首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was conducted to examine whether Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) can colonize grapevine leaf tissues and subsequently confer protection against downy mildew caused by Plasmopara viticola (Berk. and Curt.) Berl. and de Toni. Following the foliar inoculation of plants with conidial suspensions of selected B. bassiana strains, colonization of leaves by the fungus was determined using culture-based and PCR techniques at different time intervals. Seven days following B. bassiana inoculation, grapevine plants were challenged with P. viticola and symptoms were assessed by calculating the disease incidence and severity. Although all tested strains were able to colonize grapevine plants, percent colonization differed significantly among strains. Disease incidence and severity were, on the other hand, significantly reduced in B. bassiana-inoculated plants compared to control plants irrespective of strain. This study is one of very few studies investigating the promising role B. bassiana could play as a plant disease antagonist.  相似文献   

2.
To determine biologically important effects of the cytoplasmic endosymbiont Wolbachia, two substrains of the same Drosophila melanogaster strain have been studied, one of them infected with Wolbachia and the other treated with tetracycline to eliminate the bacterium. Females of D. melanogaster infected with Wolbachia are more resistant to the fungus Blauveria bassiana (an insect pathogen) than uninfected females; infected females also exhibited changes in oviposition substrate preference. Males infected with the bacterium are more competitive than uninfected males. The possible role of Wolbachia in the formation of alternative ecological strategies of D. melanogaster is discussed.  相似文献   

3.
The gene encoding the xlnR xylanolytic activator of the heterologous fungus Aspergillus niger was incorporated into the Penicillium canescens genome. Integration of the xlnR gene resulted in the increase in a number of activities, i.e. endoxylanase, β-xylosidase, α-L-arabinofuranosidase, α-galactosidase, and feruloyl esterase, compared to the host P. canescens PCA 10 strain, while β-galactosidase, β-glucosidase, endoglucanase, and CMCase activities remained constant. Two different expression constructs were developed. The first consisted of the nucleotide sequence containing the mature P. canescens phytase gene under control of the axhA promoter region gene encoding A. niger (1,4)-β-D-arabinoxylan-arabinofuranohydrolase. The second construct combined the P. canescens phytase gene and the bgaS promoter region encoding homologous β-galactosidase. Both expression cassettes were transformed into P. canescens host strain containing xlnR. Phytase synthesis was observed only for strains with the bgaS promoter on arabinose-containing culture media. In conclusion, the bgaS and axhA promoters were regulated by different inducers and activators in the P. canescens strain containing a structural tandem of the axhA promoter and the gene of the xlnR xylanolytic activator.  相似文献   

4.
Anagrus nilaparvatae (Pang et Wang) (Hymenoptera: Mymaridae), is an egg parasitoid of rice planthoppers, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). This study evaluated effects of the insecticide imidacloprid on orientation behavior and parasitizing capacity of A. nilaparvatae. Sub-lethal concentrations of imidacloprid (LC20 and LC10) disrupted the foraging ability of A. nilaparvatae exposed to imidacloprid through contact or oral routes. Some survivors did not respond to volatiles from N. lugens-infested plants. Responsive individuals were equally attracted to volatiles from N. lugens-infested and healthy plants. Volatiles emitted from rice plants treated with a low concentration of imidacloprid were more attractive to A. nilaparvatae than those from plants treated with a high concentration of imidacloprid. Parasitism of N. lugens by A. nilaparvatae that survived contact with sub-lethal concentrations of imidacloprid did not decrease significantly. When A. nilaparvatae were fed imidacloprid-honey mixture, parasitism rates were 1.49% and 0%, respectively, significantly lower than those of the control (9.58%). Parasitism of N. lugens eggs in high concentration of imidacloprid treated rice plants by A. nilaparvatae decreased significantly. These effects involving disturbed foraging ability and reduced parasitizing capacity of A. nilaparvatae indicated that imidacloprid could decrease the performance of this parasitoid.  相似文献   

5.

Aims

To identify Rhizobium strains’ ability to biocontrol Sclerotium rolfsii, a fungus that causes serious damage to the common bean and other important crops, 78 previously isolated rhizobia from common bean were assessed.

Methods

Dual cultures, volatiles, indole-acetic acid (IAA), siderophore production and 16S rRNA sequencing were employed to select strains for pot and field experiments.

Results

Thirty-three antagonistic strains were detected in dual cultures, 16 of which were able to inhibit ≥84% fungus mycelial growth. Antagonistic strains produced up to 36.5 μg mL?1 of IAA, and a direct correlation was verified between IAA production and mycelium inhibition. SEMIA 460 inhibited 45% of mycelial growth through volatile compounds. 16S rRNA sequences confirmed strains as Rhizobium species. In pot condition, common bean plants grown on S. rolfsii-infested soil and inoculated with SEMIA 4032, 4077, 4088, 4080, 4085, or 439 presented less or no disease symptoms. The most efficient strains under field conditions, SEMIA 439 and 4088, decreased disease incidence by 18.3 and 14.5% of the S. rolfsii-infested control.

Conclusions

Rhizobium strains could be strong antagonists towards S. rolfsii growth. SEMIA 4032, 4077, 4088, 4080, 4085, and 439 are effective in the biological control of the collar rot of the common bean.
  相似文献   

6.
The relationship between Sporidiobolus johnsonii and S. salmonicolor was investigated using rDNA sequence data. Two statistically well-supported clades were obtained. One clade included the type strain of S. johnsonii and the other included the type strain of S. salmonicolor. However, some mating strains of S. salmonicolor were found in the S. johnsonii group. These strains belonged to mating type A2 and were sexually compatible with mating type A1 strains from the S. salmonicolor group. DNA–DNA reassociation values were high within each clade and moderate between the two clades. In the re-investigation of teliospore germination, we observed that the basidia of S. salmonicolor were two-celled. In S. johnsonii, basidia were not formed and teliospore germination resulted in direct formation of yeast cells. We hypothesize that the S. johnsonii clade is becoming genetically isolated from the S. salmonicolor group and that a speciation process is presently going on. We suspect that the observed sexual compatibility between strains of the S. johnsonii and S. salmonicolor groups and the possible genetic flow between the two species has little biological relevance because distinct phenotypes have been fixed in the two taxa and intermediate (hybrid) sequences for LSU and ITS rDNAs have not been detected.  相似文献   

7.
Candida albicans is the most common human fungal pathogen and can grow as yeast or filaments, depending on the environmental conditions. The filamentous form is of particular interest because it can play a direct role in adherence and pathogenicity. Therefore, the purpose of this study was to evaluate the effects of three clinical strains of Lactobacillus on C. albicans filamentation as well as their probiotic potential in pathogen-host interactions via an experimental candidiasis model study in Galleria mellonella. We used the reference strain Candida albicans ATCC 18804 and three clinical strains of Lactobacillus: L. rhamnosus strain 5.2, L. paracasei strain 20.3, and L. fermentum strain 20.4. First, the capacity of C. albicans to form hyphae was tested in vitro through association with the Lactobacillus strains. After that, we verified the ability of these strains to attenuate experimental candidiasis in a Galleria mellonella model through a survival curve assay. Regarding the filamentation assay, a significant reduction in hyphae formation of up to 57% was observed when C. albicans was incubated in the presence of the Lactobacillus strains, compared to a control group composed of only C. albicans. In addition, when the larvae were pretreated with Lactobacillus spp. prior to C. albicans infection, the survival rate of G. mellonela increased in all experimental groups. We concluded that Lactobacillus influences the growth and expression C. albicans virulence factors, which may interfere with the pathogenicity of these microorganisms.  相似文献   

8.
Twenty four rhizobial strains were isolated from root nodules of Melilotus, Medicago and Trigonella plants growing wild in soils throughout Egypt. The nearly complete 16S rRNA gene sequence from each strain showed that 12 strains (50 %) were closely related to the Ensifer meliloti LMG6133T type strain with identity values higher than 99.0 %, that 9 (37.5 %) strains were more than 99 % identical to the E. medicae WSM419T type strain, and that 3 (12.5 %) strains showed 100 % identity with the type strain of N. huautlense S02T. Accordingly, the diversity of rhizobial strains nodulating wild Melilotus, Medicago and Trigonella species in Egypt is marked by predominance of two genetic types, E. meliloti and E. medicae, although the frequency of isolation was slightly higher in E. meliloti. Sequencing of the symbiotic nodC gene from selected Medicago and Melilotus strains revealed that they were all similar to those of the E. meliloti LMG6133T and E. medicae WSM419T type strains, respectively. Similarly, nodC sequences of strains identified as members of the genus Neorhizobium were more than 99 % identical to that of N. galegae symbiovar officinalis HAMBI 114.  相似文献   

9.
10.

Key message

Arabidopsis det1 mutants exhibit salt and osmotic stress resistant germination. This phenotype requires HY5, ABF1, ABF3, and ABF4.

Abstract

While DE-ETIOLATED 1 (DET1) is well known as a negative regulator of light development, here we describe how det1 mutants also exhibit altered responses to salt and osmotic stress, specifically salt and mannitol resistant germination. LONG HYPOCOTYL 5 (HY5) positively regulates both light and abscisic acid (ABA) signalling. We found that hy5 suppressed the det1 salt and mannitol resistant germination phenotype, thus, det1 stress resistant germination requires HY5. We then queried publically available microarray datasets to identify genes downstream of HY5 that were differentially expressed in det1 mutants. Our analysis revealed that ABA regulated genes, including ABA RESPONSIVE ELEMENT BINDING FACTOR 3 (ABF3), are downregulated in det1 seedlings. We found that ABF3 is induced by salt in wildtype seeds, while homologues ABF4 and ABF1 are repressed, and all three genes are underexpressed in det1 seeds. We then investigated the role of ABF3, ABF4, and ABF1 in det1 phenotypes. Double mutant analysis showed that abf3, abf4, and abf1 all suppress the det1 salt/osmotic stress resistant germination phenotype. In addition, abf1 suppressed det1 rapid water loss and open stomata phenotypes. Thus interactions between ABF genes contribute to det1 salt/osmotic stress response phenotypes.
  相似文献   

11.

Objectives

To improve 1,3-propanediol (1,3-PD) production and reduce byproduct concentration during the fermentation of Klebsiella pneumonia.

Results

Klebsiella. pneumonia 2-1ΔldhA, K. pneumonia 2-1ΔaldH and K. pneumonia 2-1ΔldhaldH mutant strains were obtained through deletion of the ldhA gene encoding lactate dehydrogenase required for lactate synthesis and the aldH gene encoding acetaldehyde dehydrogenase involved in the synthesis of ethanol. After fed-batch fermentation, the production of 1,3-PD from glycerol was enhanced and the concentrations of byproducts were reduced compared with the original strain K. pneumonia 2-1. The maximum yields of 1,3-PD were 85.7, 82.5 and 87.5 g/l in the respective mutant strains.

Conclusion

Deletion of either aldH or ldhA promoted 1,3-PD production in K. pneumonia.
  相似文献   

12.
As a byproduct of yeast valine metabolism during fermentation, diacetyl can produce a buttery aroma in wine. However, high diacetyl concentrations generate an aromatic off-flavor and poor quality in wine. 2,3-Butanediol dehydrogenase encoded by BDH1 can catalyze the two reactions of acetoin from diacetyl and 2,3-butanediol from acetoin. BDH2 is a gene adjacent to BDH1, and these genes are regulated reciprocally. In this study, BDH1 and BDH2 were overexpressed in Saccharomyces uvarum to reduce the diacetyl production of wine either individually or in combination. Compared with those in the host strain WY1, the diacetyl concentrations in the recombinant strains WY1-1 with overexpressed BDH1, WY1-2 with overexpressed BDH2 alone, and WY1-12 with co-overexpressed BDH1 and BDH2 were decreased by 39.87, 33.42, and 46.71%, respectively. BDH2 was only responsible for converting diacetyl into acetoin, but not for the metabolic pathway of acetoin to 2,3-butanediol in S. uvarum. This study provided valuable insights into diacetyl reduction in wine.  相似文献   

13.
14.
Actinomycete strain AUM 00500 was 99.5 % similar to Streptomyces sanglieri NBRC 100784T and was evaluated for antagonistic activity towards Ganoderma boninense, the causative fungus of basal stem rot of oil palm. The strain showed strong antifungal activity towards G. boninense in in vitro and SEM analysis showed various modes of inhibition of the fungus. Ethyl acetate extracts of single culture and inhibition zone of cross-plug culture by HPLC indicated that strain AUM 00500 produced two different antibiotics of the glutarimide group namely cycloheximide and actiphenol. In greenhouse trials, oil palm seed treated with spores of S. sanglieri strain AUM 00500 at 109 cfu/ml showed significant (P < 0.05) increase in oil palm seedlings growth when compared to the control. Streptomyces sanglieri strain AUM 00500 successfully colonised the epidermal surface of the roots of treated oil palm seedlings and it was recovered from root fragments plated on starch casein agar.  相似文献   

15.
16.

Objective

To identify new enzymatic bottlenecks of l-tyrosine pathway for further improving the production of l-tyrosine and its derivatives.

Result

When ARO4 and ARO7 were deregulated by their feedback resistant derivatives in the host strains, the ARO2 and TYR1 genes, coding for chorismate synthase and prephenate dehydrogenase were further identified as new important rate-limiting steps. The yield of p-coumaric acid in the feedback-resistant strain overexpressing ARO2 or TYR1, was significantly increased from 6.4 to 16.2 and 15.3 mg l?1, respectively. Subsequently, we improved the strain by combinatorial engineering of pathway genes increasing the yield of p-coumaric acid by 12.5-fold (from 1.7 to 21.3 mg l?1) compared with the wild-type strain. Batch cultivations revealed that p-coumaric acid production was correlated with cell growth, and the formation of by-product acetate of the best producer NK-M6 increased to 31.1 mM whereas only 19.1 mM acetate was accumulated by the wild-type strain.

Conclusion

Combinatorial metabolic engineering provides a new strategy for further improvement of l-tyrosine or other metabolic biosynthesis pathways in S. cerevisiae.
  相似文献   

17.
Verticillium wilt (Verticillium dahliae) is an economically important disease for many high-value crops. The pathogen is difficult to manage due to the long viability of its resting structures, wide host range, and the inability of fungicides to affect the pathogen once in the plant vascular system. In chile pepper (Capsicum annuum), breeding for resistance to Verticillium wilt is especially challenging due to the limited resistance sources. The dominant Ve locus in tomato (Solanum lycopersicum) contains two closely linked and inversely oriented genes, Ve1 and Ve2. Homologs of Ve1 have been characterized in diverse plant species, and interfamily transfer of Ve1 confers race-specific resistance. Queries in the chile pepper WGS database in NCBI with Ve1 and Ve2 sequences identified one open reading frame (ORF) with homology to the tomato Ve genes. Comparison of the candidate CaVe (Capsicum annuum Ve) gene sequences from susceptible and resistant accessions revealed 16 single nucleotide polymorphisms (SNPs) and several haplotypes. A homozygous haplotype was identified for the susceptible accessions and for resistant accessions. We developed a cleaved amplified polymorphic sequence (CAPS) molecular marker within the coding region of CaVe and screened diverse germplasm that has been previously reported as being resistant to Verticillium wilt in other regions. Based on our phenotyping using the New Mexico V. dahliae isolate, the marker could select resistance accessions with 48% accuracy. This molecular marker is a promising tool towards marker-assisted selection for Verticillium wilt resistance and has the potential to improve the efficacy of chile pepper breeding programs, but does not eliminate the need for a bioassay. Furthermore, this work provides a basis for future research in this important pathosystem.  相似文献   

18.
Wheat Fusarium Head Blight (FHB), mainly caused by Fusarium graminearum (F.g), is a destructive fungal disease worldwide. FHB can not only cause considerable reduction in yield, but more seriously, can contaminate grain by trichothecene toxins released by the fungus. Here, we report new insights into the function and underlying mechanisms of a UDP-glycosyltransferase gene, Ta-UGT 3 , that is involved in FHB resistance in wheat. In our previous study, Ta-UGT 3 was found to enhance host tolerance against deoxynivalenol (DON) in Arabidopsis. In this study, four transgenic lines over-expressing Ta-UGT 3 in a FHB highly susceptible wheat variety, Alondra’s, were obtained and characterized. 3 years of assays using single floret inoculation with F.g indicated that all four transgenic lines exhibited significantly enhanced type II resistance to FHB and less DON accumulation in the grains compared to the untransformed control. Histological observation using GFP labelled F.g was in agreement with the above test results since over-expression of Ta-UGT 3 dramatically inhibited expansion of F.g. To explore the putative mechanism of resistance mediated by Ta-UGT 3 , microarray analysis, qRT-PCR and hormone measurements were performed. Microarray analysis showed that DON up-regulated genes, such as TaNPR1, in the susceptible control, and down-regulated genes in F.g inoculated transgenic lines, while qRT-PCR showed that some defence related genes were up-regulated in F.g inoculated transgenic lines. Ta-UGT 3 over-expression also changed the contents of the endogenous hormones SA and JA in the spikes. These data suggest that Ta-UGT 3 positively regulates the defence responses to F.g, perhaps by regulating defence-related and DON-induced downstream genes.  相似文献   

19.
Phylogenetic analyses based on protein-encoding gene exons and introns of ATP citrate lyase (ACL1), beta tubulin (TUB), the largest subunit of RNA polymerase II (RPB1), and translation elongation factor 1-α (TEF1) are used for inferring the existence of a new Clonostachys species from the Cerrado biome in Brazil, described here as C. chloroleuca. The species produces dimorphic, primary, and secondary conidiophores that form consistently greenish conidial masses on artificial media. It resembles therefore C. rosea f. catenulata although it differs from this species by less adpressed branches in the secondary conidiophores. The new species is also phylogenetically related to C. byssicola and C. rhizophaga. Our inventory suggests that C. byssicola, C. chloroleuca, C. pseudochroleuca, C. rhizophaga, C. rogersoniana, and C. rosea commonly occur in native and agriculturally used soils of the Cerrado and Amazon Forest. Using sequences available from two genome-sequenced strains employed as biological control agents, we confirm the identity of the European strain IK726 as C. rosea and identify strain 67-1 from China as C. chloroleuca.  相似文献   

20.
Pathogenicity of Candida albicans is associated with its capacity switch from yeast-like to hyphal growth. The hyphal form is capable to penetrate the epithelial surfaces and to damage the host tissues. Therefore, many investigations have focused on mechanisms that control the morphological transitions of C. albicans. Recently, certain studies have showed that non-albicans Candida species can reduce the capacity of C. albicans to form biofilms and to develop candidiasis in animal models. Then, the objective of this study was to evaluate the effects of Candida krusei and Candida glabrata on the morphogenesis of C. albicans. Firstly, the capacity of reference and clinical strains of C. albicans in forming hyphae was tested in vitro. After that, the expression of HWP1 (hyphal wall protein 1) gene was determined by quantitative real-time PCR (polymerase chain reaction) assay. For both reference and clinical strains, a significant inhibition of the hyphae formation was observed when C. albicans was incubated in the presence of C. krusei or C. glabrata compared to the control group composed only by C. albicans. In addition, the culture mixed of C. albicans-C. krusei or C. albicans-C. glabrata reduced significantly the expression of HWP1 gene of C. albicans in relation to single cultures of this specie. In both filamentation and gene expression assays, C. krusei showed the higher inhibitory activity on the morphogenesis of C. albicans compared to C. glabrata. C. krusei and C. glabrata are capable to reduce the filamentation of C. albicans and consequently decrease the expression of the HWP1 gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号