首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stress-induced regulatory networks coordinated with a procaryotic developmental program were revealed by two-dimensional gel analyses of global gene expression. Four developmental stages were identified by their distinctive protein synthesis patterns using principal component analysis. Statistical analyses focused on five stress stimulons (induced by heat, cold, salt, ethanol, or antibiotic shock) and their synthesis during development. Unlike other bacteria, for which various stresses induce expression of similar sets of protein spots, in Streptomyces coelicolor heat, salt, and ethanol stimulons were composed of independent sets of proteins. This suggested independent control by different physiological stress signals and their corresponding regulatory systems. These stress proteins were also under developmental control. Cluster analysis of stress protein synthesis profiles identified 10 different developmental patterns or "synexpression groups." Proteins induced by cold, heat, or salt shock were enriched in three developmental synexpression groups. In addition, certain proteins belonging to the heat and salt shock stimulons were coregulated during development. Thus, stress regulatory systems controlling these stimulons were implicated as integral parts of the developmental program. This correlation suggested that thermal shock and salt shock stress response regulatory systems either allow the cell to adapt to stresses associated with development or directly control the developmental program.  相似文献   

2.
Partitioning of 15 proteins in polyethylene glycol (PEG)–sodium sulfate aqueous two-phase systems (ATPS) formed by PEG of two different molecular weights, PEG-600 and PEG-8000 in the presence of different buffers at pH 7.4 was studied. The effect of two salt additives (NaCl and NaSCN) on the protein partition behavior was examined. The salt effects on protein partitioning were analyzed by using the Collander solvent regression relationship between the proteins partition coefficients in ATPS with and without salt additives. The results obtained show that the concentration of buffer as well as the presence and concentration of salt additives affects the protein partition behavior. Analysis of ATPS in terms of the differences between the relative hydrophobicity and electrostatic properties of the phases does not explain the protein partition behavior. The differences between protein partitioning in PEG-600–salt and PEG-8000–salt ATPS cannot be explained by the protein size or polymer excluded volume effect. It is suggested that the protein–ion and protein–solvent interactions in the phases of ATPS are primarily important for protein partitioning.  相似文献   

3.

Key message

Cowpea cultivars differing in salt tolerance reveal differences in protein profiles and adopt different strategies to overcome salt stress. Salt-tolerant cultivar shows induction of proteins related to photosynthesis and energy metabolism.

Abstract

Salinity is a major abiotic stress affecting plant cultivation and productivity. The objective of this study was to examine differential proteomic responses to salt stress in leaves of the cowpea cultivars Pitiúba (salt tolerant) and TVu 2331 (salt sensitive). Plants of both cultivars were subjected to salt stress (75 mM NaCl) followed by a recovery period of 5 days. Proteins extracted from leaves of both cultivars were analyzed by two-dimensional electrophoresis (2-DE) under salt stress and after recovery. In total, 22 proteins differentially regulated by both salt and recovery were identified by LC–ESI–MS/MS. Our current proteome data revealed that cowpea cultivars adopted different strategies to overcome salt stress. For the salt-tolerant cultivar (Pitiúba), increase in abundance of proteins involved in photosynthesis and energy metabolism, such as rubisco activase, ribulose-5-phosphate kinase (Ru5PK) (EC 2.7.1.19), glycine decarboxylase (EC 1.4.4.2) and oxygen-evolving enhancer (OEE) protein 2, was observed. However, these vital metabolic processes were more profoundly affected in salt-sensitive cultivar (TVu), as indicated by the down-regulation of OEE protein 1, Mn-stabilizing protein-II, carbonic anhydrase (EC 4.2.1.1) and Rubisco (EC 4.1.1.39), leading to energy reduction and a decline in plant growth. Other proteins differentially regulated in both cultivars corresponded to different physiological responses. Overall, our results provide information that could lead to a better understanding of the molecular basis of salt tolerance and sensitivity in cowpea plants.  相似文献   

4.
Cereal embryos are a model system to study desiccation tolerance due to their ability to survive extreme water loss during late embryogenesis. To identify proteins accumulating in mature embryos which can be used as potential markers for dehydration tolerance, we compared the embryo proteome from two durum wheat genotypes (Triticum durum Desf.), Mahmoudi (salt and drought sensitive) and Om Rabia3 (salt and drought tolerant). Total protein extracts from wheat embryos were analyzed by using conventional 2-DE and ProteomeLab PF-2D. Analysis using different pH ranges showed that a larger number of fractions were solved by LC, than by conventional 2-DE at extreme technical pHs (pH 4.0–5.0 and pH 6.5–8.0). In contrast, at intermediate pHs (pH 5.0–6.5), resolution was better in 2-DE gels. The two techniques were used in parallel to analyze total protein extracts from embryos of the two wheat varieties. Several proteins belonging to the seed storage family, LEA-type/heat shock proteins, enzyme metabolism and radical scavengers were identified by analysis of trypsin digested peptides via mass spectrometry. These proteins accumulate in different amounts in embryos of tolerant and sensitive wheat varieties. The differences in expression pattern were further validated by enzyme activity, western blotting analysis and correlated with their corresponding mRNA expression by RT-PCR analyses for the corresponding protein. We suggest that the differential expression pattern could be used as a basis for a biochemical screen of tolerance/sensitivity to drought and salt stress in wheat embryos and germplasm.  相似文献   

5.
Abnormal glucose metabolism in the brain is recognized to be associated with cognitive decline. Because grapes are rich in polyphenols that produce antioxidative and blood sugar-lowering effects, we investigated how grape consumption affects the expression and/or phosphorylation of neurodegeneration-related brain proteins in aged rats fed a high-fructose–high-fat (HFHF) diet. Wistar rats were maintained on the HFHF diet from the age of 8 weeks to 66 weeks, and then on an HFHF diet containing either 3% or 6% grape powder as an intervention for 12 weeks. Western blotting was performed to measure the expression/phosphorylation levels of several cortical and hippocampal proteins, including amyloid precursor protein (APP), tau, phosphatidylinositol-3-kinase (PI3K), extracellular signal-regulated kinase (ERK), receptor for advanced glycation end products (RAGEs), erythroid 2-related factor 2 (Nrf2) and brain-derived neurotrophic factor (BDNF). Inclusion of up to 6% grape powder in the diet markedly reduced RAGE expression and tau hyperphosphorylation, but upregulated the expression of Nrf2 and BDNF, as well as the phosphorylation of PI3K and ERK, in the brain tissues of aged rats fed the HFHF diet. Thus, grape powder consumption produced beneficial effects in HFHF-diet-fed rats, exhibiting the potential to ameliorate changes in neurodegeneration-related proteins in the brain.  相似文献   

6.
Mass spectrometry–based proteomics was employed to analyze urine from eight healthy volunteers during a 21-day bed rest (BR) study. The analysis included trypsinolysis in solution prior to liquid chromatography and tandem mass spectrometry (LC-MS/MS), and spectrum processing using the bioinformatic tools. Relying on 221 IPI indices with scores from 24 to 1700, 169 different proteins were identified. Molecular functions, biological processes, and cell components as the loci of certain protein functioning were determined with the help of UniProt-GOA. Associative interactions networks were constructed using BiNGO. There were 14 proteins identified that were functional in the cardiovascular system mostly. They were annotated, and the dynamics of their occurrence throughout the experiment was considered. Grounding on the biological functions of these proteins and an assumption of eligible activation of different biological processes during BR was made.  相似文献   

7.
The present report describes application of advanced analytical methods to establish correlation between changes in human serum proteins of patients with coronary atherosclerosis (protein metabolism) before and after moderate beer consumption. Intrinsic fluorescence, circular dichroism (CD), differential scanning calorimetry and hydrophobicity (So) were used to study human serum proteins. Globulin and albumin from human serum (HSG and HSA, respectively) were denatured with 8 m urea as the maximal concentration. The results obtained provided evidence of differences in their secondary and tertiary structures. The thermal denaturation of HSA and HSG expressed in temperature of denaturation (Td, degrees C), enthalpy (DeltaH, kcal/mol) and entropy (DeltaS kcal/mol K) showed qualitative changes in these protein fractions, which were characterized and compared with fluorescence and CD. Number of hydrogen bonds (n) ruptured during this process was calculated from these thermodynamic parameters and then used for determination of the degree of denaturation (%D). Unfolding of HSA and HSG fractions is a result of promoted interactions between exposed functional groups, which involve conformational changes of alpha-helix, beta-sheet and aperiodic structure. Here evidence is provided that the loosening of the human serum protein structure takes place primarily in various concentrations of urea before and after beer consumption (BC). Differences in the fluorescence behavior of the proteins are attributed to disruption of the structure of proteins by denaturants as well as by the change in their compactability as a result of ethanol consumption. In summary, thermal denaturation parameters, fluorescence, So and the content of secondary structure have shown that HSG is more stable fraction than HSA.  相似文献   

8.
Pradeep L  Udgaonkar JB 《Biochemistry》2004,43(36):11393-11402
To probe for residual structure present in the urea-unfolded form of the small protein barstar, to determine how salt might modulate such structure, and to determine how such structure might affect the stability of the protein, mutant variants that display m values different from that of the wild-type protein have been studied. The mutant proteins were obtained by site-directed mutagenesis at residue positions located on the surface of the folded protein. The m value, which represents the preferential free energy of interaction of urea with the unfolded form in comparison to that with the folded state, was determined from equilibrium urea-induced unfolding curves. Mutant proteins for which the m values were significantly greater than (m(+) mutant forms), significantly smaller than (m(-) mutant forms), or similar to (m(0) mutant forms) the m value determined for the wild-type protein were studied. The unfolded forms of the m(0), m(+) and m(-) mutant proteins represent different components within the unfolded form ensemble, which differ from each other in their solvent-exposed surface areas. Hence, the m value has been used as a measure of residual structure in the unfolded form. To further understand the nature of structures present in the unfolded form ensemble, the effects of the salt KCl on the stabilities of the wild-type and the mutant proteins, as well as on the structures present in the unfolded form ensemble, were also studied. It was found that the m values of the m(0), m(+) and m(-) mutant proteins all converge to the wild-type m value in the presence of KCl. This result indicates that the salt modulates residual structure in the unfolded form by screening electrostatic interactions that maintain compact and expanded components in the unfolded protein ensemble. The use of free energy cycles has allowed the effect of salt on the structure and free energy of the unfolded protein to be related to the stability of the protein.  相似文献   

9.
The plasma membrane of a cyanobacterial cell is crucial as barrier against the outer medium. It is also an energy-transducing membrane as well as essential for biogenesis of cyanobacterial photosystems and the endo-membrane system. Previously we have identified 57 different proteins in the plasma membrane of control cells from Synechocystis sp. strain PCC6803. In the present work, proteomic screening of salt-stress proteins in the plasma membrane resulted in identification of 109 proteins corresponding to 66 different gene products. Differential and quantitative analyses of 2-DE profiles of plasma membranes isolated from both control and salt-acclimated cells revealed that twenty proteins were enhanced/induced and five reduced during salt stress. More than half of the enhanced/induced proteins were periplasmic binding proteins of ABC-transporters or hypothetical proteins. Proteins that exhibited the highest enhancement during salt stress include FutA1 (Slr1295) and Vipp1 (Sll0617), which have been suggested to be involved in protection of photosystem II under iron deficiency and in thylakoid membrane formation, respectively. Other salt-stress proteins were regulatory proteins such as PII protein, LrtA, and a protein that belongs to CheY subfamily. The physiological significance of the identified salt-stress proteins in the plasma membrane is discussed integrating our current knowledge on cyanobacterial stress physiology.  相似文献   

10.
11.
Thirty-one proteins and viruses that we knew from our own experience could be crystallized, or had been reported to have been crystallized by others, were investigated. In this experiment, each protein or virus was subjected to a crystallization screen of 12 different salts, each titrated to pH 7.2 beforehand, at concentrations ranging from 20% saturation to 90% saturation. Eight macromolecules failed to crystallize at all from any salt and were omitted from consideration. From the remaining 23 proteins, each salt was scored according to how many proteins and viruses it successfully crystallized. Among several results, one was particularly striking. Sodium malonate clearly was much more successful than any other salt, resulting in the crystallization of 19 of the 23 macromolecules, almost twice as effective as the next most successful salt, which was a draw between sodium acetate, sodium tartrate, sodium formate, and ammonium sulfate (11 of 22). The high success rate of sodium malonate in producing crystals was even more impressive when an overall unique success rate with individual macromolecules was considered.  相似文献   

12.
A theoretical study on the stability of the salt bridges in the gas phase, in solution, and in the interior of proteins is presented. The study is mainly focused on the interaction between acetate and methylguanidinium ions, which were used as model compounds for the salt bridge between Asp (Glu) and Arg. Two different solvents (water and chloroform) were used to analyze the effect of varying the dielectric constant of the surrounding media on the salt bridge interaction. Calculations in protein environments were performed by using a set of selected protein crystal structures. In all cases attention was paid to the difference in stability between the ion pair and neutral hydrogen-bonded forms. Comparison of the results determined in the gas phase and in solution allows us to stress the large influence of the environment on the binding process, as well as on the relative stability between the ionic and neutral complexes. The high anisotropy of proteins and the local microenvironment in the interior of proteins make a decisive contribution in modulating the energetics of the salt bridge. In general, the formation of salt bridges in proteins is not particularly favored, with the ion pair structure being preferred over the interaction between neutral species. Proteins 32:67–79, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
The study was conducted during the experiment with a 105-day isolation in an experimental complex. Urine samples were collected from six healthy volunteers. The physical activity, diurnal rhythm, temperature parameters, and levels of oxygen and carbon dioxide were controlled during the experiment. According to the program, food intake (electrolysis, water, calories, fat, carbohydrates, protein, vitamins, etc.) at each stage of the experiment was normalized to the body weight of each subject. All samples were analyzed using an LTQ FT MS ionic cyclotron resonance mass spectrometer with Fourier transform (Thermo) on the basis of the accurate mass and time (AMT) tag approach. Among more than 20 000 peptides, 690 proteotypical proteins were found. A total of 600 urine proteins were identified to be included in the database of healthy human urine proteins. For physiological interpretation of the proteome data, computer ANDCell and AND-Viso systems were used. Clustering of proteins and the application of these systems revealed proteins that were most closely associated with the regime of sodium intake and allowed building the network of their interactions.  相似文献   

14.
High-resolution fractionation of proteins using ultrafiltration is feasible only at highly optimised conditions. Conventional process optimisation methodology demands both time and material. Pulsed sample injection ultrafiltration has been suggested as a rapid process optimisation technique. In the present work the scope of this technique is further extended by "parameter scanning ultrafiltration," which involves continuous change of a process parameter (e.g., pH, salt concentration). The time and material consumption are thus further reduced. The technique was validated using different proteins and membranes. Sieving coefficients at different pH and salt concentration were compared to those obtained in fixed parameter ultrafiltration experiments. As fractionation case studies the separation of monoclonal antibody from bovine serum albumin and separation of human IgG from human serum albumin were examined.  相似文献   

15.
Quantitative treatment of multiparametric determination on cells using flow cytofluorometry was made possible by the development of a computer program that allows the relative quantification of a specific protein as a function of the position of cells during the cell cycle. This type of analysis provides interesting information about the distribution of a given protein throughout the cell cycle. Four examples showing the distribution of specific proteins illustrate such a quantification during the cell cycle in two different cell lines. The program also allows for the handling of a series of histograms obtained by the analysis of protein distribution as a function of DNA content in relation to a third parameter. To illustrate possible applications for this program, the evolution of the distribution of two proteins, the oncoprotein p53 and the histone H1(0), during the induced differentiation of murine erythroleukemia cells has been studied.  相似文献   

16.
Salt (NaCl) is a common physiological stressor of plants. To better understand how germinating seeds respond to salt stress, we examined the changes that occurred in the proteome of maize seeds during NaCl-treated germination. Phenotypically, salt concentrations less than 0.2 M appear to delay germination, while higher concentrations disrupt development completely, leading to seed death. The identities of 96 proteins with expression levels altered by NaCl-incubation were established using 2-DE-MALDI-TOF–MS and 2-DE-MALDI-TOF–MS/MS. Of these 96 proteins, 79 were altered greater than twofold when incubated with a 0.2 M salt solution, while 51 were altered when incubated with a 0.1 M salt solution. According to their functional annotations in the Swiss-Prot protein-sequence databases, these proteins are mainly involved in seed storage, energy metabolism, stress response, and protein metabolism. Notably, the expression of proteins that respond to abscisic acid signals increased in response to salt stress. The results of this study provide important clues as to how NaCl stresses the physiology of germinating maize seeds.  相似文献   

17.
Responses of plants to salinity stress and the development of salt tolerance are extremely complex. Proteomics is a powerful technique to identify proteins associated with a particular environmental or developmental signal. We employed a proteomic approach to further understand the mechanism of plant responses to salinity in a salt-tolerant (Afzal) and a salt-sensitive (Line 527) genotype of barley. At the 4-leaf stage, plants were exposed to 0 (control) or 300 mM NaCl. Salt treatment was maintained for 3 weeks. Total proteins of leaf 4 were extracted and separated by two-dimensional gel electrophoresis. More than 500 protein spots were reproducibly detected. Of these, 44 spots showed significant changes to salt treatment compared to the control: 43 spots were upregulated and 1 spot was downregulated. Using MALDI-TOF-TOF MS, we identified 44 cellular proteins have been identified, which represented 18 different proteins and were classified into seven categories and a group with unknown biological function. These proteins were involved in various many cellular functions. Up regulation of proteins which involved in reactive oxygen species scavenging, signal transduction, protein processing and cell wall may increase plant adaptation to salt stress. The upregulation of the three of four antioxidant proteins (thioredoxin, methionine sulfoxide reductase and dehydroascorbate reductase) in susceptible genotype Line 527 suggesting a different tolerance mechanism (such as tissue tolerance) to tolerate a salinity condition in comparison with the salt sensitive genotype.  相似文献   

18.
A monoclonal antibody raised against nuclear matrix proteins detected a protein of basic pI in human nuclear matrix protein samples of various cellular origin. The ubiquitously occurring (common) nuclear matrix protein was identified as splicing factor PSF (PTB associated splicing factor). The interaction between the splicing factors PSF and PTB/hnRNP I was confirmed by co-immunoprecipitation from nuclear salt extracts. However, the nuclear localization of PSF and PTB and their distribution in subnuclear fractions differed markedly. Isolated nuclear matrices contained the bulk of PSF, but only minor amounts of PTB. In confocal microscopy both proteins appeared in speckles, the majority of which did not co-localize. Removing a large fraction of the soluble PTB structures by salt extraction revealed some colocalization of the more stable PTB fraction with PSF. These PTB/PSF complexes as well as the observed PSF-PTB interaction may reflect the previously reported presence of PTB and PSF in spliceosomal complexes during RNA processing. The present data, however, point to different cellular distribution and nuclear matrix association of the majority of PSF and PTB.  相似文献   

19.
The structural role of extracellular-matrix (ECM) has been recognized in both plants and animals as a support and anchorage-inducing cell behavior. Unlike the animal ECM proteins, the proteins that have been identified in plant ECM have not yet been purified from whole plants and cell wall. As several immunological data indicate the presence of animal ECM-like proteins in plants cell wall, especially under salt stress or water deficit, we propose a protocol to purify a fibronectin-like protein from the cell wall of epicotyls of young germinating peas. The process consists of a combination of gelatin and heparin affinity chromatography, close to the classical one used for human blood plasma fibronectin purification. Proteins with affinity for gelatin and heparin, immunologically related to human fibronectin, are found in the cell wall of epicotyls grown under salt stress or not. Total amount of purified proteins is 3-4 times more enriched in salt stressed epicotyls. SDS-PAGE and Western blot with antibodies directed against human blood plasma fibronectin give evidence that the cell wall proteins purified by gelatin/heparin affinity chromatography are closely related to human fibronectin. The present protocol leads us to purify 17 (control) or 65 (salt stress) micrograms of protein per g of fresh starting material. Our results suggest that plant cell wall proteins can provide better anchorage of the cell to its cell-wall during salt stress or water deficit and could be considered not only as cell adhesion but also as signaling molecules.  相似文献   

20.
The development and application of a miniaturized affinity system for the preparation and release of intact immune complexes are demonstrated. Antibodies were reversibly affinity‐adsorbed on pipette tips containing protein G´ and protein A, respectively. Antigen proteins were digested with proteases and peptide mixtures were exposed to attached antibodies; forming antibody–epitope complexes, that is, immune complexes. Elution with millimolar indole propionic acid (IPA)‐containing buffers under neutral pH conditions allowed to effectively isolate the intact immune complexes in purified form. Size exclusion chromatography was performed to determine the integrity of the antibody–epitope complexes. Mass spectrometric analysis identified the epitope peptides in the respective SEC fractions. His‐tag‐containing recombinant human glucose‐6‐phosphate isomerase in combination with an anti‐His‐tag monoclonal antibody was instrumental to develop the method. Application was extended to the isolation of the intact antibody–epitope complex of a recombinant human tripartite motif 21 (rhTRIM21) auto‐antigen in combination with a rabbit polyclonal anti‐TRIM21 antibody. Peptide chip analysis showed that antibody–epitope binding of rhTRIM21 peptide antibody complexes was not affected by the presence of IPA in the elution buffer. By contrast, protein G´ showed an ion charge structure by electrospray mass spectrometry that resembled a denatured conformation when exposed to IPA‐containing buffers. The advantages of this novel isolation strategy are low sample consumption and short experimental duration in addition to the direct and robust methodology that provides easy access to intact antibody–antigen complexes under neutral pH and low salt conditions for subsequent investigations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号