共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Plant Terpenoids: Biosynthesis and Ecological Functions 总被引:7,自引:0,他引:7
Ai-Xia Cheng Yong-Gen Lou Ying-Bo Mao Shan Lu Ling-Jian Wang Xiao-Ya Chen 《植物学报(英文版)》2007,49(2):179-186
Among plant secondary metabolites terpenolds are a structurally most diverse group; they function as phytoalexins In plant direct defense, or as signals In Indirect defense responses which involves herbivores and their natural enemies. In recent years, more and more attention has been paid to the Investigation of the ecological role of plant terpenolds. The biosynthesis pathways of monoterpenes, sesquiterpenes, and diterpenes Include the synthesis of C5 precursor isopentenyl diphosphate (IPP) and Its allylic isomer dlmethylallyl dlphosphate (DMAPP), the synthesis of the immediate diphosphate precursors, and the formation of the diverse terpenoids. Terpene synthases (TPSs) play a key role In volatile terpene synthesis. By expression of the TPS genes, significant achievements have been made on metabolic engineering to Increase terpenoid production. This review mainly summarizes the recent research progress In elucidating the ecological role of terpenoids and characterization of the enzymes Involved in the terpenold biosynthesis. Spatial and temporal regulations of terpenoids metabolism are also discussed. 相似文献
3.
Radhika Susarla Lei Liu Elizabeth A. Walker Iwona J. Bujalska Jawaher Alsalem Geraint P. Williams Sreekanth Sreekantam Angela E. Taylor Mohammad Tallouzi H. Susan Southworth Philip I. Murray Graham R. Wallace Saaeha Rauz 《PloS one》2014,9(4)
Innate immune responses have a critical role in regulating sight-threatening ocular surface (OcS) inflammation. While glucocorticoids (GCs) are frequently used to limit tissue damage, the role of intracrine GC (cortisol) bioavailability via 11-beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in OcS defense, remains unresolved. We found that primary human corneal epithelial cells (PHCEC), fibroblasts (PHKF) and allogeneic macrophages (M1, GM-CSF; M2, M-CSF) were capable of generating cortisol (M1>PHKF>M2>PHCEC) but in corneal cells, this was independent of Toll-like receptor (TLR) activation. While PolyI∶C induced maximal cytokine and chemokine production from both PHCEC (IFNγ, CCL2, CCL3, and (CCL4), IL6, CXCL10, CCL5, TNFα) and PHKF (CCL2, IL-6, CXCL10, CCL5), only PHKF cytokines were inhibited by GCs. Both Poly I∶C and LPS challenged-corneal cells induced M1 chemotaxis (greatest LPS-PHKF (250%), but down-regulated M1 11β-HSD1 activity (30 and 40% respectively). These data were supported by clinical studies demonstrating reduced human tear film cortisol∶cortisone ratios (a biomarker of local 11β-HSD1 activity) in pseudomonas keratitis (1∶2.9) versus healthy controls (1∶1.3; p<0.05). This contrasted with putative TLR3-mediated OcS disease (Stevens-Johnson Syndrome, Mucous membrane pemphigoid) where an increase in cortisol∶cortisone ratio was observed (113.8∶1; p<0.05). In summary, cortisol biosynthesis in human corneal cells is independent of TLR activation and is likely to afford immunoprotection under physiological conditions. Contribution to ocular mucosal innate responses is dependent on the aetiology of immunological challenge. 相似文献
4.
Plant diseases, caused by microbes, threaten world food, feed, and bioproduct security. Plant resistance has not been effectively deployed to improve resistance in plants for lack of understanding of biochemical mechanisms and genetic bedrock of resistance. With the advent of genome sequencing, the forward and reverse genetic approaches have enabled deciphering the riddle of resistance. Invading pathogens produce elicitors and effectors that are recognized by the host membrane-localized receptors, which in turn induce a cascade of downstream regulatory and resistance metabolite and protein biosynthetic genes (R) to produce resistance metabolites and proteins, which reduce pathogen advancement through their antimicrobial and cell wall enforcement properties. The resistance in plants to pathogen attack is expressed as reduced susceptibility, ranging from high susceptibility to hypersensitive response, the shades of gray. The hypersensitive response or cell death is considered as qualitative resistance, while the remainder of the reduced susceptibility is considered as quantitative resistance. The resistance is due to additive effects of several resistance metabolites and proteins, which are produced through a network of several hierarchies of plant R genes. Plants recognize the pathogen elicitors or receptors and then induce downstream genes to eventually produce resistance metabolites and proteins that suppress the pathogen advancement in plant. These resistance genes (R), against qualitative and quantitative resistance, can be identified in germplasm collections and replaced in commercial cultivars, if nonfunctional, based on genome editing to improve plant resistance. 相似文献
5.
The Plant Dehydrins: Structure and Putative Functions 总被引:27,自引:0,他引:27
This review deals with recent data on the structure and biochemical properties of dehydrins, proteins that are normally synthesized in maturating seeds during their desiccation, and also in vegetative tissues of plants treated with abscisic acid or exposed to environmental stress factors that result in cellular dehydration. The dehydrins are considered as stress proteins involved in formation of plant protective reactions against dehydration. The generally accepted classification of dehydrins is based on their structural features, such as the presence of conserved sequences, designated as Y-, S-, and K-segments. The K-segment representing a highly conserved 15 amino acid motif (EKKGIMDKIKEKLPG) forming amphiphilic -helix has been found in all dehydrins. The pathways of regulation of dehydrin gene expression, putative functions of dehydrins, and molecular mechanisms of their actions are discussed. 相似文献
6.
类黄酮化合物在植物胁迫反应中作用的研究进展 总被引:15,自引:0,他引:15
植物胁迫发生时,一个明显的特征是在植物器官中积累红色与紫色类黄酮化合物。文章讨论了类黄酮化合物在植物胁迫保护中作用,如类黄酮化合物在抗植物UV—B辐射、抗病性以及铝毒害耐性等多方面的作用,也讨论了植物受胁迫时类黄酮积累的分子基础。 相似文献
7.
8.
Tania Beatriz Romero-Adrián Jorymar Leal-Montiel Francisca Monsalve-Castillo Edgardo Mengual-Moreno Ernesto García McGregor Lenis Perini Ana Antúnez 《Current microbiology》2010,60(2):143-155
Helicobacter pylori is a gram-negative micro-aerophilic bacterium that is widely distributed geographically and causes chronic gastritis, peptic ulcers, gastric adenocarcinoma, and mucosa-associated lymphoid tissue lymphoma. Bacterial virulence factors play an important role, since the virulent strains are more aggressive and increase the risk of developing severe clinical manifestations; in addition, other determinant factors are the nutritional state and the immune response of the host. Studies on humans, non-human primates, and rodents have reported that regulating proteins of the Th1 phenotype predominate in the immune response to the bacterial infection. The cytokines produced by this phenotype, are not very effective in eradicating the microorganism and furthermore, contribute to gastro-duodenal pathogenesis. Gastric inflammation in patients infected with H. pylori has been characterized by increased production of IL-1, IL-6, IL-12, IL-18, TNF-α, and IFN-γ. Many prophylactic and therapeutic strategies have been researched using experimental animals. The utilization and effectiveness of vaccination on humans requires more study. 相似文献
9.
转录因子是能够结合某基因上游特异核苷酸序列上的蛋白质,活化后从胞质转位至胞核,通过识别和结合基因启动子区的顺式作用元件,启动和调控基因表达。真核生物在转录水平上的基因表达调控,影响和控制着细胞和生物个体的许多生物学过程。本文综述了转录因子的结构、分类以及其在植物干旱胁迫中发挥的作用。 相似文献
10.
11.
Phytoecdysteroids: Structure,Sources, and Biosynthesis in Plants 总被引:1,自引:0,他引:1
Data on the content of ecdysteroids in plant sources are given and the ecdysteroid biosynthesis and role in plants are discussed. 相似文献
12.
Ky Young Park So Yeon Seo Beak-Rock Oh Jeong-Woo Seo Yu Jung Kim 《Journal of Plant Biology》2018,61(6):424-434
Plants harbor a wide diversity of microorganisms, which are involved in major plant functions such as nutrition and resistance to biotic and abiotic stresses. Recently, the importance of the rhizosphere microbiome for plant growth has been widely recognized. Therefore, we researched the effects of 2,3-butanediol (2,3-BD) in order to obtain insights into systemic acquired resistance (SAR) mediated through reactive oxygen species (ROS) homeostasis and pathogenesis-related (PR) gene expression. Syringe infiltration with Paenibacillus polymyxa DSM 365 surprisingly mitigated cell damage, which was induced by the compatible plant pathogen Phytophtora parasitica var. nicotianae (Ppn). Furthermore, syringe infiltration with 2,3-BD produced from P. polymyxa effectively enhanced SAR to compatible Ppn through down-regulation of ROS biosynthetic genes (NtRbohD and NtRbohF) and up-regulation of ROS detoxification and PR protein expression. In addition, synergy between 2,3-BD and nonexpressor pathogenesis-related protein 1 (NPR1) enhanced resistance to pathogen infection. Taken together, our study demonstrates the potential applicability of leaf and root-associated microbiomes as biopestcides to increase efficiency and yield in agricultural systems. 相似文献
13.
14.
肿瘤进展与人免疫系统间的联系已经被广泛研究,有许多免疫分子已被证实参与其中。CD47(整合素相关蛋白)为一种免疫球蛋白超家族成员,在人免疫系统中发挥着重要功能。研究表明CD47在肿瘤细胞表面也有高表达,其高表达与肿瘤的生长、转移及复发等密切相关。肿瘤细胞表面的CD47与巨噬细胞表面的SIRPα相互作用,并发出“别吃我”的免疫抑制性信号,从而保护肿瘤细胞免受巨噬细胞吞噬。因此,开发以CD47为靶点的拮抗剂可阻断此抑制性信号,从而增强巨噬细胞的吞噬效应,以达到增强抗肿瘤免疫反应的目的。最新研究证实,CD47拮抗剂在T细胞介导的抗肿瘤免疫反应中也发挥了重要作用。本文将对CD47分子的结构功能、在抗肿瘤免疫反应中的作用及以其为靶点的拮抗剂研究进展进行综述,以期为进一步的药物开发及临床研究等提供参考。 相似文献
15.
Coelenterate Neuropeptides: Structure, Action and Biosynthesis 总被引:3,自引:0,他引:3
GRIMMELIKHUIJZEN CORNELIS J. P.; CARSTENSEN KLAUS; DARMER DOROTHEA; MOOSLER ANGELIKA; NOTHACKER HANS-PETER; REINSCHEID RAINER K.; SCHMUTZLER CORNELIA; VOLLERT HENNING; MCFARLANE IAN; RINEHART KENNETH L. 《Integrative and comparative biology》1992,32(1):1-12
Evolutionary "old" nervous systems such as those of coelenteratesare peptidergic: Using various radioimmunoassays we have nowisolated 13 novel neuropeptides from sea anemones and severalothers from hydrozoan polyps and medusae. These peptides areall structurally related and contain the C-terminal sequenceArg-X-NH2 or Lys-X-NH2, where X is Ala, Asn, Ile, Phe, Pro orTrp. Three neuropeptides have a novel N-terminal L-3-phenyllactylresidue, which protects against degradation by nonspecific aminopeptidases.The neuropeptides from sea anemones are produced by differentsets of neurones and have excitatory or inhibitory actions onisolated muscle preparations, suggesting that they are neurotransmittersor neuromodulators. We have also cloned the precursor proteinfor the sea-anemone neuropeptide Antho-RFamide (<Glu-Gly-Arg-Phe-NH2).In Calliactis parasitica this precursor harbours 19 copies ofimmature Antho-RFamide (Gln-Gly-Arg-Phe-Gly) together with 7other, putative neuropeptide sequences. The precursor of Anthopleuraelegantissima contains 14 copies of Antho-RFamide and 19 other,putative neuropeptides. This shows that the biosynthetic machineryfor neuropeptides in coelenterates, the lowest animal grouphaving a nervous system, is already very efficient and similarto that of higher invertebrates, such as molluscs and insects,and vertebrates. 相似文献
16.
Finkina E. I. Melnikova D. N. Bogdanov I. V. Ovchinnikova T. V. 《Russian Journal of Bioorganic Chemistry》2019,45(2):55-65
Russian Journal of Bioorganic Chemistry - One of the means for regulating the plant innate immune system is activating the synthesis of various defense peptides having diverse structural... 相似文献
17.
18.
19.
植物mRNA的降解对于维持其生化和细胞学的功能都是必需的,而且这种降解要根据植物发育和外界环境的变化进行及时的调整。与酵母和哺乳动物相比,人们对植物mRNA的降解机制了解较少。对近几年来该领域的研究进展进行总结,包括参与植物mRNA降解的酶类和基因芯片技术的应用,以及mRNA降解的生物学意义等。 相似文献
20.
磷酸酶及张力蛋白同源物诱导的蛋白激酶1(PTEN induced putative kinase 1, PINK1) 是一种与线粒体自噬、帕金森病的发生发展密切相关的蛋白激酶。PINK1蛋白由581个氨基酸残基组成,具有高度保守的结构域,表达广泛。除了帕金森病,PINK1还参与多种疾病的发生、发展和调控,如肿瘤、糖尿病、心肺功能异常等。近年的研究表明,PINK1的表达影响T细胞的增殖和分化,抑制线粒体抗原递呈,参与调节机体固有免疫反应和炎症反应。另外,炎症小体NLRP3对肺内皮细胞的调节作用也与PINK1表达有关。PINK1也能通过NLRP3调节炎症介质的释放,参与脓毒症诱导的免疫代谢活动。本文就近年来PINK1与炎症、免疫反应的相关研究进行综述。 相似文献