首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
1. The insect Heliothis subflexa Guenée is a specialist on plants in the genus Physalis. In the present study, the physical response of Physalis leaves to egg deposition by H. subflexa is described. 2. It was observed that the leaves of Physalis plants respond to the eggs of H. subflexa, while co‐occurring non‐host plants do not. Leaves of Physalis angulata L. and Physalis pubescens L. respond to H. subflexa eggs by the formation of (i) necrotic tissue, (ii) undifferentiated cells that form a bump (neoplasm) under the eggs of this herbivore, or (iii) both types of responses. 3. Greenhouse experiments showed that 64% of eggs laid on P. angulata elicited a response, and that a response to an egg decreased the probability of hatching. Further experiments in the field with P. angulata showed that the mean response to eggs by leaves was 31%, and that this response increased as temperature increased. Field experiments also confirmed that a plant response to an egg decreased the probability of hatching and increased the probability of removal from the plant by physical dislodgement or predation. 4. Eggs that elicited a response had a 25% lower probability of hatching and a 28% lower probability of remaining on the plant, resulting in an average fitness cost of 19.3% for H. subflexa. This is the first study to show an induced direct physical defence of a plant against eggs of a noctuid moth.  相似文献   

2.
1.  There are myriad ways in which pollinators and herbivores can interact via the evolutionary and behavioural responses of their host plants.
2.  Given that both herbivores and pollinators consume and are dependent upon plant-derived nutrients and secondary metabolites, and utilize plant signals, plant chemistry should be one of the major factors mediating these interactions.
3.  Here we build upon a conceptual framework for understanding plant-mediated interactions of pollinators and herbivores. We focus on plant chemistry, in particular plant volatiles and aim to unify hypotheses for plant defence and pollination. We make predictions for the evolutionary outcomes of these interactions by hypothesizing that conflicting selection pressures from herbivores and pollinators arise from the constraints imposed by plant chemistry.
4.  We further hypothesize that plants could avoid conflicts between pollinator attraction and herbivore defence through tissue-specific regulation of pollinator reward chemistry, as well as herbivore-induced changes in flower chemistry and morphology.
5.  Finally, we test aspects of our predictions in a case study using a wild tomato species, Solanum peruvianum , to illustrate the diversity of tissue-specific and herbivore-induced differences in plant chemistry that could influence herbivore and pollinator behaviour, and plant fitness.  相似文献   

3.
Marr DL  Pellmyr O 《Oecologia》2003,136(2):236-243
The long-term persistence of obligate mutualisms (over 40 Mya in both fig/fig wasps and yucca/yucca moths) raises the question of how one species limits exploitation by the other species, even though there is selection pressure on individuals to maximize fitness. In the case of yuccas, moths serve as the plant's only pollinator, but eggs laid by the moths before pollination hatch into larvae that consume seeds. Previous studies have shown that flowers with high egg loads are more likely to abscise. This suggests that yucca flowers can select against moths that lay many eggs per flower through selective abscission of flowers; however, it is not known how yucca moths trigger floral abscission. We tested how the moth Tegeticula yuccasella triggers floral abscission during oviposition in Yucca filamentosa by examining the effects of ovipositor insertion and egg laying on ovule viability and floral abscission. Eggs are not laid at the site of ovipositor insertion: we used this separation to test whether wounded ovules were more closely associated with the ovipositor site or an egg's location. Using a tetrazolium stain to detect injured ovules, we determined whether the number of ovipositions affected the number of wounded ovules in naturally pollinated flowers. Two wounding experiments were used to test the effect of mechanical damage on the probability of floral abscission. The types of wounds in these experiments mimicked two types of oviposition-superficial oviposition in the ovary wall and oviposition into the locular cavity-that have been observed in species of Tegeticula. The effect of moth eggs on ovule viability was experimentally tested by culturing ovules in vitro, placing moth eggs on the ovules, and measuring changes in ovule viability with a tetrazolium stain. We found that ovules were physically wounded during natural oviposition. Ovules showed a visible wounding response in moth-pollinated flowers collected 7-12 h after oviposition. Exact location of wounded ovules relative to eggs and oviposition scars, as well as results from the artificial wounding experiments, showed that the moth ovipositor inflicts mechanical damage on the ovules. Significantly higher abscission rates were observed in artificially wounded flowers in which only 4-8% of the ovules were injured. Eggs did not affect ovule viability as measured by the tetrazolium stain. These results suggest that physical damage to ovules caused by ovipositing is sufficient to explain selective fruit abscission. Whether injury as a mechanism of selective abscission in yuccas is novel or a preadaptation will require further study.  相似文献   

4.
This study investigated the olfactory responses of 3 thrips species [Frankliniella schultzei Trybom, F. occidentalis Pergrande and Thrips tabaci Lindeman (Thysanoptera: Thripidae)] to cotton seedlings [Gossypium hirsutum L. (Malvales: Malvaceae)] simultaneously damaged by different combinations of herbivores. Cotton seedlings were damaged by foliar feeding Tetranychus urticae Koch (Trombidiforms: Tetranychidae), Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), Aphis gossypii Glover (Hemiptera: Aphididae) or root feeding Tenebrio molitor L. (Coleoptera: Tenebrionidae). Thrips responses to plants simultaneously damaged by 2 species of herbivore were additive and equivalent to the sum of the responses of thrips to plants damaged by single herbivore species feeding alone. For example, F. occidentalis was attracted to T. urticae damaged plants but more attracted to undamaged plants than to plants damaged by H. armigera. Plants simultaneously damaged by low densities of T. urticae and H. armigera repelled F. occidentalis but as T. urticae density increased relative to H. armigera density, F. occidentalis attraction to coinfested plants increased proportionally. Thrips tabaci did not discriminate between undamaged plants and plants damaged by H. armigera but were attracted to plants damaged by T. urticae alone or simultaneously damaged by T. urticae and H. armigera. Olfactometer assays showed that simultaneous feeding by 2 herbivores on a plant can affect predator–prey interactions. Attraction of F. occidentalis to plants damaged by its T. urticae prey was reduced when the plant was simultaneously damaged by H. armigera, T. molitor, or A. gossypii and F. schultzei was more attracted to plants simultaneously damaged by T. urticae and H. armigera than to plants damaged by T. urticae alone. We conclude that plant responses to feeding by 1 species of herbivore are affected by responses to feeding by other herbivores. These plant‐mediated interactions between herbivore complexes affect the behavioral responses of thrips which vary between species and are highly context dependent.  相似文献   

5.
Herbivory has long been recognized as a significant driver of plant population dynamics, yet its effects along environmental gradients are unclear. Understanding how weather modulates plant–insect interactions can be particularly important for predicting the consequences of exotic insect invasions, and an explicit consideration of weather may help explain why the impact can vary greatly across space and time. We surveyed two native prickly pear cactus species (genus Opuntia) in the Florida panhandle, USA, and their specialist insect herbivores (the invasive South American cactus moth, Cactoblastis cactorum, and three native insect species) for five years across six sites. We used generalized linear mixed models to assess the impact of herbivory and weather on plant relative growth rate (RGR) and sexual reproduction, and we used Fisher's exact test to estimate the impact of herbivory on survival. Weather variables (precipitation and temperature) were consistently significant predictors of vital rate variation for both cactus species, in contrast to the limited and varied impacts of insect herbivory. Weather only significantly influenced the impact of herbivory on Opuntia humifusa fruit production. The relationships of RGR and fruit production with precipitation suggest that precipitation serves as a cue in determining the trade‐off in the allocation of resources to growth or fruit production. The presence of the native bug explained vital rate variation for both cactus species, whereas the invasive moth explained variation only for Ostricta. Despite the inconsistent effect of herbivory across vital rates and cactus species, almost half of Ostricta plants declined in size, and the invasive insect negatively affected RGR and fruit production. Given that fruit production was strongly size‐dependent, this suggests that Ostricta populations at the locations surveyed are transitioning to a size distribution of predominantly smaller sizes and with reduced sexual reproduction potential.  相似文献   

6.
刘慧  许再福  黄寿山 《生态学报》2007,27(12):5421-5426
采用高效液相色谱分析方法,通过测定葫芦素B含量的变化,探讨黄足黄守瓜与南瓜之间在时间上的化学诱导关系。虫害和机械损伤均能引起南瓜子叶中的葫芦素B含量围绕着对照水平上、下波动的变化。但是,这两种因素所引起的葫芦素B含量变化的规律有较大的不同。黄足黄守瓜的为害相对于机械损伤诱导葫芦素B合成的差异主要表现在3个方面:首先,反应速度比较快。如叶部处理中,虫害株在虫害后1h葫芦素B含量已有了显著升高,而机械损伤株葫芦素B含量此时不仅没有升高,反而有下降趋势,在1.5h才有所升高。其次,反应程度比较大,即虫害株葫芦素B的最大诱导量显著大于机械损伤株的。最后,诱导反应持续的时间比较长,即是说虫害株结束诱导反应的时间要明显长于机械损伤株的。另外,即使被处理的是南瓜茎部,其子叶中葫芦素B含量也发生了变化,而且变化趋势与叶部被处理的具有相似性,证明虫害和机械损伤都能系统诱导被害南瓜合成葫芦素B。此外,实验结果还显示虫害株未被害叶葫芦素B的含量比被害叶的高。  相似文献   

7.
Crop plant compensation for herbivory and the population dynamics of herbivores are two key elements in defining an herbivore's pest status. We studied the dynamics of natural, unmanipulated populations of the aphid Aphis gossypii on seedling plantings of cotton, Gossypium hirsutum and Gossypium barbadense, over a 4-year period in California's Central Valley. Aphid populations colonized all plantings, but reached densities in excess of 0.5 aphids/leaf during only one year (1991), when outbreaks occurred. Outbreak populations were, however, ephemeral; predation and parasitism suppressed aphid populations prior to the initiation of flower bud production, when cotton plant growth may become photosynthate-limited. Effective natural biological control was observed despite the action of hyperparasitoids and the heavy mortality of immature parasitoids that occurred when predators consumed parasitized aphids.We conducted manipulative experiments during 1991 and 1992 to quantify the ability of pre-reproductive G. hirsutum to compensate for aphid herbivory. In 1991 aphid populations in the high-damage treatment reached densities as high as any observed naturally during the past 37 years. Damage symptoms were severe: leaf area was reduced by up to 58% and total above-ground plant biomass was reduced by 45%. By the time of crop harvest, however, plants had compensated fully for the early damage in each of the three traits that define cotton's economic value: the timing of crop maturation, the yield of cotton fiber, and the quality of cotton fiber. Aphid feeding damage did, however, produce some changes in plant architecture that persisted throughout the growing season, including a decrease in the number of vegetative branches. In 1992 aphid populations and associated damage were much lighter, but the qualitative responses to herbivory were consistent with those observed in 1991. Plant compensation for early damage was complete for economically significant measures, and vegetative branch production was again suppressed in mature cotton plants. There was no evidence for a change in the suitability of G. hirsutum as a host plant for A. gossypii as a result of early damage (induced resistance).We conclude that pre-reproductive G. hirsutum, which has not yet begun strong allocations to reproductive structures or established architectural complexity, has retained effective means of compensating for herbivory. In contrast to other systems exhibiting strong compensation, G. hirsutum appears to compensate in part by enhancing apical dominance. The recognition of early-season A. gossypii as non-pests is critical to the sustainability of cotton production, because it will allow growers to forego pesticide applications that accelerate the evolution of pesticide-resistance and disrupt natural communities of predators and parasitoids.Deceased, formerly at the Shafter Research Station, 17053 Shafter Ave., Shafter, CA 93263, USA  相似文献   

8.
The enemy release hypothesis posits that non‐native plant species may gain a competitive advantage over their native counterparts because they are liberated from co‐evolved natural enemies from their native area. The phylogenetic relationship between a non‐native plant and the native community may be important for understanding the success of some non‐native plants, because host switching by insect herbivores is more likely to occur between closely related species. We tested the enemy release hypothesis by comparing leaf damage and herbivorous insect assemblages on the invasive species Senecio madagascariensis Poir. to that on nine congeneric species, of which five are native to the study area, and four are non‐native but considered non‐invasive. Non‐native species had less leaf damage than natives overall, but we found no significant differences in the abundance, richness and Shannon diversity of herbivores between native and non‐native Senecio L. species. The herbivore assemblage and percentage abundance of herbivore guilds differed among all Senecio species, but patterns were not related to whether the species was native or not. Species‐level differences indicate that S. madagascariensis may have a greater proportion of generalist insect damage (represented by phytophagous leaf chewers) than the other Senecio species. Within a plant genus, escape from natural enemies may not be a sufficient explanation for why some non‐native species become more invasive than others.  相似文献   

9.
Feeding behavior of three leafhopper species – Erythroneura vitis (Harris), Erythroneura ziczac (Walsh), and Erythroneura elegantula (Say) (Hemiptera: Cicadellidae) – reared on grapevine, Vitis vinifera L. cv. ‘Seyval blanc’ (Vitaceae), was investigated using histological techniques and DC‐electrical penetration graphs (DC‐EPG). Histological studies revealed that the Erythroneura species induced white stipples on the leaves and that these leafhoppers produced thin salivary sheaths in grapevine leaf tissues. The DC‐EPG system allowed the characterization of five waveforms associated with stylet penetration and feeding in leaf tissues. These waveforms were characteristic of feeding phases corresponding to epidermis penetration pathway, salivation, and ingestion. We calculated 28 parameters (e.g., number of probes, duration of phases, and time spent in the various tissues) to describe and compare the feeding behavior of the Erythroneura species. We conclude that the three Erythroneura species are mainly mesophyll feeders but may probably also feed in other tissues such as xylem.  相似文献   

10.
盆栽榕树蓟马种类及优势种榕管蓟马对寄主植物的致害性   总被引:2,自引:0,他引:2  
为明确盆栽榕树蓟马的种类, 了解蓟马优势种对在同一温室内混合种植的榕属及非榕属盆栽植物的致害性差异, 以福建漳州、 福州和泉州等地的盆栽榕树种植基地为观测点, 采集榕树叶片, 调查蓟马种类, 确定优势种蓟马; 以天南星科喜林芋属、 紫葳科菜豆树属、 木棉科瓜栗属和桑科榕属等不同科属盆栽植物为试验材料, 测试榕管蓟马Gynaikothrips uzeli Zimmerman对寄主植物的致害性。结果表明: 盆栽榕树蓟马种类有2亚目, 2科, 8属, 9种, 优势种为榕管蓟马, 常见种为棘腿管蓟马Androthrips ramachandrai Karny和榕腿管蓟马Mesothrips jordani Zimmermann, 其他6种蓟马均为偶见种。榕管蓟马对不同寄主植物的致害性差异显著, 以对桑科榕属植物致害性为最强, 而对天南星科喜林芋属、 紫葳科菜豆树属和木棉科瓜栗属等其他植物的致害性较弱。在6种榕属植物中, 榕管蓟马对垂叶榕Ficus benjamina Linn.、 榕树F. microcarpa Linn. f.、 花叶垂叶榕F. benjamina cv. Golden Princess等3种榕属植物的为害等级均达3级以上, 以垂叶榕最重, 榕树次之, 花叶垂叶榕略轻; 对金叶榕F. microcarpa cv. Golden Leaves、 黑叶橡胶榕F. elastica cv. Deocora Burgundy、 斑叶橡胶榕F. elastica var. variegata等3种榕属植物的为害很轻, 为害等级均仅为1级; 同时, 榕管蓟马在金叶榕、 黑叶橡胶榕和斑叶橡胶榕上繁殖力弱、 无法完成世代, 而在榕树、 垂叶榕和花叶垂叶榕上繁殖力强、 能完成世代, 但以在垂叶榕上的发育情况最好。研究可为选择利用寄主植物抗虫性来有效防控盆栽榕树蓟马提供技术支撑。  相似文献   

11.
  • 1 The vine weevil Otiorhynchus sulcatus is a major pest of horticultural crops worldwide, with root‐feeding larvae causing most damage. Adult oviposition aboveground may therefore influence levels of damage as the larvae are relatively immobile after oviposition.
  • 2 The present study investigated feeding and oviposition behaviour on red raspberry Rubus idaeus using intact plants, ensuring that choices reflected the realistic differences in cultivar appearance and chemical composition. Previous studies investigating vine weevil feeding and oviposition on other crops have used excised plant material, which may inadvertently influence behaviour.
  • 3 Adult weevils significantly preferred to feed on particular cultivars in the choice experiment (e.g. Tulameen), although they consumed significantly more foliage (0.22–1.03 cm2/day) on different raspberry cultivars (e.g. Glen Moy, Glen Rosa and a wild accession) in no‐choice situations.
  • 4 In choice experiments, weevils tended to avoid laying eggs on some cultivars (e.g. Glen Moy and the wild accession). The number of eggs laid (1.91–4.32 eggs per day) did not, however, differ significantly between the cultivars in a no‐choice situation. Foliar nitrogen and magnesium concentrations were positively, although weakly, correlated with the total number of eggs laid.
  • 5 The present study highlights the importance of considering both choice and no‐choice tests when assessing crop susceptibility to attack because weevils may avoid feeding on certain cultivars (e.g. Glen Moy) when given a choice, although this would cause significant damage to such cultivars if they were grown in monoculture (i.e. when there is no alternative).
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号