首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The colonization of an exotic species by native herbivores is more likely to occur if that herbivore is a generalist. There is little information on the life-history mechanisms used by native generalist insects to colonize exotic hosts and how these mechanisms are affected by host properties. We examined the ability of the generalist seed beetle Stator limbatus Horn to colonize an exotic species. We compared its host preference, acceptability, performance, and egg size when ovipositing and developing on two native (Pithecellobium dulce (Roxb.) Benth and Senegalia riparia (Kunth)) and one exotic legume species (Leucaena leucocephala (Lam.)). We also analyzed the seed chemistry. We found that females recognize the exotic species as an unfavorable host for larval development and that they delayed oviposition and laid fewer and larger eggs on the exotic species than on the native species. Survivorship on the exotic host was 0%. Additionally, seeds of the native species contain five chemical compounds that are absent in the exotic species, and the exotic species contains three sterols, which are absent in the native legumes. Genetically based differences between beetles adapted to different hosts, plastic responses toward new hosts, and chemical differences among seeds are important in host colonization and recognition of the exotic host. In conclusion, the generalist nature of S. limbatus does not influence its ability to colonize L. leucocephala. Explanations for the colonization of exotic hosts by generalist native species and for the success of invasive species must be complemented with studies measuring local adaptation and plasticity.  相似文献   

2.
The dispersal and germination unit of some Brassicaceae species is the fruit, and we hypothesized that it could affect germination phenology and promote formation of a soil seed bank. We determined the effects of the indehiscent pericarp on germination and longevity of buried seeds of five Brassicaceae species native to cold deserts of central Asia. Germination phenology (seedling emergence) was monitored for intact dispersal units and isolated seeds of Chorispora sibirica, Goldbachia laevigata, Spirorrhynchus sabulosus, Tauscheria lasiocarpa (annuals), and Sterigmostemum fuhaiense (perennial) at natural temperatures in watered and non-watered (natural precipitation) soil. Intact dispersal units and isolated seeds were buried under natural conditions and exhumed at regular intervals for 35 months to monitor germination, viability and moisture content of isolated seeds, seeds in dispersal units, and seeds removed from dispersal units after burial. Isolated seeds of Goldbachia, Spirorrhynchus, and Tauscheria germinated only the first autumn and those of Chorispora and Sterigmostemum the first autumn and first spring, with higher germination percentages in all species in watered than in non-watered soil. A high percentage of seeds in buried dispersal units of Chorispora, Goldbachia, and Sterigmostemum was viable after 35 months, and seeds exhibited a 6-month dormancy cycle, being non-dormant only in autumn and spring. Seeds in buried dispersal units of Spirorrhynchus and Tauscheria germinated when exhumed in the first spring, but all non-germinated seeds were dead after 1 year. Thus, the presence of the pericarp allows Chorispora, Goldbachia, and Sterigmostemum to form a persistent seed bank but not Spirorrhynchus and Tauscheria.  相似文献   

3.
Invasive plants may establish strong interactions with species in their new range which could limit or enhance their establishment and spread. These interactions depend upon traits of the invader and the recipient community, and may alter interactions among native species. In the Patagonian steppe we studied interactions of native ant assemblages with seeds of native and exotic plants, and asked whether ant–seed interactions differ with seed types and disturbance levels and whether the amount and type of ant–seed interactions can be predicted if both ant and seed traits are known. To characterize and quantify ant–seed interactions, we offered baits with large seeds of Pappostipa speciosa (native) and medium-sized elaiosome-bearing seeds of Carduus thoermeri (exotic), near and far from a road (high vs. low disturbed areas), and compared ant abundance and composition between areas. Interaction frequency was the highest for C. thoermeri seeds far from the road. Composition of ants interacting with C. thoermeri in these areas differed from that near the road and from that interacting with native seeds. Ant composition and abundance were similar between areas, but some species interacted more with exotic seeds in low disturbed areas. Ant foraging type predicted ant–seed interactions since the abundance of seed harvesters was positively correlated to interactions with P. speciosa, and that of generalists and predators, with interactions with C. thoermeri. The high interaction of ants with exotic seeds in low invaded areas suggests that ant activity could influence plant invasion, either by predating or dispersing seeds of invasive plants.  相似文献   

4.
Reward removal is an essential step for seed dispersal mutualism because residual rewards inhibit germination. Nevertheless, variation in the reward removal efficiency (RRE) among dispersers and its consequences for germination have rarely been reported. In this study, we compared the RREs of two sympatric seed-dispersing ants, Formica japonica and Pheidole noda, using seeds of the ant-dispersed sedge Carex tristachya. Then, we conducted seed sowing experiments in a non-heated glasshouse to evaluate the effect of RRE on the percentage and speed of germination. The majority (85%) of seeds handled by F. japonica had residual elaiosomes, while elaiosomes were completely removed from all seeds handled by P. noda, demonstrating that P. noda has much higher RRE than F. japonica. The seed sowing experiments revealed that RRE, defined by the presence or absence of residual elaiosomes, was not associated with the percentage germination within a year. However, high RRE seeds with no residual elaiosomes germinated significantly faster than low RRE seeds with residual elaiosomes. Similarly, artificial removal of elaiosomes from C. tristachya seeds accelerated germination speed without affecting germination percentage. These results suggest that RRE is one of the most important parameters determining the effectiveness of a seed dispersal agent.  相似文献   

5.
Seed dispersal mutualisms are essential to ensure the survival of diverse plant species and communities worldwide. Here, we investigated whether the invasive Argentine ant can replace native ants by fulfilling their functional role in the seed dispersal of the rare and threatened endemic myrmecochorous plant, Anchusa crispa, in Corsica (France). Our study addressed the potential of Linepithema humile to disperse elaiosome-bearing seeds of A. crispa, examining L. humile’s effects on (1) the composition of communities of ants removing seeds, (2) the number of seed removals, (3) seed preference, (4) the distance of seed dispersion, and (5) seed germination. We caught seven native species at the control site, but only the Argentine ant at invaded sites. L humile removed A. crispa seeds in greater numbers than did native ants, respectively 66 and 23%, probably due to their higher worker density. The invader was similar to native ants with respect to distance of seed transport. Finally, rates of seed germination were not significantly different between seeds previously in contact with either Argentine ants or not. Taken all together, these results suggest that the Argentine ant is unlikely to pose a threat to A. crispa population. These results have important implications for the management of this rare and threatened endemic plant and provide an example of non-negative interactions between invasive and native species.  相似文献   

6.
Seed dispersal by vertebrate animals is important for the establishment of many fleshy-fruited plant species. Different frugivorous species can provide different seed dispersal services according to their specific dietary preferences as well as behaviour and body traits (e.g. body size and beak size of birds). Our aim was to study redundancies and complementarities in seed dispersal and germination between the two main native seed disperser birds and the introduced silver pheasant Lophura nycthemera in the temperate Patagonian forests. For this, we collected fresh droppings from the studied species and analyzed seed content. We conducted germination trials for four plant species common in bird droppings; two native species (Aristotelia chilensis and Rhaphithamnus spinosus) and two invasive non-native species (Rubus ulmifolius and Rosa rubiginosa). Both native frugivorous birds and the silver pheasant dispersed fruits of non- native fleshy-fruited plants, but their roles were non-redundant in terms of species dispersed and effect on seed germination. The silver pheasant dispersed a proportionally high number of non-native seeds, while native birds dispersed a high number of native seeds. In addition, the effect of gut treatment in seed germination differed between seed dispersers. Native birds promoted the germination for the two native plant species studied, while the silver pheasant promoted the germination of one non-native plant. This suggests that seed dispersal by the silver pheasant may contribute to the spread of some invasive fleshy-fruited plants in the ecosystems that otherwise would not be dispersed by any other bird. The understanding of redundancies and complementarities on seed dispersal and germination between native and introduced birds will allow improving the management of fleshy-fruited non-native plants.  相似文献   

7.
8.
Phelipanche ramosa is a major root-holoparasitic damaging weed characterized by a broad host range, including numerous Fabaceae species. In France, the agricultural threat posed by P. ramosa has increased over two decades due to the appearance of a genetically differentiated pathovar presenting a clear host specificity for oilseed rape. The new pathovar has led to a massive expansion of P. ramosa in oilseed rape fields. The germination rate of P. ramosa seeds is currently known to vary among P. ramosa pathovars and host species. However, only a few studies have investigated whether phylogenetic relatedness among potential host species is a predictor of the ability of these species to induce the seed germination of parasitic weeds by testing for phylogenetic signal. We focused on a set of 12 Fabaceae species and we assessed the rate of induction of seed germination by these species for two pathovars based on in vitro co-cultivation experiments. All Fabaceae species tested induced the germination of P. ramosa seeds. The germination rate of P. ramosa seeds varied between Fabaceae species and tribes studied, while pathovars appeared non-influential. Considering oilseed rape as a reference species, we also highlighted a significant phylogenetic signal. Phylogenetically related species therefore showed more similar rates of induction of seed germination than species drawn at random from a phylogenetic tree. In in vitro conditions, only Lotus corniculatus induced a significantly higher germination rate than oilseed rape, and could potentially be used as a catch crop after confirmation of these results under field conditions.  相似文献   

9.
Symbiosis between plants and ants include examples in which the plant provides shelter and/or food for ants that, in turn, act in the defense or in the dispersion of seeds from the host plant. Although traditionally referred as mutualistic, the results of these interactions may vary with the ecological context in which patterns are involved. A range of species have facultative association with Turnera subulata (Turneraceae). Here, using behavioral bioassays, we investigated the effects of the most frequent ant species associated with T. subulata (Brachymyrmex sp.1, Camponotus blandus (Smith), Dorymyrmex sp.1, Crematogaster obscurata Emery, and Solenopsis invicta Buren) in the dispersion of plant host seeds and in the number of seedlings around the associated ant nests. We also evaluated the effects of these ant species in the germination of T. subulata seeds, in the consumption of elaiosome, and in the attractiveness to elaiosome odor. Our results showed that the ant species associated with T. subulata presented variation in the attraction by the odor and in the rate of consumption of the elaiosomes. However, none of the ant species studied contributed significantly to the increase of seed germination and seedling growth. Our results suggest that the consumption of the elaiosome by ant species is not a determinant factor to the success of germination of T. subulata. However, such species could contribute indirectly to seed germination by carrying seeds to sites more fertile to germination. In general, our results help to elucidate the results of ecological interactions involving ants and plants.  相似文献   

10.

Background and aims

We characterized fungal endophytes of seeds of invasive, non-native Phragmites from three sites in the Great Lakes region to determine if fungal symbiosis could contribute to invasiveness through their effects on seed germination and seedling growth.

Methods

Field-collected seeds were surface sterilized and plated on agar to culture endophytes for ITS sequencing. Prevalence of specific endophytes from germinated and non-germinated seeds, and from seedlings, was compared.

Results

One-third of 740 seeds yielded endophyte isolates. Fifteen taxa were identified with Alternaria sp. representing 54% of all isolates followed by Phoma sp. (21%) and Penicillium corylophilum (12%). Overall germination of seeds producing an isolate (36%) was significantly higher than seeds not producing an isolate (20%). Penicillium in particular was strongly associated with increased germination of seeds from one site. Sixty-three isolates and 11 taxa were also obtained from 30 seedlings where Phoma, Penicillium and Alternaria respectively were most prevalent. There was a significant effect of isolating an endophyte from the seed on seedling growth.

Conclusions

These results suggest that many endophyte taxa are transmitted in seeds and can increase seed germination and seedling growth of invasive Phragmites. The role of fungal endophytes in host establishment, growth and invasiveness in nature requires further research.
  相似文献   

11.
12.
This study evaluates the fruiting phenology, fruit traits, and seed dispersal in two Pilosocereus (Cactaceae) species that are widely distributed in Caatinga vegetation. We monitored the fruiting phenology of Pilosocereus gounellei and Pilosocereus chrysostele on a monthly basis for a period of 4 years (45 months from March 2009 to November 2012), including 30 individuals of each species. We also carried out focal observations, captured dispersers, and conducted germination tests, to identify the effective seed dispersers of these species. Both species exhibited sub-annual fruiting patterns and high fruiting synchrony index (O jk 0.62), with peaks occurring from February to May for P. gounellei and February to April for P. chrysostele. In all, 248 visits by seven bird and two lizard species were recorded for P. gounellei, and 104 visits by five bird species were recorded for P. chrysostele. The two species shared five seed dispersers. The finch Lanio pileatus was the most frequently visiting bird species. The number of visits to the fruits of P. gounellei was higher than to the fruits of P. chrysostele. Passage of seeds through the digestive tracts of all bird species significantly increased the germination rate for P. chrysostele, whereas for P. gounellei, the birds Forpus xanthopterygius and L. pileatus decreased germination rates. Sub-annual fruiting patterns, similar fruit morphology, and high synchronous fruiting are factors that favor resource sharing among the dispersers of Pilosocereus in the Caatinga.  相似文献   

13.
Primary seed dispersal by primates (phase I) followed by secondary seed dispersal by dung beetles (phase II) is a common diplochorous system in tropical forests. In such systems, phase I affects the occurrence/outcome of phase II, triggering cascading effects along the chain of plant recruitment with direct consequences on seed dispersal effectiveness. However, we know very little regarding whether seed dispersal effectiveness is increased or decreased by phase II and whether this effect is consistent among habitats. Using a primate–dung beetle diplochorous system, we determined 1) the characteristics of phase I that may affect phase II; 2) the pathways relating biotic/abiotic factors to seed/seedling survival; and 3) if the direction and/or magnitude of phase II effects on seed dispersal effectiveness depend on phase I characteristics. We marked and characterized the dispersal characteristics of 981 seeds dispersed by two tamarin species (Saguinus mystax, Leontocebus nigrifrons) and checked the fate of 503 of them for ≥1 year. Seeds dispersed by L. nigrifrons and seeds surrounded by larger amounts of dung were more likely to be buried by dung beetles. Burial increased seed survival in secondary forest while low seed density increased germination in both habitats. Seed burial increased seed dispersal effectiveness more strongly in secondary (+52.2%) vs. in primary forest (+5.0%), in L. nigrifrons (+12.9%) vs. in S. mystax (+7.9%) feces, and in larger fecal portions (+22.1%) vs. in small–medium ones (+7.3–7.4%). In conclusion, two seed dispersers are more effective than one only in secondary forest, and the magnitude of increase of seed dispersal effectiveness with phase II depends on how the seeds are primarily dispersed.  相似文献   

14.
Extensive grazing often has a strong influence on the structure and composition of herbaceous plant communities with increasing population sizes for some species and decreasing presence in others. Herbivores affect plant communities directly by selective grazing of plant species, and indirectly by either epizoochory or endozoochory. Helianthemum nummularium is considered an increasing species because its distribution increased after the introduction of large, free-ranging grazers in at least two coastal dune grassland areas in Belgium. However, its seeds lack any obvious adaptations for epizoochory, and direct observations of plant/seed consumption are scarce. Through field and lab experiments, we assessed the dispersal ability of H. nummularium via endozoochory and epizoochory. In a differentiated grazer exclusion experiment, evidence was found that plants are grazed by large domestic ungulates and small wild herbivores although these incidences were rare. Direct endozoochory evidence remained scarce. No seeds were found germinating in field-collected dung, and only few seedlings emerged following a seed feeding experiment. However, once deposited, we found higher growth rates when seeds were mixed with dung and decreased establishment success when seeds were sown in combination with competitively superior species. Epizoochory was plausible because both fur and hooves of cattle and horses were potentially capable of contributing to the transport of H. nummularium seeds. We conclude that herbivores play a role in seed dispersal, while their selective grazing behaviour most probably creates an appropriate environment for Helianthemum establishment and maintenance.  相似文献   

15.
Symbiotic seed germination is a critical stage in orchid life histories. Natural selection may act to favor plants that efficiently use mycorrhizal fungi. However, the necessary conditions for natural selection – variation, heritability, and differences in fitness – have not been demonstrated for either orchid or fungus. With the epiphytic orchid Tolumnia variegata as a model system, we ask the following questions: (1) Do seeds from different individuals in a population differ in germination and seedling development in the presence of the same fungi? (2) Do different mycorrhizal fungi (Ceratobasidium spp.) differ in ability to stimulate seed germination and growth in T. variegata? And (3) are the Ceratobasidium isolates that best induce seed germination and seedling development more closely related to each other than to isolates that are less effective? We performed symbiotic seed germination experiments in vitro. The experiments were done using mycorrhizal fungi isolated from T. variegata; relationships among the fungi were inferred from nuclear ribosomal ITS sequences. We found significant variation for both symbiotic germination and seedling growth among biparental seed crops obtained from a population of T. variegata plants. Differences among Ceratobasidium fungi in seed germination were significant. The fungi that induced highest seed germination and seedling development belonged to two of four clades of Ceratobasidium. The two experiments show that there is potential for natural selection to act on orchid–fungus relationships. Given that orchids vary in performance, and that mycorrhizal fungi are not geographically distributed homogeneously, mycorrhizae may affect population size, distribution and evolution of orchids.  相似文献   

16.
For species relying on seeds for population regeneration, knowledge on seed germination behaviors in relation to environmental factors is critical in designing species recovery strategy. Dendrobium sinense is an orchid endemic to Hainan Island of China and listed as Endangered by the IUCN Redlist. It reproduces primarily via seeds in its natural habitat. However, how germination is impacted by major environmental factors is poorly known. This study aimed to examine germination success of D. sinense seeds using two approaches, i.e. in situ and ex situ, using host tree barks as germination media. The latter was intended to generate symbiotic seedlings in a simple and economic approach which could be used for reintroduction efforts. In addition, three factors of in situ symbiotic seed germination success, including different sowing time, location (distance from an adult plant), and host tree were investigated. Our results showed that seeds sown ex situ and in situ in July had the highest rates of germination. Seed germination was significantly higher ex situ using bark as medium than in situ. Seeds sown directly on Rhododendron moulmainense, the most common host tree, with naturally occurring conspecific orchids had the highest rate of germination. In contrast, ex situ seeds sown on the bark of Cyclobalanopsis blakeii, a non-host species, had the highest rate of seed germination. In situ a positive correlation was found between the seed germination rate and the distance of the seeds from the adult D. sinense. Based on these results, it is likely seedling recruitments are determined by host tree species, the presence of and the distance from an adult conspecific orchid, which imply the importance of the mycorrhizal fungi, which were not reported here. This study provided important information on the optimal environmental conditions for population augmentation and reintroduction, which can be used as part of the species recovery strategy.  相似文献   

17.
Although many primates are identified as effective endozoochorous seed dispersers in forest ecosystems, epizoochorous seed dispersal by primates has generally been overlooked. In this study, we report epizoochorous seed dispersal in a group of free-ranging golden snub-nosed monkeys (Rhinopithecus roxellana) residing in the temperate forests of central China by identifying seeds carried by 12 well-habituated individuals. The results showed a total of 1920 seeds (five families, seven genera) belonging to eight plant species attached to the monkeys’ fur; the three most abundant species were Geum aleppicum (54% of the total), Torilis japonica (17%), and Agrimonia pilosa (14%). The majority of seeds (95.3%) that attached to the monkeys’ fur had special morphologies such as hairs, hooks, or awns. We also found that the quantity of seeds attached to the fur was not significantly different by age-sex class, even though adult males have very long fur. Our study provides the first empirical evidence of epizoochorous seed dispersal by primates and suggests the role of primates in seed dispersal may be greater than previously assumed.  相似文献   

18.
Dispersal abilities of invading species emerge from the interaction between the species and some features of the target community. Ligustrum lucidum is a tree species invading different ecosystems. Major spatial patterns of Ligustrum invasions and their ecological consequences have been analyzed, but no study addressed the dispersal process at a fine scale, assessing the effects of different biological and environmental factors. Ligustrum lucidum is an ornithochoric species. The structure of the environment determines bird movements and thus affects seed dispersal. We used inverse modeling to analyze bird-mediated dispersal of L. lucidum seeds in a secondary Yungas forest and surrounding crop-fields. We assessed the effects of egestion mode (regurgitation and defecation) and tree density (as an environment character) on seed dispersal. Seed dispersal presented different spatial patterns depending on the egestion mode. Tree density was positively associated with the number of regurgitated dispersed seeds and negatively associated with the number of defecated dispersed seeds. In both cases, dispersal distance increased in open areas, but absence of perches inhibited seed arrival. Thus, spread of L. lucidum is facilitated in open areas with some trees; inside the native forest, short distance dispersal facilitates the gradual invasion by this exotic species. Our results suggest that processes like crop abandonment and forest succession, which are active in subtropical montane systems, may facilitate L. lucidum invasion. Our seed dispersal models should be combined with actual distribution maps of L. lucidum to identify areas vulnerable to new invasions.  相似文献   

19.
Mechanisms underlying biological invasion of highly disturbed ecosystems are well known, yet mechanisms responsible for biological invasion of undisturbed or weakly disturbed ecosystems are less understood. The triggering attribute (TA) approach, proposed as a mechanism that explains plant invasion success in undisturbed or weakly disturbed systems, considers that the spread of alien species depends on specific vegetative or regenerative traits in invasive species, discontinuously distributed in comparison to the resident community. In mountain Chaco woodland, fruiting phenology of ornithocorous invasive plants has been proposed as a TA, because it would allow invasive species to benefit from seed dispersal service, which is unused by native plants during a specific period of the year (winter). Under the seed dispersal ecology framework, we evaluated if fruiting phenology (fructification largely uncoupled with native species) of the fleshy-fruited invasive Pyracantha angustifolia affects bird fruit consumption, and allows the invasive to take advantage of the unused seed dispersal service during winter. If uncoupled fructification phenology represents a TA, seed disperser, seed predator, and pulp consumer diversity, abundance, and fruit consumption on P. angustifolia (which fructifies in winter), will be higher than on its exotic congeneric P. coccinea during summer, when fructification overlaps with native Celtis ehrenbergiana and many other native species. We found that: (1) disperser bird abundance and fruit consumption did not differ between P. angustifolia and P. coccinea; (2) the most diverse frugivorous assemblage was observed on C. ehrenbergiana, yet it had the lowest proportion of seed dispersers and the highest fruit consumption by seed predators and, (3) we also observed higher proportion of seed predators on P. angustifolia (uncoupled fructification scenario) than on P. coccinea (coupled fructification scenario). Our results suggest that invasive uncoupled fructification phenology does not represent a true TA which facilitates plant invasion processes in undisturbed or weakly disturbed ecosystem.  相似文献   

20.
The effects of reduced water potential (ψ) on seed germination at 25 and 15 °C in unprimed (UP) and primed (P) seeds of two cultivars of sweet sorghum (cv. Keller and cv. Makueni local), were analyzed through the hydrotime model. Six ψ (from 0 to ?1.0 MPa) in polyethylene glycol 6000 (PEG) solutions were used for the tests. Seeds were primed in 250 g/L PEG solution at 15 °C for 48 h. Decreasing ψ of imbibition solution reduced and delayed germination. At 15 °C seeds germinated less and slower than at 25 °C at any ψ. Seeds of cv. Makueni local exhibited a greater sensitivity to water stress in terms of germination percentage, than seeds of cv. Keller, but they were faster in germination. Osmopriming was beneficial for seed germination, both in terms of final percentage and rate, at any temperature and ψ. The hydrotime analysis revealed that predicted θ H constant was increased when temperature was reduced to 15 °C and at this temperature median base water potential [ψ b(50)] for germination was higher (less negative) than at 25 °C. Seed priming shifted ψ b(50) towards more negative values and reduced θ H requirements for germination. At 25 °C the two cultivars behaved similarly while at 15 °C cv. Keller exhibited a ψ b more negative but required a greater θ H to germinate, indicating a greater water-stress tolerance but a slower germination, than cv. Makueni local. The application of the model allows to identify water stress tolerant cultivars during germination, to include into breeding programs for the selection of well-performing cultivars under stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号