首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We assessed the daily patterns of parameters involved in energy metabolism in liver, white muscle, and gills of rainbow trout. Where daily rhythms were found, we analyzed the potential influence of feeding. Immature rainbow trout were randomly distributed in 3 groups: fish fed for 7 days, fish fasted for 7 days, and fish fasted for 7 days and refed for 4 days. On sampling day, fish of fed and refed groups were fed at 11.00 h, and all fish were sampled from each treatment group using the following time schedule: 14.00, 18.00, 21.00, 00.00, 04.00, 07.00, 10.00 and 14.00 h. The results obtained from metabolic parameters can be grouped into four different categories, such as i) those displaying no daily changes in any group assessed in liver (acetoacetate and lactate levels), white muscle (protein levels, and low Km (glucose) hexokinase (HK) and HK-IV activities) and gills (protein levels), ii) those displaying no 24 h changes in fed fish but in refed or fasted fish in liver (glucose, glycogen, amino acid and protein levels, and HK-IV activity), white muscle (glycogen and amino acid levels) and gills (glucose levels), iii) those displaying 24 h changes that were apparently dependent on feeding since they disappear in fasted fish in liver (Low Km (glucose) HK, lactate dehydrogenase (LDH-O), glucose 6-phosphatase (G6Pase), fructose 1,6-bisphosphatase (FBPase) , alpha-glycerophosphate dehydrogenase (G3PDH), glutamate dehydrogenase (GDH) and aspartate aminotransferase (Asp-AT) activities), white muscle (glucose levels, and pyruvate kinase (PK), LDH-O, G3PDH and Asp-AT activities) and gills (glycogen and lactate levels, and Low Km (glucose) HK, HK-IV, LDH-O and Asp-AT activities), and iv) those parameters displaying 24 h changes apparently not dependent on feeding in liver (lactate levels and PK activity) and gills (amino acid levels, and PK and GDH activities). In general, most 24 h changes observed were dependent on feeding and can be also related to daily changes in activity.  相似文献   

2.
3.
Atlantic salmon can differ markedly in their growth and in the timing of reproductive maturation, leading to the dramatic contrast between the large anadromous adults and the diminutive mature male parr. This study examined the growth rates, anatomical and physiological characteristics of parr during the adoption of their discrete life histories to ascertain whether these properties can explain tactic choice. To minimise the impact of habitat differences upon these attributes, salmon were reared in the laboratory until 1.5years of age, when the "decisions" to undergo smoltification or to mature as parr had been taken. At 1.5years, both males and females showed bimodal size-frequency distributions. Neither the population of origin nor the paternal reproductive tactic influenced the "decision" to mature or the growth trajectories. Growth rate (% massday(-1) during their final 10months) and the % male and female offspring in the upper modal group were strongly correlated and varied markedly among families. Mean growth rate per family was negatively correlated with mean metabolic rate per family at emergence. Growth rate decreased as a function of parr size in January and the growth rates of upper modal fish were displaced upwards relative to those of lower modal fish. Most males in the smaller size mode matured, whereas all other fish began smoltification. Mature male parr did not differ from similarly sized female pre-smolt in routine metabolic rate, but these smaller fish had higher metabolic rates than larger male and female pre-smolts. However, mature parr differed markedly from similarly sized females and from larger male and female pre-smolts in possessing higher oxidative and lower glycolytic capacities in muscle. Overall, these data are consistent with the interpretation that growth rates dictate the distribution of parr between upper and lower modal groups. Individuals from faster growing families would be more likely to pass the threshold for smoltification and to accelerate growth, whereas those from slower growing families would remain in the lower mode. The use of metabolic capacities, e.g. metabolic rate, was linked with modal group, whereas muscle oxidative capacity was linked with male maturity. Mean family metabolic rate at emergence was negatively linked with mean growth during the subsequent year, suggesting that metabolic efficiency facilitates growth and eventually smoltification.  相似文献   

4.
AMP-deaminase activity was measured in white muscle from a wide range of fish, including one cyclostome, 13 chondrosteans, and one teleost to elucidate the pattern of the AMP-deaminase activity in white muscle of fish. Compared to a mammalian (rat) muscle extract, low enzyme activities are found in the cyclostome and two elasmobranchs from two families (Scyliorhinidae, Hexanchidae). In contrast, higher AMP-deaminase activities, similar to mammals, are expressed in Squalidae, all families of skates, Chimaeridae and in the teleostean fish. We then compared AMP-deaminase activities in red and white muscles from two representative elasmobranch fish, the dogfish (Scyliorhinus canicula) and the thornback ray (Raja clavata). The fibre type composition and distribution of the locomotory musculature were determined in these two elasmobranchs to establish a relationship between the morphology, the type of fibres of the locomotion-implicated muscles and the AMP-deaminase activity. Experimental data are discussed with respect to the layout of fibres in the myotome. In both species, three fibre types were identified. In the two fish myotomes, most of the axial muscles are white fibres while red fibres constitute a thin sheet. Some differences were observed between the two species in the distribution of intermediate fibres: in dogfish, these are located between the red and white fibres; in thornback ray, some are dispersed within the white fibre region, while others form an intermediary layer like in dogfish. These results suggest that in the course of evolution, an amplification of the AMP-deaminase activity in muscle was coupled with increase of complexity of the muscular structure.  相似文献   

5.
The objective of this study was to examine insulin-like growth factor (IGF)-I and IGF-II mRNA levels in fast and slow growing families of catfish. Relative levels of IGF-I and IGF-II mRNA were determined by real-time PCR. Family A exhibited a specific growth rate (SGR) of 3.6 and was designated as fast growing, while family H exhibited a SGR of 3.1 and was designated as slow growing (P=0.017). Levels of IGF-II mRNA were 3.3-fold greater (P=0.006) in muscle for the fast growing family compared to the slow growing family. Levels of IGF-II mRNA were 1.8-fold greater (P=0.049) in liver for the fast growing family compared to the slow growing family. Levels of IGF-II mRNA from both fast and slow families were 12.2-fold greater (P<0.001) in muscle and 5.8-fold greater (P=0.021) in liver, respectively, compared to levels of IGF-I mRNA. Muscle and liver levels of IGF-I mRNA were similar between families. Elevated levels of IGF-II mRNA in muscle and liver compared to IGF-I mRNA, as well as differences in levels of IGF-II mRNA between fast and slow growing families of fish suggests a role of IGF-II in growth of channel catfish.  相似文献   

6.
Compared with fish of a slow-growing strain, fast-growing rainbow trout exhibited significantly smaller white fibre diameters, throughout development from hatching to 24 cm body length, although possessing similar total number of fibres. In contrast, in red muscle, no differences were observed in fibre diameter between the two strains, but the fast growing fish showed a significantly higher number of red fibres. The differences in growth rate between the two strains were related to the mean white fibre diameter and were found to be matched by proportional adjustments in recruitment of new fibres to the growing muscle. Thus, the largest and fastestgrowing strain showed evidence of sustained higher recruitment of muscle fibres that endowed this strain with the potential to maintain rapid somatic growth for longer and accomplish greater muscle growth.  相似文献   

7.
Comparative assessments of population mean growth rates in length remain important aspects of stock assessment in river fisheries. To facilitate these assessments, for 15 fish species encountered in UK rivers reference data are provided on their expected lengths at age, maximum theoretical lengths (L), growth coefficient (K) and instantaneous mortality rate (Z). These data are also transferable to fish populations outside of the UK that experience a similar growth season (approximately April to October, mean water temperatures 12–22°C). Considerable plasticity was observed in the growth of all species examined, with length at age values revealing growth rates from very slow to very fast. Populations considered fast growing against reference data were coincident with a relatively low ultimate length, a high growth coefficient and a high instantaneous mortality rate, suggesting a trade‐off exists between growth rate, ultimate length and life span.  相似文献   

8.
In this study, pure‐breeding and crossbreeding of Sinocyclocheilus grahami were established to test heterosis and expression of growth‐related genes which were examined in the first‐generation (F1). Genetic distances results showed that Muyang river (M) and Sanbaimu reservoir (S) populations had smaller interspecific distances (genetic distance: 0.000) while larger distances were shown to other two populations (0.024 of Jiuzhai vauclusian spring [J] and 0.044 of Chenglong vauclusian spring [C]). Full‐sib families were created by using the Muyang river population as females: MM, MS, MJ and MC. Growth performance had significant differences between each group of F1 hybrids; the fastest growth group was shown in MJ while the slowest was in MS. For growth‐related genes, the fast growth group of MJ hybrids showed significantly higher levels of ghrelin expression in strong expression tissues of the intestine and liver. Among the four combinations, mRNA levels of insulin‐like growth factor I (IGF‐I) were the highest expression in MJ hybrids than others in all tested tissues. Myostatin b and somatostatin1 (SST1) were strongly expressed in the brain and MJ hybrids showed relatively lower expression level. In the muscle, slow growth group of MS hybrids showed extremely higher expression levels of these two genes, especially SST1 gene. In conclusion, associating growth with growth‐related genes expression indicated faster growth of crossbreeding in S. grahami and can make a contribution to commercial fish production in the future.  相似文献   

9.
Physiological correlates of seasonal growth patterns were measured in lake trout Salvelinus namaycush from two populations with contrasting diets (zooplankton-dominated diet in Louisa Lake; fish-dominated diet in Opeongo Lake). Fish in Opeongo Lake grew faster and were in better condition than fish in Louisa Lake. The most prominent biochemical difference between populations was higher citrate synthase (CS) and cytochrome c oxidase activity in the white muscle of fish from Opeongo Lake, indicating greater sustained swimming activity in this lake. In contrast, lactate dehydrogenase (LDH) activity in white muscle, an indicator of capacity for burst swimming, was similar between lakes. Nucleoside diphosphate kinase (NDPK) activity in white muscle, an indicator of protein synthesis, was higher in Opeongo Lake than in Louisa Lake but only in the autumn. In both lakes, protein concentration and therefore nutritional status increased as the growing season progressed from spring to summer to autumn. Biochemical indicators of growth and activity showed similar seasonal patterns in the two lakes with the spring characterized by high NDPK, high CS and high LDH activities (i.e. high levels of protein synthesis in association with high aerobic and anaerobic activities). These results suggest high foraging effort and allocation to growth early in the growing season in both lakes.  相似文献   

10.
氮素水平对花生氮素代谢及相关酶活性的影响   总被引:10,自引:0,他引:10       下载免费PDF全文
 在大田高产条件下研究了氮素水平对花生(Arachis hypogaea)可溶性蛋白质、游离氨基酸含量及氮代谢相关酶活性的影响, 结果表明, 适当提高氮素水平既能增加花生各器官中可溶性蛋白质和游离氨基酸的含量, 又能提高硝酸还原酶、谷氨酰胺合成酶和谷氨酸脱氢酶等氮素同化酶的活性, 使其达到同步增加; 氮素水平过高虽能提高硝酸还原酶和籽仁蛋白质含量, 但谷氨酰胺合成酶(GS)和谷氨酸脱氢酶(GDH)的活性下降; N素施肥水平不改变花生植株各器官中可溶性蛋白质、游离氨基酸含量以及硝酸还原酶(NR)、谷氨酰胺合成酶、谷氨酸脱氢酶活性的变化趋势, 但适量施N (A2和A3处理)使花生各营养器官中GS、GDH活性提高; 氮素水平对花生各叶片和籽仁中GS、GDH活性的高低影响较大, 但对茎和根中GDH活性大小的影响较小。  相似文献   

11.
To determine whether the aerobic capacity of tissues required for growth specifically reflects growth rates, we monitored the activities of key enzymes of oxidative, glycolytic and amino acid metabolism in muscle, liver and intestine of Atlantic cod (Gadus morhua) growing at different rates. Fish were maintained individually in small tanks at 10°C and fed on rations that allowed growth rates ranging from-0.6 to 1.6% per day. The correlation between growth rate and muscle enzyme activity was pronounced for the glycolytic enzymes (LDH, PFK and PK). The activities of glycolytic enzymes were more than four times higher for fish having higher growth rates compared to those that did not grow. Mitochondrial enzyme (cytochrome c oxidase, citrate synthase and -hydroxyacyl-CoA dehydrogenase) activities remained unchanged in fish with positive growth. The liver seems to respond to requirements of growth by an increase in size. In the liver, the activities of the enzymes of amino acid metabolism expressed as units · g DNA-1 specifically increases with growth rate. In contrast to the two other tissues, the specific activities of mitochondrial enzymes in the intestine increased with growth rate while the relative mass of the intestine remained constant. Intestinal cytochrome c oxidase activity increased from a minimum of about 2 to more than 8 units · g intestine-1. Cytochrome c oxidase activity increased in parallel with the food conversion efficiency. This suggests that the aerobic capacity of the intestine may initially limit the rates of digestion and growth in this species.Abbreviations AA amino acid(s) - BM body mass - CCO cytochrome c oxydase - CS citrate synthase - DTNB 5,5 dithiobis-2-nitrobenzoic acid - GDH glutamate dehydrogenase - GOT glutamate oxalacetate transaminase - GPT glutamate pyruvate transaminase - GR growth rate(s) - HOAD -hydroxyacyl-CoA dehydrogenase - HSI hepatosomatic index - LDH lactate dehydrogenase - MR metabolic rate(s) - PCA perchloric acid - PFK phosphofructokinase - PK pyruvate kinase - PMSF phenylmethylsulphonyl fluoride; TRIS  相似文献   

12.
Fast‐growing genotypes living in time‐constrained environments are often more prone to predation, suggesting that growth‐predation risk trade‐offs are important factors maintaining variation in growth along climatic gradients. However, the mechanisms underlying how fast growth increases predation‐mediated mortality are not well understood. Here, we investigated if slow‐growing, low‐latitude individuals have faster escape swimming speed than fast‐growing high‐latitude individuals using common frog (Rana temporaria) tadpoles from eight populations collected along a 1500 km latitudinal gradient. We measured escape speed in terms of burst and endurance speeds in tadpoles raised in the laboratory at two food levels and in the presence and absence of a predator (Aeshna dragonfly larvae). We did not find any latitudinal trend in escape speed performance. In low food treatments, burst speed was higher in tadpoles reared with predators but did not differ between high‐food treatments. Endurance speed, on the contrary, was lower in high‐food tadpoles reared with predators and did not differ between treatments at low food levels. Tadpoles reared with predators showed inducible morphology (increased relative body size and tail depth), which had positive effects on speed endurance at low but not at high food levels. Burst speed was positively affected by tail length and tail muscle size in the absence of predators. Our results suggest that escape speed does not trade‐off with fast growth along the latitudinal gradient in R. temporaria tadpoles. Instead, escape speed is a plastic trait and strongly influenced by the interaction between resource level and predation risk.  相似文献   

13.
14.
Glutamate dehydrogenase (GDH) (EC 1.4.1.3) is a crucial enzyme involved in bridging two metabolic pathways, gating the use of glutamate for either amino acid metabolism, or carbohydrate metabolism. The present study investigated GDH from tail muscle of the freshwater crayfish Orconectes virilis exploring changes to kinetic properties, phosphorylation levels and structural stability between two forms of the enzyme (aerobic control and 20-h severe hypoxic). Evidence indicated that GDH was converted to a high phosphate form under oxygen limitation. ProQ Diamond phosphoprotein staining showed a 42% higher bound phosphate content on GDH from muscle of severely hypoxic crayfish compared with the aerobic form, and treatment of this GDH with commercial phosphatase (alkaline phosphatase), and treatments that stimulated the activities of different endogenous protein phosphatases (stimulating PP1 + PP2A, PP2B, and PP2C) yielded significant increases in the fold activation by ADP of GDH from both control and severe hypoxic conditions. By contrast, stimulation of the activities of endogenous protein kinases (AMPK, PKA or CaMK) significantly reduced the ADP fold activation from control animals. The physiological consequence of severe hypoxia-induced GDH phosphorylation may be to suppress GDH activity under low oxygen, shutting off this critical bridge point between two metabolic pathways.  相似文献   

15.
Ninety‐one young‐of‐the‐year Atlantic salmon Salmo salar were captured using a non‐invasive snorkelling technique in a 38 m section of Catamaran Brook, New Brunswick, Canada, to test whether related fish settle closer to one another than unrelated fish. A maximum likelihood estimate of parentage relationships assessed by genotyping eight microsatellite loci revealed five half‐sibling families in the sample of fish. Related juvenile S. salar were not found closer to one another than unrelated fish in three analyses at two spatial scales: a comparison of the relatedness of focal fish to their nearest neighbour and to their four nearest neighbours, and a correlation of the pair‐wise relatedness and distance matrices for all fish in the sample. The lack of a kin‐biased dispersion pattern may be related to the lower density of fish or the scarcity of full‐siblings at the study site compared to laboratory conditions.  相似文献   

16.
To understand better the growth mechanisms in the economically important fish Pagellus bogaraveo, in terms of muscle fibre hyperplasia v. hypertrophy, the lateral muscle of this fish was studied morphometrically from hatching to juvenile comparing rostral and caudal locations. Fish were sampled at 0, 5, 23, 40, 70, 100, 140 and 180 days. Fibre types were first identified by succinate dehydrogenase (SDH) and immunostaining with a polyclonal antibody against fish slow myosin (4–96). Morphometric variables were then measured in transverse body sections, at both post‐opercular and post‐anal locations, to estimate the following variables: total muscle area [A (muscle)], total fibre number [N (fibres)], fibre number per unit area of muscle [NA(fibres, muscle)] and cross‐sectional fibre area [ (fibres)] of the two main muscle fibre types (white and red). Overall, growth throughout the various stages resulted from increases both in the number and in the size of muscle fibres, paralleled by an expansion of the [A (muscle)]. Nonetheless, that increase was not significant between 0–5 days on one hand and 100–140 days, on the other hand. On the contrary, the [NA(fibres, muscle)] declined as the body length increased. Analysis of the muscle growth kinetics suggested that, within the important time frame studied, hyperplasia gave the main relative contribution to the increase of white muscle [A (white muscle)], whereas red muscle [A (red muscle)] mainly grew by hypertrophy, with both phenomena occurring at a faster pace posteriorly in the body. Finally, when comparing rostral and caudal locations, a greater [N (fibres)] and [A (muscle)] of the posterior white and red fibres were the consistent features. It was also observed that the proportion of the cross‐sectional area of the myotomal muscle comprised of white muscle was greater in the anterior part of the fish.  相似文献   

17.
Digestion and absorption of dietary protein were studied through facilitation of amino acid in the plasma and white muscle after a single feeding. The comparison was made between Atlantic salmon with and without trypsin isozyme TRP-2*92. Higher absorption of dietary protein was associated with the presence of the isozyme, as the post-prandial total levels of free amino acids (FAA) in both plasma and white muscle were significantly higher in salmon with the isozyme than those in salmon without it. Higher digestion rate of the dietary protein in salmon carrying the isozyme was indicated by faster elevation of essential FAA in the plasma and of overall FAA in their white muscle. Other indications which suggest differences in nitrogen metabolism between salmon with and without the isozyme were the observations of significant differences in (a) the levels of lysine, hydroxyproline, alanine, aspartic acid, β-alanine, threonine, valine and a nitrogen-containing compound taurine in plasma, and (b) the levels of alanine, glutamic acid, glycine and anserine in white muscle.
Trypsin activity in the pyloric caeca showed less response to feeding than that in the intestine, but it may have consequence for growth as its activity was significantly higher in growing fish than in non-growing fish.  相似文献   

18.
Synopsis Contraction time of an isolated white muscle from the temperate water Girella tricuspidata is proportional to temperature and inversely proportional to fish size. Between ambient (14°C) and 8° C muscle from all sizes of fish is similary affected by temperature; the lower the temperature the more the contraction time is slowed. Below 8° C muscle from large fish is affected more than is muscle from small fish. Contraction time of white muscle in the antarctic notothenioid Pagothenia borchgrevinki is about twice as fast as that of Girella tricuspidata at temperatures between 2–12°C, but at normal body temperature, contraction time of muscle from Girella tricuspidata (14°C) is about twice as fast as that of Pagothenia borchgrevinki (–1.9°C).  相似文献   

19.
We evaluated the effect of dietary starch level on growth performance, feed utilization, whole-body composition and activity of selected key enzymes of intermediary metabolism in gilthead sea bream juveniles reared at 18 and 25 degrees C. A diet was formulated to contain 48% crude protein, 12% lipids and 30% gelatinized maize starch (diet 30GS). Two other diets were formulated to include the same level of ingredients as diet 30GS except for the gelatinized starch, which was included at 20% (diet 20GS) or 10% (diet 10GS). No adjustment to diet composition was otherwise made. Each diet was fed to triplicate groups of gilthead sea bream (30 g initial mass) for 8 weeks, on a pair-feeding scheme. The higher temperature improved growth performance but the opposite was true for feed efficiency and protein efficiency ratio. Independently of temperature, growth performance, feed efficiency and protein efficiency ratio were lower in fish fed diet 30GS. No effect of temperature or dietary starch level on whole-body composition was noticed. Hepatosomatic index and liver glycogen were higher at 18 degrees C and, within each temperature, in fish fed diet 30GS. Glycemia was not affected by temperature, but was lower in fish fed diet 10GS. Data on enzyme activities showed that increasing water temperature enhances liver glucokinase (GK) and pyruvate kinase (PK) activities, suggesting that gilthead sea bream is more apt to use dietary starch at higher temperatures. No effect of temperature was noticed on hexokinase (HK), fructose-1,6-bisphosphatase (FBPase), glucose-6-phosphate dehydrogenase (G6PD) and glutamate dehydrogenase (GDH) activities. Dietary starch enhanced PK and FBPase activities while depressed GDH activity, suggesting a lack of significant regulation of hepatic glucose utilization and production in this species. HK, GK and G6PD activities were unaffected by dietary composition. Irrespectively of water temperature, gelatinized starch may be included up to 20% in diets for gilthead sea bream juveniles; at higher dietary levels, growth and efficiency of feed utilization are depressed.  相似文献   

20.
We evaluated the effects of diets (32/4 or 36/6 percent protein/fat) and six channel catfish families for growth performance characteristics. Two families with fast- (C) and slow- (D) growth rate and with low and high feed efficiency (FE) were selected for analyses of mitochondrial complex enzymatic activities (I, II, III, and IV) and gene expression (ND1, CYTB, COX1, COX2, ATP6) levels in liver, muscle, and intestine. There were significant differences in growth rate and nutrient retention among the families. Mitochondrial enzymatic complex activities (I-V) in the tissues were all lower in family C. Four of the five genes were down-regulated in the liver and up-regulated in the muscle for the fast growing family C. There were significant differences between diets for some mitochondrial respiratory chain enzyme activities and gene expression levels. Significant diet×family interactions were observed for some enzyme activities and gene expression levels. Changes in mitochondrial respiratory chain enzyme activities and gene expression levels provide insight into the cellular mechanisms of fish with differences in growth rate and feed efficiency. Results also suggest that genotype×diet interactions should be accounted for when considering strategies for using mitochondrial function as a criteria in channel catfish selection programs for improved growth performance characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号