs in mating systems that have been overlooked in the past.  相似文献   

17.
When ejaculates are costly to produce, males are expected to allocate their ejaculate resources over successive matings in a manner that optimizes their reproductive success and this may have important consequences for their mates. In seed beetles (Coleoptera; Bruchidae), ejaculates vary in size across species from weighing less than 1%, up to as much as 8%, of male body weight. Ejaculates contain not only sperm but also a range of additional substances and females in some species gain benefits from receiving large ejaculates. Male ejaculate allocation may thus affect female fitness. Here, we first characterized the pattern of male ejaculate allocation over successive matings in seven-seed beetle species. We then assessed how this allocation affected female fitness in each species. Although females generally benefited from receiving large ejaculates, the interspecific variation observed both in ejaculate allocation patterns and in their effects on female fitness was remarkably large considering that the species studied are closely related. Our analyses suggest that variation in ejaculate composition is the key, both within and across species. We discuss possible causes for this variation and conclude that coevolution between male ejaculates and female utilization of ejaculate substances has apparently been rapid in this clade.  相似文献   

18.
The male ejaculate is made up of two components: sperm and non-sperm. There has been little consideration of how these two basic compartments evolve. If they are subject to trade-offs, theory predicts that when the sperm competition raffle is unfair, when seminal fluid proteins stimulate fecundity and/or when ejaculate components alter fertilization success, there will be differential selection on sperm versus non-sperm ejaculate characteristics. However, the fundamental assumption that there are trade-offs between sperm and non-sperm ejaculate compartments in Drosophila has not yet been tested. To address this, we examined testis (sperm producing) and accessory gland (non-sperm producing) size across 22 species of Drosophila . We also examined how these characters varied with copulation duration, which may represent an additional target for sperm competition. The results showed no evidence of a trade-off between testis length and accessory gland length. Copulation duration correlated negatively with accessory gland length and there was a positive correlation with testis length, but only after correcting for body size. Overall, the results suggest no evidence for gross trade-offs in sperm versus non-sperm compartments across these Drosophila species, and motivate more detailed examination of ejaculate investment patterns.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 505–512.  相似文献   

19.
Theory predicts that males adapt to sperm competition by increasing their investment in testis mass to transfer larger ejaculates. Experimental and comparative data support this prediction. Nevertheless, the relative importance of sperm competition in testis size evolution remains elusive, because experiments vary only sperm competition whereas comparative approaches confound it with other variables, in particular male mating rate. We addressed the relative importance of sperm competition and male mating rate by taking an experimental evolution approach. We subjected populations of Drosophila melanogaster to sex ratios of 1:1, 4:1, and 10:1 (female:male). Female bias decreased sperm competition but increased male mating rate and sperm depletion. After 28 generations of evolution, males from the 10:1 treatment had larger testes than males from other treatments. Thus, testis size evolved in response to mating rate and sperm depletion, not sperm competition. Furthermore, our experiment demonstrated that drift associated with sex ratio distortion limits adaptation; testis size only evolved in populations in which the effect of sex ratio bias on the effective population size had been compensated by increasing the numerical size. We discuss these results with respect to reproductive evolution, genetic drift in natural and experimental populations, and consequences of natural sex ratio distortion.  相似文献   

20.
While early models of ejaculate allocation predicted that both relative testes and ejaculate size should increase with sperm competition intensity across species, recent models predict that ejaculate size may actually decrease as testes size and sperm competition intensity increase, owing to the confounding effect of potential male mating rate. A recent study demonstrated that ejaculate volume decreased in relation to increased polyandry across bushcricket species, but testes mass was not measured. Here, we recorded testis mass for 21 bushcricket species, while ejaculate (ampulla) mass, nuptial gift mass, sperm number and polyandry data were largely obtained from the literature. Using phylogenetic-comparative analyses, we found that testis mass increased with the degree of polyandry, but decreased with increasing ejaculate mass. We found no significant relationship between testis mass and either sperm number or nuptial gift mass. While these results are consistent with recent models of ejaculate allocation, they could alternatively be driven by substances in the ejaculate that affect the degree of polyandry and/or by a trade-off between resources spent on testes mass versus non-sperm components of the ejaculate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号