首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The equations of evolutionary change by natural selection are commonly expressed in statistical terms. Fisher's fundamental theorem emphasizes the variance in fitness. Quantitative genetics expresses selection with covariances and regressions. Population genetic equations depend on genetic variances. How can we read those statistical expressions with respect to the meaning of natural selection? One possibility is to relate the statistical expressions to the amount of information that populations accumulate by selection. However, the connection between selection and information theory has never been compelling. Here, I show the correct relations between statistical expressions for selection and information theory expressions for selection. Those relations link selection to the fundamental concepts of entropy and information in the theories of physics, statistics and communication. We can now read the equations of selection in terms of their natural meaning. Selection causes populations to accumulate information about the environment.  相似文献   

2.
Competition and cooperation is fundamental to evolution by natural selection, both in animals and plants. Here, I investigate the consequences of such interactions for response in fitness due to natural selection. I provide quantitative genetic expressions for heritable variance and response in fitness due to natural selection when conspecifics interact. Results show that interactions among conspecifics generate extra heritable variance in fitness, and that interacting with kin is the key to evolutionary success because it translates the extra heritable variance into response in fitness. This work also unifies Fisher’s fundamental theorem of natural selection (FTNS) and Hamilton’s inclusive fitness (IF). The FTNS implies that natural selection maximizes fitness, whereas Hamilton proposed maximization of IF. This work shows that the FTNS describes the increase in IF, rather than direct fitness, at a rate equal to the additive genetic variance in fitness. Thus, Hamilton’s IF and Fisher’s FTNS both describe the maximization of IF.  相似文献   

3.
Darwin insisted that evolutionary change occurs very slowly over long periods of time, and this gradualist view was accepted by his supporters and incorporated into the infinitesimal model of quantitative genetics developed by R. A. Fisher and others. It dominated the first century of evolutionary biology, but has been challenged in more recent years both by field surveys demonstrating strong selection in natural populations and by quantitative trait loci and genomic studies, indicating that adaptation is often attributable to mutations in a few genes. The prevalence of strong selection seems inconsistent, however, with the high heritability often observed in natural populations, and with the claim that the amount of morphological change in contemporary and fossil lineages is independent of elapsed time. I argue that these discrepancies are resolved by realistic accounts of environmental and evolutionary changes. First, the physical and biotic environment varies on all time-scales, leading to an indefinite increase in environmental variance over time. Secondly, the intensity and direction of natural selection are also likely to fluctuate over time, leading to an indefinite increase in phenotypic variance in any given evolving lineage. Finally, detailed long-term studies of selection in natural populations demonstrate that selection often changes in direction. I conclude that the traditional gradualist scheme of weak selection acting on polygenic variation should be supplemented by the view that adaptation is often based on oligogenic variation exposed to commonplace, strong, fluctuating natural selection.  相似文献   

4.
EVOLUTIONARY EPIDEMIOLOGY AND THE DYNAMICS OF ADAPTATION   总被引:1,自引:0,他引:1  
The mean fitness of a population, often equal to its growth rate, measures its level of adaptation to particular environmental conditions. A better understanding of the evolution of mean fitness could thus provide a natural link between evolution and demography. Yet, after the seminal work of Fisher and its renowned "fundamental theorem of natural selection," the dynamics of mean fitness has attracted little attention, and mostly from theoretical population geneticists. Here we analyze the dynamics of mean fitness in the context of host-parasite interactions. We illustrate the potential relevance of this analysis under different scenarios ranging from a simple situation in which a parasite evolves in a homogeneous host population to a more complex one with host-parasite coevolution. In each case, we contrast the effects of natural selection, recurrent mutations, and the change of the biotic environment, on the dynamics of adaptation. Decoupling these three components helps elucidate the interplay between evolutionary and ecological dynamics. In particular, it offers new perspectives on situations leading to evolutionary suicide. As mean fitness is an easily measurable quantity in microbial systems, this analysis provides new ways to track the dynamics of adaptation in experimental evolution and coevolution studies.  相似文献   

5.
The Price equation partitions total evolutionary change into two components. The first component provides an abstract expression of natural selection. The second component subsumes all other evolutionary processes, including changes during transmission. The natural selection component is often used in applications. Those applications attract widespread interest for their simplicity of expression and ease of interpretation. Those same applications attract widespread criticism by dropping the second component of evolutionary change and by leaving unspecified the detailed assumptions needed for a complete study of dynamics. Controversies over approximation and dynamics have nothing to do with the Price equation itself, which is simply a mathematical equivalence relation for total evolutionary change expressed in an alternative form. Disagreements about approach have to do with the tension between the relative valuation of abstract versus concrete analyses. The Price equation's greatest value has been on the abstract side, particularly the invariance relations that illuminate the understanding of natural selection. Those abstract insights lay the foundation for applications in terms of kin selection, information theory interpretations of natural selection and partitions of causes by path analysis. I discuss recent critiques of the Price equation by Nowak and van Veelen.  相似文献   

6.
Language is the most important evolutionary invention of the last few million years. It was an adaptation that helped our species to exchange information, make plans, express new ideas and totally change the appearance of the planet. How human language evolved from animal communication is one of the most challenging questions for evolutionary biology The aim of this paper is to outline the major principles that guided language evolution in terms of mathematical models of evolutionary dynamics and game theory. I will discuss how natural selection can lead to the emergence of arbitrary signs, the formation of words and syntactic communication.  相似文献   

7.
Fisher's Fundamental Theorem of natural selection is one of the most widely cited theories in evolutionary biology. Yet it has been argued that the standard interpretation of the theorem is very different from what Fisher meant to say. What Fisher really meant can be illustrated by looking in a new way at a recent model for the evolution of clutch size. Why Fisher was misunderstood depends, in part, on the contrasting views of evolution promoted by Fisher and Wright.  相似文献   

8.
9.
The chasm that formerly separated evolutionary biology from the research of physiologists and developmental biologists has been partially bridged in recent years. An increasing amount of research in the neurosciences makes explicit reference to issues in evolutionary biology. Much of this research is an attempt to understand structures and functions of the brain as adaptations to an animal's physical and social environment. In addition, however, some of this research at the interface of evolutionary biology and neurobiology provides information on internal evolutionary factors and the way they may constrain evolution by natural selection.  相似文献   

10.
Abstract Laboratory selection experiments are powerful tools for establishing evolutionary potentials. Such experiments provide two types of information, knowledge about genetic architecture and insight into evolutionary dynamics. They can be roughly classified into two types: (1) artificial selection in which the experimenter selects on a focal trait or trait index, and (2) quasi‐natural selection in which the experimenter establishes a set of environmental conditions and then allows the population to evolve. Both approaches have been used in the study of phenotypic plasticity. Artificial selection experiments have taken various forms including: selection directly on a reaction norm, selection on a trait in multiple environments, and selection on a trait in a single environment. In the latter experiments, evolution of phenotypic plasticity is investigated as a correlated response. Quasi‐natural selection experiments have examined the effects of both spatial and temporal variation. I describe how to carry out such experiments, summarize past efforts, and suggest further avenues of research.  相似文献   

11.
Darwinism is defined here as an evolving research tradition based upon the concepts of natural selection acting upon heritable variation articulated via background assumptions about systems dynamics. Darwin's theory of evolution was developed within a context of the background assumptions of Newtonian systems dynamics. The Modern Evolutionary Synthesis, or neo-Darwinism, successfully joined Darwinian selection and Mendelian genetics by developing population genetics informed by background assumptions of Boltzmannian systems dynamics. Currently the Darwinian Research Tradition is changing as it incorporates new information and ideas from molecular biology, paleontology, developmental biology, and systems ecology. This putative expanded and extended synthesis is most perspicuously deployed using background assumptions from complex systems dynamics. Such attempts seek to not only broaden the range of phenomena encompassed by the Darwinian Research Tradition, such as neutral molecular evolution, punctuated equilibrium, as well as developmental biology, and systems ecology more generally, but to also address issues of the emergence of evolutionary novelties as well as of life itself.  相似文献   

12.
Studies of populations in the wild can provide unique insights into the forces driving evolutionary dynamics. This themed issue of Proc. R. Soc. B focuses on new developments in long-term analyses of animal populations where pedigree information has been collected. These address fundamental questions in evolutionary biology concerning the genetic basis of phenotypic diversity, patterns of natural and sexual selection, the occurrence of inbreeding and inbreeding depression, and speciation. Contributions include the analysis of evolutionary responses to climate change, exploration of the genetic basis of senescence, the exploitation of advances in molecular genetic technology, and reviews of developments in quantitative genetic methodology. We discuss here common themes, specific problems and pointers for future research.  相似文献   

13.
Recent calls for a revision of standard evolutionary theory (SET) are based partly on arguments about the reciprocal causation. Reciprocal causation means that cause–effect relationships are bi-directional, as a cause could later become an effect and vice versa. Such dynamic cause-effect relationships raise questions about the distinction between proximate and ultimate causes, as originally formulated by Ernst Mayr. They have also motivated some biologists and philosophers to argue for an Extended Evolutionary Synthesis (EES). The EES will supposedly expand the scope of the Modern Synthesis (MS) and SET, which has been characterized as gene-centred, relying primarily on natural selection and largely neglecting reciprocal causation. Here, I critically examine these claims, with a special focus on the last conjecture. I conclude that reciprocal causation has long been recognized as important by naturalists, ecologists and evolutionary biologists working in the in the MS tradition, although it it could be explored even further. Numerous empirical examples of reciprocal causation in the form of positive and negative feedback are now well known from both natural and laboratory systems. Reciprocal causation have also been explicitly incorporated in mathematical models of coevolutionary arms races, frequency-dependent selection, eco-evolutionary dynamics and sexual selection. Such dynamic feedback were already recognized by Richard Levins and Richard Lewontin in their bok The Dialectical Biologist. Reciprocal causation and dynamic feedback might also be one of the few contributions of dialectical thinking and Marxist philosophy in evolutionary theory. I discuss some promising empirical and analytical tools to study reciprocal causation and the implications for the EES. Finally, I briefly discuss how quantitative genetics can be adapated to studies of reciprocal causation, constructive inheritance and phenotypic plasticity and suggest that the flexibility of this approach might have been underestimated by critics of contemporary evolutionary biology.  相似文献   

14.
SUMMARY In this paper, I argue that the ultimate causes of morphological, and hence developmental, evolution are scale independent. In other words, micro- and macroevolutionary patterns show fundamental similarities and therefore are most simply explained as being caused by the same kinds of evolutionary forces. I begin by examining the evolution of single lineages and argue that dynamics of adaptive evolution are the same for bacteria in test-tube evolution experiments and fossil lineages. Similarly, I argue that the essential features of adaptive radiations large and small can be attributed to conventional forces such as mutation and diversifying natural selection due to competition. I then address recent claims that the molecular features of metazoan development are the result of clade-level selection for evolvability, and suggest that these features can be more easily explained by conventional individual-level selection for the suppression of deleterious pleiotropic effects. Finally, I ask what must be known if we are to understand the ultimate causes of molecular and developmental diversity.  相似文献   

15.
Here, I suggest that colour polymorphic study systems have been underutilized to answer general questions about evolutionary processes, such as morph frequency dynamics between generations and population divergence in morph frequencies. Colour polymorphisms can be used to study fundamental evolutionary processes like frequency‐dependent selection, gene flow, recombination and correlational selection for adaptive character combinations. However, many previous studies of colour polymorphism often suffer from weak connections to population genetic theory. I argue that too much focus has been directed towards noticeable visual traits (colour) at the expense of understanding the evolutionary processes shaping genetic variation and covariation associated with polymorphisms in general. There is thus no need for a specific evolutionary theory for colour polymorphisms beyond the general theory of the maintenance of polymorphisms in spatially or temporally variable environments or through positive or negative frequency‐dependent selection. I outline an integrative research programme incorporating these processes and suggest some fruitful avenues in future investigations of colour polymorphisms.  相似文献   

16.
In this paper, I analyze George Gaylord Simpson's response to the molecularization of evolutionary biology from his unique perspective as a paleontologist. I do so by exploring his views on early attempts to reconstruct phylogenetic relationships among primates using molecular data. Particular attention is paid to Simpson's role in the evolutionary synthesis of the 1930s and 1940s, as well as his concerns about the rise of molecular biology as a powerful discipline and world-view in the 1960s. I argue that Simpson's belief in the supremacy of natural selection as the primary driving force of evolution, as well as his view that biology was a historical science that seeks ultimate causes and highlights contingency, prevented him from acknowledging that the study of molecular evolution was an inherently valuable part of the life sciences.  相似文献   

17.
According to Ch. Darwin's evolutionary theory, evolutionary progress (interpreted as morpho-physiological progress or arogenesis in recent terminology) is one of logical results of natural selection. At the same time, natural selection does not hold any factors especially promoting evolutionary progress. Darwin emphasized that the pattern of evolutionary changes depends on organism nature more than on the pattern of environment changes. Arogenesis specificity is determined by organization of rigorous biological systems - integral organisms. Onward progressive development is determined by fundamental features of living organisms: metabolism and homeostasis. The concept of social Darwinism differs fundamentally from Darwin's ideas about the most important role of social instincts in progress of mankind. Competition and selection play secondary role in socio-cultural progress of human society.  相似文献   

18.
The handicap mechanism of sexual selection by female choice has been strongly criticized because it does not cause sexual selection to reinforce viability selection and it cannot account for the origin of mating preferences. However, several models indicate that the handicap mechanism can have important effects when operating in conjunction with Fisher's mechanism in polygynous populations. These models have been criticized because they require that fitness remains heritable indefinitely. I develop a simple haploid model of the handicap mechanism based on nonheritable variation in paternal investment, thus eliminating the problem of heritable fitness. This model produces the same evolutonary dynamics as both simple and quantitative genetic models of the handicap mechanism based on heritable fitness. If the parameters are such that Fisherian runaway selection does not occur in the null model (i.e., the polymorphic equilibria, which lie along the “Fisher line,” are stable), then the handicap mechanism turns the Fisher line into an evolutionary trajectory upon which all other trajectories converge. This occurs because Fisher's mechanism generates no net selection on female preference when the population is on the Fisher line, so that any additional source of selection (direct or indirect) on female choice causes the population to evolve deterministically along the Fisher line. This change in the evolutionary dynamics has the important consequence of eliminating the potential for rapid population divergence for mating systems via genetic drift along the Fisher line.  相似文献   

19.
The association of inflammation with modern human diseases (e.g. obesity, cardiovascular disease, type 2 diabetes mellitus, cancer) remains an unsolved mystery of current biology and medicine. Inflammation is a protective response to noxious stimuli that unavoidably occurs at a cost to normal tissue function. This fundamental trade-off between the cost and benefit of the inflammatory response has been optimized over evolutionary time for specific environmental conditions. Rapid change of the human environment due to niche construction outpaces genetic adaptation through natural selection, leading increasingly to a mismatch between the modern environment and selected traits. Consequently, multiple trade-offs that affect human physiology are not optimized to the?modern environment, leading to increased disease susceptibility. Here we examine the inflammatory response from an evolutionary perspective. We discuss unique aspects of the inflammatory response and its evolutionary history that can help explain the association between inflammation and modern human diseases.  相似文献   

20.
Mothers often provide much of the early environment for their offspring. These maternal effects are predicted to result in unusual evolutionary dynamics in offspring traits if they are themselves heritable, but these important predictions have not previously, to our knowledge, been tested in the wild. Here, we quantified the responses of red squirrels (Tamiasciurus hudsonicus) to documented episodes of natural selection and found support for both of the fundamental predictions of models that describe maternal effect evolution. First, changes in juvenile growth rates across one generation of selection were five times greater than predicted by heritability (h2) alone, but were consistent with the additional contribution of maternal genetic effects. Second, responses to selection were influenced not only by the strength of selection in the current generation, but also by selection in the previous generation, indicating the presence of evolutionary momentum. These results were in agreement with predictions of a simple model including litter size as the only maternal effect, and provide, to our knowledge, the first empirical evidence for the importance of maternal effects to evolutionary dynamics in a natural population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号