首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Safe and effective anti-rabies vaccines are intensely sought worldwide. DNA vaccines have already shown their efficacy and safety and have occupied a special place in the field. Two prototype anti-rabies DNA vaccines were compared for the potential to induce virus-specific antibody production. One vector contained a codon-optimized gene with a territory-adapted consensus sequence of the rabies virus glycoprotein. The other one expressed the same glycoprotein in fusion with a c-CD63 lysosome targeting motif at the C terminus. ELISA of serum samples from immunized mice showed that the c-CD63 variant induced more efficient antibody production and shifted the IgG2a/IgG1 ratio towards the Th2-type immune response. The results gave grounds to believe that the approach successfully applied to the rabies glycoprotein may help to develop new-generation anti-rabies vaccines.  相似文献   

2.
CD9 and CD63 belong to a tetramembrane-spanning glycoprotein family called tetraspanin, and are involved in a wide variety of cellular processes, but the structure-function relationship of this family of proteins has yet to be clarified. CD9 associates with diphtheria toxin receptor (DTR), which is identical to the membrane-anchored form of heparin-binding EGF-like growth factor (proHB-EGF). CD9 upregulates the diphtheria toxin (DT) binding activity of DTR/proHB-EGF, while CD63 does not upregulate the DT binding activity in spite of the fact that this protein also associates with DTR/proHB-EGF on the cell surface. CD9 molecules localize on the cell surface, while those of CD63 localize predominantly at lysosomes and intracellular compartments. We made CD9/CD63 chimeric molecules and then studied their intracellular localization and upregulation activities. The C-terminal regions of CD63, which includes the lysosome sorting motif, showed a strong inhibitory effect on the expression of the chimeric proteins at the cell surface, while mutants lacking the lysosome sorting motif delivered more efficiently on the cell surface, indicating that the lysosome sorting motif contributes to the inhibitory effect of the C-terminal region. However, the N-terminal half of this family of proteins containing the 1st to 3rd transmembrane domains also seems to influence the cell surface expression. For the upregulation of DT binding activity the large extracellular loop (EC2) of CD9 was essential, while the remaining regions influenced the upregulation activity by changing the efficiency of cell surface expression. From these results we discussed the structure-function relationship of this family of proteins.  相似文献   

3.
表达纯化不同标签、不同大小3个狂犬病病毒糖蛋白,分析其结合功能后,得到具备高亲和力的、可特异性结合记忆性B细胞的狂犬病病毒糖蛋白。本实验通过基因工程的方法,采用不同的原核表达系统分别表达带有不同标签的、全长和膜外区的RVG,纯化蛋白并分析比较其结合功能,荧光标记候选蛋白,结合CD19及CD27的抗体,流式细胞术检测狂犬疫苗免疫后PBMCs中抗狂犬病病毒特异性记忆性B细胞的情况,确认候选蛋白与抗狂犬病毒特异性记忆性B细胞的结合功能。本实验成功构建了3个表达载体pGEX-5X-1-RVG、pET28a-RVG和pET30a-G,优化表达纯化条件成功获得了糖蛋白GST-RVG、His-RVG和His-G。纯化后的GST-RVG、His-RVG和His-G经Western blotting和ELISA鉴定均有抗原特异性;由竞争ELISA法测得3个纯化后糖蛋白与抗狂犬病病毒抗体的亲和力。通过流式细胞术可以检测到狂犬疫苗免疫后阳性志愿者PBMCs中的抗狂犬病病毒特异性记忆性B细胞,从而获得了高亲和力、可用于分选抗原特异性的记忆性B细胞的狂犬病病毒糖蛋白。  相似文献   

4.
An optimized design of the rabies virus glycoprotein (G protein) for use within DNA vaccines has been suggested. The design represents a territorially adapted antigen constructed taking into account glycoprotein amino acid sequences of the rabies viruses registered in the Russian Federation and the vaccine Vnukovo-32 strain. Based on the created consensus amino acid sequence, the nucleotide codon-optimized sequence of this modified glycoprotein was obtained and cloned into the pVAX1 plasmid (a vector of the last generation used in the creation of DNA vaccines). A twofold increase in this gene expression compared to the expression of the Vnukovo-32 strain viral glycoprotein gene in a similar vector was registered in the transfected cell culture. It has been demonstrated that the accumulation of modified G protein exceeds the number of the control protein synthesized using the plasmid with the Vnukovo-32 strain viral glycoprotein gene by 20 times. Thus, the obtained modified rabies virus glycoprotein can be considered to be a promising DNA vaccine antigen.  相似文献   

5.
The possibility of enhancing the immunogenicity of the rabies virus glycoprotein antigen encoded by a DNA vaccine has been investigated. Ubiquitin-like protein FAT10 has been attached to the N-terminus of the glycoprotein to target it to the proteasome and stimulate its presentation by MHC class I. Two forms of the protein, chimeric and original, have been detected in cells transfected with the DNA construct encoding the chimeric protein. The presence of the glycoprotein on the cell surface has been detected by immunostaining of transfected cells. The production of IgG and IgG2a antibodies has been more efficiently induced in mice immunized with the plasmid that encodes the chimeric protein than in those immunized with the plasmid that encodes unmodified glycoprotein. Moreover, the level of IgG2a antibodies exceeded the level of IgG1 antibodies, which indicates a preferential increase in the Th1 component of the immune response. The proposed DNA construct that encodes a modified glycoprotein with a proteasome degradation signal may be a promising DNA vaccine immunogen for post-exposure prophylaxis of rabies.  相似文献   

6.
A synthetic gene coding for the surface glycoprotein (G protein) of rabies virus was strategically designed to achieve high-level expression in transgenic plants. The native signal peptide was replaced by that of the pathogenesis related protein, PR-S of Nicotiana tabacum. An endoplasmic reticulum retention signal was included at C-terminus of the G protein. Tobacco plants were genetically engineered by nuclear transformation. Selected transgenic lines expressed the chimeric G protein at 0.38% of the total soluble leaf protein. Mice immunized intraperitoneally with the G protein purified from tobacco leaf microsomal fraction elicited high level of immune response as compared to the inactivated commercial viral vaccine. The plant-derived G protein induced complete protective immunity in mice against intracerebral lethal challenge with live rabies virus. The results establish that plants can provide a safe and effective production system for the expression of immunoprotective rabies virus surface protein.  相似文献   

7.
构建表达狂犬病病毒SRV9株糖蛋白(GP)的重组杆状病毒,评价其表达出的SRV9株糖蛋白对小鼠免疫效果。将狂犬病病毒SRV9株GP基因的完整开放阅读框克隆入穿梭质粒Bacmid中,构建重组穿梭质粒Bacmid-G,以此转染Sf9细胞。对病变细胞培养物进行电镜观察,获得正确重组杆状病毒后,通过Western-blot、IFA及小鼠免疫实验鉴定表达产物的免疫反应性及免疫原性。正确构建重组穿梭质粒Bacmid-G;获得表达SRV9株糖蛋白的重组杆状病毒,其表达产物具有良好免疫原性;表达产物接种小鼠可诱导其产生抗狂犬病病毒中和抗体,中和抗体达到保护水平的比例为100%。本实验所获得的重组杆状病毒表达出的SRV9株糖蛋白具有较好的免疫原性,可诱导小鼠产生保护性中和抗体,该实验为进一步开发狂犬病亚单位疫苗奠定了基础。  相似文献   

8.
Rabies virus glycoprotein is important in the biology and pathogenesis of neurotropic rabies virus infection. This transmembrane glycoprotein is the only viral protein on the surface of virus particles, is the viral attachment protein that facilitates virus uptake by the infected cell, and is the target of the host humoral immune response to infection. The extracellular domain of this glycoprotein has N- glycosylation sequons at Asn37, Asn247, and Asn319. Appropriate glycosylation of these sequons is important in the expression of the glycoprotein. Soluble forms of rabies virus glycoprotein were constructed by insertion of a stop codon just external to the transmembrane domain. Using site-directed mutagenesis and expression in transfected eukaryotic cells, it was possible to compare the effects of site-specific glycosylation on the cell-surface expression and secretion of transmembrane and soluble forms, respectively, of the same glycoprotein. These studies yielded the surprising finding that although any of the three sequons permitted cell surface expression of full-length rabies virus glycoprotein, only the N-glycan at Asn319 permitted secretion of soluble rabies virus glycoprotein. Despite its biological and medical importance, it has not yet been possible to determine the crystal structure of the full-length transmembrane form of rabies virus glycoprotein which contains heterogeneous oligosaccharides. The current studies demonstrate that a soluble form of rabies virus glycoprotein containing only one sequon at Asn319 is efficiently secreted in the presence of the N-glycan processing inhibitor 1-deoxymannojirimycin. Thus, it is possible to purify a conformationally relevant form of rabies virus glycoprotein that contains only one N-glycan with a substantial reduction in its microheterogeneity. This form of the glycoprotein may be particularly useful for future studies aimed at elucidating the three-dimensional structure of this important glycoprotein.   相似文献   

9.
Post-exposure prophylaxis (PEP) against rabies infection consists of a combination of passive immunisation with plasma-derived human or equine immune globulins and active immunisation with vaccine delivered shortly after exposure. Since anti-rabies immune globulins are expensive and scarce, there is a need for cheaper alternatives that can be produced more consistently. Previously, we generated potent virus-neutralising VHH, also called Nanobodies, against the rabies glycoprotein that are effectively preventing lethal disease in an in vivo mouse model. The VHH domain is the smallest antigen-binding functional fragment of camelid heavy chain-only antibodies that can be manufactured in microbial expression systems. In the current study we evaluated the efficacy of half-life extended anti-rabies VHH in combination with vaccine for PEP in an intranasal rabies infection model in mice. The PEP combination therapy of systemic anti-rabies VHH and intramuscular vaccine significantly delayed the onset of disease compared to treatment with anti-rabies VHH alone, prolonged median survival time (35 versus 14 days) and decreased mortality (60% versus 19% survival rate), when treated 24 hours after rabies virus challenge. Vaccine alone was unable to rescue mice from lethal disease. As reported also for immune globulins, some interference of anti-rabies VHH with the antigenicity of the vaccine was observed, but this did not impede the synergistic effect. Post exposure treatment with vaccine and human anti-rabies immune globulins was unable to protect mice from lethal challenge. Anti-rabies VHH and vaccine act synergistically to protect mice after rabies virus exposure, which further validates the possible use of anti-rabies VHH for rabies PEP.  相似文献   

10.
In the present report an in vitro method for obtaining a secondary human antibody response to a dog kidney cell vaccine against rabies virus (DKCV) is described. Cultures of peripheral blood mononuclear cells from normal rabies-immune and nonimmune donors were stimulated in vitro by DKCV. The production of virus-specific antibody in supernatant fluids was monitored by ELISA. Antibody was produced by lymphocytes from rabies-immune individuals, whereas those of nonimmune subjects consistently failed to produce anti-rabies antibodies after in vitro stimulation with DKCV. The generation of the anti-rabies virus antibody response of lymphocytes stimulated with DKCV was shown to be an antigen-dependent, as well as an antigen-specific process. Optimal antigen-specific responses were observed at relatively low concentrations of antigen (10(-1) to 10(-2) micrograms/culture). At increasing concentrations of antigen in culture (greater than 1 microgram/culture), the anti-rabies virus response was suppressed. Antibody produced upon stimulation was capable of neutralizing rabies virus. The response to rabies virus requires T cell help because lymphocytes depleted of SE rosetting cells did not respond to an antigenic stimulus. Studies in which the same individuals were followed over time showed a sequential development of circulating B cell subsets. The system may provide a model for the study of human B cell differentiation in vivo and in vitro and may be valuable for testing the potency of rabies vaccines in vitro.  相似文献   

11.
CD63 is a lysosomal membrane protein that belongs to the tetraspanin family. Its carboxyterminal cytoplasmic tail sequence contains the lysosomal targeting motif GYEVM. Strong, tyrosine-dependent interaction of the wild-type carboxyterminal tail of CD63 with the AP-3 adaptor subunit mu 3 was observed using a yeast two-hybrid system. The strength of interaction of mutated tail sequences with mu 3 correlated with the degree of lysosomal localization of similarly mutated human CD63 molecules in stably transfected normal rat kidney cells. Mutated CD63 containing the cytosolic tail sequence GYEVI, which interacted strongly with mu 3 but not at all with mu 2 in the yeast two-hybrid system, localized to lysosomes in transfected normal rat kidney and NIH-3T3 cells. In contrast, it localized to the cell surface in transfected cells of pearl and mocha mice, which have genetic defects in genes encoding subunits of AP-3, but to lysosomes in functionally rescued mocha cells expressing the delta subunit of AP-3. Thus, AP-3 is absolutely required for the delivery of this mutated CD63 to lysosomes. Using this AP-3-dependent mutant of CD63, we have shown that AP-3 functions in membrane traffic from the trans-Golgi network to lysosomes via an intracellular route that appears to bypass early endosomes.  相似文献   

12.
狂犬病毒糖蛋白DNA疫苗的研制及其免疫效果的观察   总被引:6,自引:0,他引:6  
构建了含有狂犬病毒(RV)CVS株糖蛋白(GP)基因的重组质粒pCMVCVSRG,将其转染至鼠NIH3T3细胞中,用间接免疫荧光法和APAAP法均证实RVGP能在真核细胞中表达。分别将合RV不同毒株的GP基因的质粒(DNA疫苗)及空白载体质粒(对照组)免疫小鼠,仅DNA疫苗免疫的小鼠产生了中和抗体。以RV攻击后,DNA疫苗免疫组小鼠的存活率与对照组相比,差异有极显著性意义(P<0.01);不同的启动子(CMV或SV40)与不同GP基因(来源于CVS株或ERA株)对DNA疫苗的免疫效果无明显影响。在注射120d后.用PCR方法仍可检测出RVGP基因。结果表明:狂犬病DNA疫苗能够诱生低水平的中和抗体和记忆性B淋巴细胞,并能保护小鼠抵抗RV的攻击。该疫苗能在体内稳定存在。狂犬病DNA疫苗的研制为狂犬病免疫开辟了一条新途径,并可为防治其他疾病的DNA疫苗的研制奠定基础。  相似文献   

13.
A non-competitive enzyme-linked immunoassay (ELISA) has been standardized to supplement the in vivo potency test used for the quality control of inactivated tissue culture vaccines against rabies. The essentials of the ELISA were: fixation of the virus in different dilutions of vaccine on the surface of microtitre plates; testing of the reference and up to six test vaccines on one plate; incubation with polyclonal antisera to rabies virus glycoprotein containing an excess of antibody; further incubation with a species-specific anti-IgG coupled to peroxidase; a final incubation with a substrate. The incubation periods were 1 h, 1 h and 30 min both at +37 degrees C. The relative potency determinations were made graphically or by a computer using a parallel line bioassay in which the potencies of the vaccines of unknown potency were tested against the reference preparation on a single microtitre plate. Under these conditions inactivated rabies vaccines of different types (virus strains, cell substrates, inactivation and concentration procedures) were tested for potency. Furthermore, it was possible with this in vitro method to assay adjuvanted vaccines, in process samples such as tissue culture supernatants with live or inactivated rabies virus, concentrates, and vaccines undergoing thermal stability tests. The rabies glycoprotein antigen-antibody reaction was highly specific according to the results and the glycoprotein content was measured quantitatively. The potency determined by the in vitro ELISA correlated with the in vivo NIH protection potency test. The lower limit of detection of the ELISA was 0.015 IU/ml. Quantitative antigen determination was possible with both homologous and heterologous antisera to rabies virus glycoprotein when vaccines of the same virus strain were tested. When the potencies of vaccines of different virus strain specificity were calculated, it was necessary to take into account the strain-specific antigenicity. Even so vaccines of high potency were found to give a stronger reaction with a heterologous serum than did weak vaccines with a homologous antiserum. Stability tests made on inactivated tissue culture vaccines such as vaccine from the human diploid cell strain (HDCS), from purified chicken embryo cell (PCEC) or from purified Vero cell rabies vaccine (PVRV), showed high stability of the glycoprotein antigen even after four months of storage at +37 degrees C or 24 h at +56 degrees C, provided that the vaccines were stored in a lyophilized state. The antigenicity of liquid vaccines was inactivated after a few hours at +56 degrees C. For tropical areas, therefore, only lyophilized vaccines should be considered.  相似文献   

14.
Rabies virus is a prototypical neurotropic virus that causes one of the most dangerous zoonotic diseases in humans. Humanized or fully human monoclonal antibodies (mAb) that neutralize rabies virus would be the basis for powerful post-exposure prophylaxis of rabies in humans, having several significant benefits in comparison with human or equine rabies polyclonal immunoglobulins. The most advanced antibodies should broadly neutralize natural rabies virus isolates, bind with conserved antigenic determinants of the rabies virus glycoprotein, and show high neutralizing potency in assays in vivo. The antibodies should recognize nonoverlapping epitopes if they are used in combination. This review focuses on basic requirements for anti-rabies therapeutic antibodies. The urgency in the search for novel rabies post-exposure prophylaxis and methods of development of anti-rabies human mAb cocktail are discussed. The rabies virus structure and pathways of its penetration into the nervous system are also briefly described.  相似文献   

15.
Cystinosin is a lysosomal cystine transporter defective in cystinosis, an autosomal recessive lysosomal storage disorder. It is composed of seven transmembrane (TM) domains and contains two lysosomal targeting motifs: a tyrosine‐based signal (GYDQL) in its C‐terminal tail and a non‐classical motif in its fifth inter‐TM loop. Using the yeast two‐hybrid system, we showed that the GYDQL motif specifically interacted with the μ subunit of the adaptor protein complex 3 (AP‐3). Moreover, cell surface biotinylation and total internal reflection fluorescence microscopy revealed that cystinosin was partially mislocalized to the plasma membrane (PM) in AP‐3‐depleted cells. We generated a chimeric CD63 protein to specifically analyze the function of the GYDQL motif. This chimeric protein was targeted to lysosomes in a manner similar to cystinosin and was partially mislocalized to the PM in AP‐3 knockdown cells where it also accumulated in the trans‐Golgi network and early endosomes. Together with the fact that the surface levels of cystinosin and of the CD63‐GYDQL chimeric protein were not increased when clathrin‐mediated endocytosis was impaired, our data show that the tyrosine‐based motif of cystinosin is a ‘strong’ AP‐3 interacting motif responsible for lysosomal targeting of cystinosin by a direct intracellular pathway.   相似文献   

16.
R Gilbert  K Ghosh  L Rasile    H P Ghosh 《Journal of virology》1994,68(4):2272-2285
We have used the glycoprotein gB of herpes simplex virus type 1 (gB-1), which buds from the inner nuclear membrane, as a model protein to study localization of membrane proteins in the nuclear envelope. To determine whether specific domains of gB-1 glycoprotein are involved in localization in the nuclear envelope, we have used deletion mutants of gB-1 protein as well as chimeric proteins constructed by replacing the domains of the cell surface glycoprotein G of vesicular stomatitis virus with the corresponding domains of gB. Mutant and chimeric proteins expressed in COS cells were localized by immunoelectron microscopy. A chimeric protein (gB-G) containing the ectodomain of gB and the transmembrane and cytoplasmic domains of G did not localize in the nuclear envelope. When the ectodomain of G was fused to the transmembrane and cytoplasmic domains of gB, however, the resulting chimeric protein (G-gB) was localized in the nuclear envelope. Substitution of the transmembrane domain of G with the 69 hydrophobic amino acids containing the membrane anchoring domain of gB allowed the hybrid protein (G-tmgB) to be localized in the nuclear envelope, suggesting that residues 721 to 795 of gB can promote retention of proteins in the nuclear envelope. Deletion mutations in the hydrophobic region further showed that a transmembrane segment of 21 hydrophobic amino acids, residues 774 to 795 of gB, was sufficient for localization in the nuclear envelope. Since wild-type gB and the mutant and chimeric proteins that were localized in the nuclear envelope were also retained in the endoplasmic reticulum, the membrane spanning segment of gB could also influence retention in the endoplasmic reticulum.  相似文献   

17.
After rabies virus glycoprotein was treated with CNBr, the peptide mixture was fractionated by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. CNBr-cleaved peptide fragments were resolved into seven peptide bands under reducing conditions and six peptide bands under nonreducing conditions. The isolated nonreduced polypeptides were further analyzed by electrophoresis under reducing conditions. The N-terminal amino acid sequences were determined for the peptides in each of the isolated bands. The sequence data identified eight CNBr peptides and allowed the peptide fragments to be ordered within the deduced amino acid sequence of the glycoprotein. Analysis of the nonreduced CNBr peptides revealed two conformations of the glycoprotein. Two CNBr peptide fragments were specifically immunoprecipitated with a hyperimmune anti-rabies glycoprotein serum. These two and one other CNBr peptide induced the production of rabies virus-neutralizing antibodies, indicating the existence of at least three distinct antigenic sites on the rabies virus glycoprotein.  相似文献   

18.
The lentiviral accessory protein Vpx is thought to facilitate the infection of macrophages and dendritic cells by counteracting an unidentified host restriction factor. Although human immunodeficiency virus type 1 (HIV-1) does not encode Vpx, the accessory protein can be provided to monocyte-derived macrophages (MDM) and monocyte-derived dendritic cells (MDDC) in virus-like particles, dramatically enhancing their susceptibility to HIV-1. Vpx and the related accessory protein Vpr are packaged into virions through a virus-specific interaction with the p6 carboxy-terminal domain of Gag. We localized the minimal Vpx packaging motif of simian immunodeficiency virus SIVmac(239) p6 to a 10-amino-acid motif and introduced this sequence into an infectious HIV-1 provirus. The chimeric virus packaged Vpx that was provided in trans and was substantially more infectious on MDDC and MDM than the wild-type virus. We further modified the virus by introducing the Vpx coding sequence in place of nef. The resulting virus produced Vpx and replicated efficiently in MDDC and MDM. The virus also induced a potent type I interferon response in MDDC. In a coculture system, the Vpx-containing HIV-1 was more efficiently transmitted from MDDC to T cells. These findings suggest that in vivo, Vpx may facilitate transmission of the virus from dendritic cells to T cells. In addition, the chimeric virus could be used to design dendritic cell vaccines that induce an enhanced innate immune response. This approach could also be useful in the design of lentiviral vectors that transduce these relatively resistant cells.  相似文献   

19.
The juvenile form of ceroid lipofuscinosis (Batten disease) is a neurodegenerative lysosomal storage disorder caused by mutations in the CLN3 gene. CLN3 encodes a multimembrane-spanning protein of unknown function, which is mainly localized in lysosomes in non-neuronal cells and in endosomes in neuronal cells. For this study we constructed chimeric proteins of three CLN3 cytoplasmic domains fused to the lumenal and transmembrane domains of the reporter proteins LAMP-1 and lysosomal acid phosphatase to identify lysosomal targeting motifs and to determine the intracellular transport and subcellular localization of the chimera in transfected cell lines. We report that a novel type of dileucine-based sorting motif, EEEX(8)LI, present in the second cytoplasmic domain of CLN3, is sufficient for proper targeting to lysosomes. The first cytoplasmic domain of CLN3 and the mutation of the dileucine motif resulted in a partial missorting of chimeric proteins to the plasma membrane. At equilibrium, 4-13% of the different chimera are present at the cell surface. Analysis of lysosome-specific proteolytic processing revealed that lysosomal acid phosphatase chimera containing the second cytoplasmic domain of CLN3 showed the highest rate of lysosomal delivery, whereas the C terminus of CLN3 was found to be less efficient in lysosomal targeting. However, none of these cytosolic CLN3 domains was able to interact with AP-1, AP-3, or GGA3 adaptor complexes. These data revealed that lysosomal sorting motifs located in an intramolecular cytoplasmic domain of a multimembrane-spanning protein have different structural requirements for adaptor binding than sorting signals found in the C-terminal cytoplasmic domains of single- or dual-spanning lysosomal membrane proteins.  相似文献   

20.
Attenuated and highly neurovirulent rabies virus strains have distinct cellular tropisms. Highly neurovirulent strains such as the challenge virus standard (CVS) are highly neurotropic, whereas the attenuated strain ERA also infects nonneuronal cells. We report that both rabies virus strains infect activated murine lymphocytes and the human lymphoblastoid Jurkat T-cell line in vitro. The lymphocytes are more permissive to the attenuated ERA rabies virus strain than to the CVS strain in both cases. We also report that in contrast to that of the CVS strain, ERA viral replication induces apoptosis of infected Jurkat T cells, and cell death is concomitant with viral glycoprotein expression, suggesting that this protein has a role in the induction of apoptosis. Our data indicate that (i) rabies virus infects lymphocytes, (ii) lymphocyte infection with the attenuated rabies virus strain causes apoptosis, and (iii) apoptosis does not hinder rabies virus production. In contrast to CVS, ERA rabies virus and other attenuated rabies virus vaccines stimulate a strong immune response and are efficient live vaccines. The paradoxical finding that a rabies virus triggers a strong immune response despite the fact that it infects lymphocytes and induces apoptosis is discussed in terms of the function of apoptosis in the immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号