首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Indo-Pacific lionfish (Pterois volitans and P. miles) have spread swiftly across the Western Atlantic, producing a marine predator invasion of unparalleled speed and magnitude. There is growing concern that lionfish will affect the structure and function of invaded marine ecosystems, however detrimental impacts on natural communities have yet to be measured. Here we document the response of native fish communities to predation by lionfish populations on nine coral reefs off New Providence Island, Bahamas. We assessed lionfish diet through stomach contents analysis, and quantified changes in fish biomass through visual surveys of lionfish and native fishes at the sites over time. Lionfish abundance increased rapidly between 2004 and 2010, by which time lionfish comprised nearly 40% of the total predator biomass in the system. The increase in lionfish abundance coincided with a 65% decline in the biomass of the lionfish's 42 Atlantic prey fishes in just two years. Without prompt action to control increasing lionfish populations, similar effects across the region may have long-term negative implications for the structure of Atlantic marine communities, as well as the societies and economies that depend on them.  相似文献   

2.
3.
Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans) is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss) were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration) of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion.  相似文献   

4.
Lionfish (Pterois volitans), venomous predators from the Indo-Pacific, are recent invaders of the Caribbean Basin and southeastern coast of North America. Quantification of invasive lionfish abundances, along with potentially important physical and biological environmental characteristics, permitted inferences about the invasion process of reefs on the island of San Salvador in the Bahamas. Environmental wave-exposure had a large influence on lionfish abundance, which was more than 20 and 120 times greater for density and biomass respectively at sheltered sites as compared with wave-exposed environments. Our measurements of topographic complexity of the reefs revealed that lionfish abundance was not driven by habitat rugosity. Lionfish abundance was not negatively affected by the abundance of large native predators (or large native groupers) and was also unrelated to the abundance of medium prey fishes (total length of 5–10 cm). These relationships suggest that (1) higher-energy environments may impose intrinsic resistance against lionfish invasion, (2) habitat complexity may not facilitate the lionfish invasion process, (3) predation or competition by native fishes may not provide biotic resistance against lionfish invasion, and (4) abundant prey fish might not facilitate lionfish invasion success. The relatively low biomass of large grouper on this island could explain our failure to detect suppression of lionfish abundance and we encourage continuing the preservation and restoration of potential lionfish predators in the Caribbean. In addition, energetic environments might exert direct or indirect resistance to the lionfish proliferation, providing native fish populations with essential refuges.  相似文献   

5.
Invasive Indo-Pacific red lionfish, Pterois volitans, were first reported in the northern Gulf of Mexico (nGOM) in summer 2010. To examine potential impacts on native reef fish communities, lionfish density and size distributions were estimated from fall 2010 to fall 2013 with a remotely operated vehicle at natural (n = 16) and artificial (n = 22) reef sites. Lionfish (n = 934) also were sampled via spearfishing to examine effects of habitat type, season, and fish size on their diet and trophic ecology. There was an exponential increase in lionfish density at both natural and artificial reefs over the study period. By fall 2013, mean lionfish density at artificial reefs (14.7 fish 100 m−2) was two orders of magnitude higher than at natural reefs (0.49 fish 100 m−2), and already was among the highest reported in the western Atlantic. Lionfish diet was significantly different among habitats, seasons, and size classes, with smaller (<250 mm total length) fish consuming more benthic invertebrates and the diet of lionfish sampled from artificial reefs being composed predominantly of non-reef associated prey. The ontogenetic shift in lionfish feeding ecology was consistent with δ15N values of white muscle tissue that were positively related to total length. Overall, diet results indicate lionfish are generalist mesopredators in the nGOM that become more piscivorous at larger size. However, lionfish diet was much more varied at artificial reef sites where they clearly were foraging on open substrates away from reef structure. These results have important implications for tracking the lionfish invasion in the nGOM, as well as estimating potential direct and indirect impacts on native reef fish communities in this region.  相似文献   

6.
在海洋牧场建设过程中,生态调控方式实施后对海洋牧场生态系统的影响通常难以预测,这对海洋牧场的生态安全和高质量发展提出了严峻挑战。为此,建立了一种基于定性网络模型(Qualitative network model, QNM)的海洋牧场生态系统模拟评价方法,并以獐子岛海洋牧场近岸增殖海域作为研究区域,构建以增殖目标种为核心的定性网络模型,模拟评估海洋牧场3种不同类型的生态调控情景(增殖目标种、移除捕食者、海藻场修复)及其复合条件下,牧场群落范围内的响应,分析海洋牧场生态调控策略与生物功能群变化之间潜在关系。结果显示:目标种增殖(仿刺参和虾夷扇贝)产生的上行效应导致其捕食者呈现积极响应,产生的下行效应导致其它底栖动物、浮游植物和有机碎屑等功能群呈现消极响应,移除捕食者海星产生的下行效应导致虾夷扇贝呈现积极响应,表明在增殖区清除敌害生物的重要性,海藻场修复对整个群落有明显的积极影响,体现了海藻场在养护近岸生态系统的重要生态意义。研究表明:QNM可有效识别生态系统潜在的营养级联效应,评估生物功能群的响应,基于QNM的海洋牧场生态调控模拟评价方法,突破了定量食物网模型在数据有限系统中使用的局限性,可为海洋牧场建设的生态调控策略制定提供科学参考。  相似文献   

7.
Invasive species cause catastrophic alterations to communities worldwide by changing the trophic balance within ecosystems. Ever since their introduction in the mid 1980''s common red lionfish, Pterois volitans, are having dramatic impacts on the Caribbean ecosystem by displacing native species and disrupting food webs. Introduced lionfish capture prey at extraordinary rates, altering the composition of benthic communities. Here we demonstrate that the extraordinary success of the introduced lionfish lies in its capacity to circumvent prey risk assessment abilities as it is virtually undetectable by prey species in its native range. While experienced prey damselfish, Chromis viridis, respond with typical antipredator behaviours when exposed to a common predatory rock cod (Cephalopholis microprion) they fail to visibly react to either the scent or visual presentation of the red lionfish, and responded only to the scent (not the visual cue) of a lionfish of a different genus, Dendrochirus zebra. Experienced prey also had much higher survival when exposed to the two non-invasive predators compared to P. volitans. The cryptic nature of the red lionfish has enabled it to be destructive as a predator and a highly successful invasive species.  相似文献   

8.
Food web models are powerful tools to inform management of lake ecosystems, where top-down (predation) and bottom-up (resource) controls likely propagate through multiple trophic levels because of strong predator–prey links. We used the Ecopath with Ecosim modeling approach to assess these controls on the Lake Huron main basin food web and the 2003 collapse of an invasive pelagic prey fish, alewife (Alosa pseudoharengus). We parameterized two Ecopath models to characterize food web changes occurring between two study periods of 1981–1985 and 1998–2002. We also built an Ecosim model and simulated food web time-dynamics under scenarios representing different levels of top-down control by Chinook salmon (Oncorhynchus tshawytscha) and of bottom-up control by quagga mussels (Dreissena rostriformis bugensis) and nutrients. Ecopath results showed an increase in the relative importance of bottom-up controls between the two periods, as production decreased across all trophic levels. The production of non-dreissenid benthos decreased most, which could cause decreases in production of pelagic prey fishes feeding on them. Ecosim simulation results indicated that the alewife collapse was caused by a combination of top-down and bottom-up controls. Results showed that while controls by Chinook salmon were relatively constant before alewife collapse, controls by quagga mussels and nutrients increased jointly to unsustainable levels. Under current conditions of low nutrients and high quagga mussel biomass, simulation results showed that recovery of alewives is unlikely regardless of Chinook salmon biomass in Lake Huron, which implies that the shrinking prey base cannot support the same level of salmonine predators as that prevailed during the 1980s.  相似文献   

9.
Invasive Indo-Pacific red lionfish (Pterois volitans) have become well-established residents within reef communities across the western Atlantic Ocean where they pose substantial threats to native fish communities and reef ecosystems. Species-specific identification of prey is necessary to elucidate predator–prey interactions, but can be challenging with traditional visual identification methods given prey are often highly digested, thus not identifiable visually. To supplement visual diet analysis of lionfish (n = 934) sampled in the northern Gulf of Mexico, we applied DNA barcoding to identify otherwise unidentifiable fish prey (n = 696) via amplification of the cytochrome c oxidase subunit I (COI) of the mitochondrial genome. Barcoding nearly doubled the number of identifiable fish prey, thereby greatly enhancing our ability to describe lionfish diet. Thirty-three fish prey species were identified via barcoding, twenty-four of which were not previously detected by traditional methods. Some exploited reef fishes were newly reported (e.g., red snapper, Lutjanus campechanus) or found to constitute higher proportions of lionfish diet than previously reported (e.g., vermilion snapper, Rhomboplites aurorubens). Barcoding added a significant amount of new dietary information, and we observed the highest prey diversity reported to date for invasive lionfish. Potential cannibalism on juveniles also was identified via DNA barcoding, with the highest incidence corresponding to high lionfish densities, thus suggesting density-dependent prey demand may have driven this response. Overall, DNA barcoding greatly enhanced our ability to describe invasive lionfish diet in this study, suggesting that even studies with relatively large diet sample sizes could benefit from barcoding analysis.  相似文献   

10.
In Caribbean reefs, the lionfish Pterois volitans is an invasive species that causes severe negative ecological effects, especially as this crepuscular predator consumes very diverse prey. Lionfish are not active during the day and stay in their refuges, sharing these spaces with various other fishes. The aim of this study is to determine which fishes are associated with the lionfish in their shelters, and what characteristics of both the invasive and native species may influence and explain such coexistence between a predator and its potential prey. Through diving and snorkelling, we visited 141 lionfish refuges, mostly caves, where we observed 204 lionfish and 494 other fish from 16 native species. We recorded species and abundance, as well as lionfish size and abundance. Half of the lionfish were observed in groups and the majority were large-sized. The association with most fish species seems fortuitous, but three species, Gramma loreto, Chromis cyanea and Canthigaster rostrata, were frequently observed in association with lionfish. Numerous fish juveniles, most likely Scarus coeruleus, were also observed together with the invasive predator. The more commonly associated fishes, particularly G. loreto, are mostly associated with large-sized lionfish that were found in groups. The associated fishes are also generally found in groups. Gramma loreto is a potential cleaner of the lionfish; the reasons for the association between these fish species and the invasive lionfish may be more complex than a simple predator-prey relationship and are discussed based on their biological traits and previously reported lionfish trophic ecology and predation behaviour.  相似文献   

11.
Mesophotic coral reefs (30–150 m) have been assumed to be physically and biologically connected to their shallow-water counterparts, and thus may serve as refugia for important taxonomic groups such as corals, sponges, and fish. The recent invasion of the Indo–Pacific lionfish (Pterois volitans) onto shallow reefs of the Caribbean and Bahamas has had significant, negative, effects on shallow coral reef fish populations. In the Bahamas, lionfish have extended their habitat range into mesophotic depths down to 91 m where they have reduced the diversity of several important fish guilds, including herbivores. A phase shift to an algal dominated (>50% benthic cover) community occurred simultaneously with the loss of herbivores to a depth of 61 m and caused a significant decline in corals and sponges at mesophotic depths. The effects of this invasive lionfish on mesophotic coral reefs and the subsequent changes in benthic community structure could not be explained by coral bleaching, overfishing, hurricanes, or disease independently or in combination. The significant ecological effects of the lionfish invasion into mesophotic depths of coral reefs casts doubt on whether these communities have the resilience to recover themselves or contribute to the recovery of their shallow water counterparts as refugia for key coral reef taxa.  相似文献   

12.
Medium-sized mammalian predators (i.e. mesopredators) on islands are known to have devastating effects on the abundance and diversity of terrestrial vertebrates. Mesopredators are often highly omnivorous, and on islands, may have access not only to terrestrial prey, but to marine prey as well, though impacts of mammalian mesopredators on marine communities have rarely been considered. Large apex predators are likely to be extirpated or absent on islands, implying a lack of top-down control of mesopredators that, in combination with high food availability from terrestrial and marine sources, likely exacerbates their impacts on island prey. We exploited a natural experiment—the presence or absence of raccoons (Procyon lotor) on islands in the Gulf Islands, British Columbia, Canada—to investigate the impacts that this key mesopredator has on both terrestrial and marine prey in an island system from which all native apex predators have been extirpated. Long-term monitoring of song sparrow (Melospiza melodia) nests showed raccoons to be the predominant nest predator in the Gulf Islands. To identify their community-level impacts, we surveyed the distribution of raccoons across 44 Gulf Islands, and then compared terrestrial and marine prey abundances on six raccoon-present and six raccoon-absent islands. Our results demonstrate significant negative effects of raccoons on terrestrial, intertidal, and shallow subtidal prey abundance, and point to additional community-level effects through indirect interactions. Our findings show that mammalian mesopredators not only affect terrestrial prey, but that, on islands, their direct impacts extend to the surrounding marine community.  相似文献   

13.
Less than a decade after being observed off Florida, the invasive Indo-Pacific lionfish is now widely distributed off the southeast coast of the United States. As a step towards measuring invasion impacts to native communities, we examine the magnitude and extent of this invasion by first, compiling reports of lionfish to provide range information and second, estimate lionfish abundance from two separate studies. We also estimate native grouper (epinepheline serranids) abundance to better assess and compare lionfish abundances. In the first study we conducted SCUBA diver visual transect surveys at 17 different locations off the North Carolina coast in water depths of 35–50 m. In the second study, we conducted 27 Remote Operated Vehicle (ROV) transect surveys at five locations from Florida to North Carolina in water depths of 50–100 m. In both studies, lionfish were found to be second in abundance only to scamp (Mycteroperca phenax). Lionfish were found in higher abundance in the shallower North Carolina SCUBA surveys ( ha−1) than in the deep water ROV surveys ( ha−1). Lionfish reports continue to expand most recently into the Bahamas, raising the specter of further spread into the Caribbean and Gulf of Mexico. The potential impacts of lionfish to native communities are likely to be through direct predation, competition and overcrowding. The high number of lionfish present in the ecosystem increases the potential for cascading impacts throughout the food chain. Within the southeast region the combined effects of climate change, overfishing and invasive species may have irreversible consequences to native communities in this region. An erratum to this article can be found at  相似文献   

14.
Climate change is inducing deep modifications in species geographic ranges worldwide. However, the consequences of such changes on community structure are still poorly understood, particularly the impacts on food‐web properties. Here, we propose a new framework, coupling species distribution and trophic models, to predict climate change impacts on food‐web structure across the Mediterranean Sea. Sea surface temperature was used to determine the fish climate niches and their future distributions. Body size was used to infer trophic interactions between fish species. Our projections reveal that 54 fish species of 256 endemic and native species included in our analysis would disappear by 2080–2099 from the Mediterranean continental shelf. The number of feeding links between fish species would decrease on 73.4% of the continental shelf. However, the connectance of the overall fish web would increase on average, from 0.26 to 0.29, mainly due to a differential loss rate of feeding links and species richness. This result masks a systematic decrease in predator generality, estimated here as the number of prey species, from 30.0 to 25.4. Therefore, our study highlights large‐scale impacts of climate change on marine food‐web structure with potential deep consequences on ecosystem functioning. However, these impacts will likely be highly heterogeneous in space, challenging our current understanding of climate change impact on local marine ecosystems.  相似文献   

15.
Lionfish (Scorpaenidae, Pteroinae) are venomous predatory fish that are native to the Indo-Pacific region and have recently become established in the western Atlantic Ocean. Since the invasion was first documented in 2000, the number of lionfish in the Atlantic has increased substantially and spurred a series of investigations regarding their biology and potential impacts on the ecosystem. The present study uses haplotypes from the mitochondria-encoded cytochrome b (cyt b ) locus to determine the number of lionfish species involved in the Atlantic invasion and the decrease in genetic diversity that accompanied the invasion. The cyt b data reveal that Pterois volitans along with a small number of Pterois miles are present in the Atlantic Ocean and that a strong founder effect has resulted in a large decrease in genetic diversity compared with native lionfish populations.  相似文献   

16.
The ecological implications of biotic interactions, such as predator-prey relationships, are often context-dependent. Comparative functional responses analysis can be used under different abiotic contexts to improve understanding and prediction of the ecological impact of invasive species. Pterois volitans (Lionfish) [Linnaeus 1758] is an established invasive species in the Caribbean and Gulf of Mexico, with a more recent invasion into the Mediterranean. Lionfish are generalist predators that impact a wide range of commercial and non-commercial species. Functional response analysis was employed to quantify interaction strength between lionfish and a generic prey species, the shrimp (Paleomonetes varians) [Leach 1814], under the contexts of differing temperature, habitat complexity and light wavelength. Lionfish have prey population destabilising Type II functional responses under all contexts examined. Significantly more prey were consumed at 26 °C than at 22 °C. Habitat complexity did not significantly alter the functional response parameters. Significantly more prey were consumed under white light and blue light than under red light. Attack rate was significantly higher under white light than under blue or red light. Light wavelength did not significantly change handling times. The impacts on prey populations through feeding rates may increase with concomitant temperature increase. As attack rates are very high at low habitat complexity this may elucidate the cause of high impact upon degraded reef ecosystems with low-density prey populations, although there was little protection conferred through habitat complexity. Only red light (i.e. dark) afforded any reduction in predation pressure. Management initiatives should account for these environmental factors when planning mitigation and prevention strategies.  相似文献   

17.
DNA barcoding is used in a variety of ecological applications to identify organisms, including partially digested prey items from diet samples. That particular application can enhance the ability to characterize diet and predator–prey dynamics but is problematic when genetic sequences of prey match those of consumer species (i.e., self-DNA). Such a result may indicate cannibalism, but false positives can result from contamination of degraded prey samples with consumer DNA. Here, nuclear-encoded microsatellite markers were used to genotype invasive lionfish, Pterois volitans, consumers and their prey (n?=?80 pairs) previously barcoded as lionfish. Cannibalism was confirmed when samples exhibited two or more different alleles between lionfish and prey DNA across multiple microsatellite loci. This occurred in 26.2% of all samples and in 42% of samples for which the data were considered conclusive. These estimates should be considered conservative given rigorous assignment criteria and low allelic diversity in invasive lionfish populations. The highest incidence of cannibalism corresponded to larger sized consumers from areas with high lionfish densities, suggesting cannibalism in northern Gulf of Mexico lionfish is size- and density-dependent. Cannibalism has the potential to influence population dynamics of lionfish which lack native western Atlantic predators. These results also have important implications for interpreting DNA barcoding analysis of diet in other predatory species where cannibalism may be underreported.  相似文献   

18.
The recent irruption of Pacific red lionfish (Pterois volitans) on Caribbean and Atlantic coral reefs could prove to be one of the most damaging marine invasions to date. Invasive lionfish are reaching densities much higher than those reported from their native range, and they have a strong negative effect on the recruitment and abundance of a broad diversity of native coral-reef fishes. Otherwise, little is known about how lionfish affect native coral-reef communities, especially compared to ecologically similar native predators. A controlled field experiment conducted on small patch-reefs in the Bahamas over an 8-week-period demonstrated that (1) lionfish caused a reduction in the abundance of small native coral-reef fishes that was 2.5?±?0.5 times (mean?±?SEM) greater than that caused by a similarly sized native piscivore, the coney grouper Cephalopholis fulva (93.7 vs. 36.3?% reduction); (2) lionfish caused a reduction in the species richness of small coral-reef fishes (loss of 4.6?±?1.6 species), whereas the native piscivore did not have a significant effect on prey richness; (3) the greatest effects on the reef-fish community, in terms of both abundance and richness, occurred when both native and invasive predators were present; and (4) lionfish grew significantly faster (>6 times) than the native predator under the same field conditions. These results suggest that invasive lionfish have stronger ecological effects than similarly sized native piscivores, and may pose a substantial threat to native coral-reef fish communities.  相似文献   

19.
Fishing destabilizes the biomass flow in the marine size spectrum   总被引:2,自引:0,他引:2  
Fishing impacts on marine food webs are predicted by simulations of a size spectrum community model. In this model, predation is determined by predator and prey size and abundance, and drives predator growth and prey mortality. Fishing amplifies temporal oscillations in the biomass flow. Oscillations appear at lower fishing intensity and have wider amplitude when fishing is selective (removes a narrow size range) and/or when large fish are targeted, than when fishing is more balanced (catching a larger size range) or when small fish are targeted. A novel index of size diversity is developed, and is shown to be sensitive to both fishing intensity and selectivity. To avoid unstable food web dynamics with potential harmful consequences for fisheries, limiting both fishing intensity and selectivity might be an appropriate exploitation strategy.  相似文献   

20.
The invasion of the northwestern Atlantic by the Indo-Pacific lionfish has developed extraordinarily fast, and is expected to cause one of the most negative ecological impacts among all marine invasions. In less than 30 years, lionfish have dramatically expanded their distribution range to an area encompassing the eastern coast of the USA, Bermuda, the entire Caribbean region and the Gulf of Mexico. The rapidity of the lionfish spread has raised concerns in other parts of the Atlantic that may be under the reach of the invasion. Despite the anticipation that lionfish would eventually extend their range throughout most of the eastern coast of South America, it had not been recorded in Brazil until now. Here we report the first lionfish appearance for the Brazilian coast and show that the individual collected by us is genetically linked to the invasive Caribbean population. Since small-range endemics are found in several locations in Brazil and are among the species that are most vulnerable to extinction, we recommend urgent control, management and education measures aimed at minimizing the effects of this impending invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号