首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The interspecific relationships between egg size and female size, sexual size dimorphism, latitude, preoviposition and egg-laying behaviour, was investigated in European Satyrine butterflies by controlling for taxonomic relatedness and by simple cross-species comparisons. Egg size scales positively to female size, although the relationship is not significant (but nearly so) when taxonomic effects are controlled for. Egg size is correlated with latitude. When the effects of latitude are removed, the relationship between egg and female size becomes more evident. Sexual size dimorphism is negatively correlated with egg size, but the effect disappears when adult size is controlled for. Small egg size is related to long preoviposition. No relationship between egg laying mode and egg size appears. The results are interpreted as evidence for positive scaling of egg to female size, with superimposed effects of egg size radiation. The correlation of egg size with latitude suggests that temperature, or season length, is likely to have made an important contribution to egg size selection within this geographic area.  相似文献   

2.
We studied the speciose butterfly genus Erebia by reconstructing its phylogenetic relationships using parsimony and Bayesian approaches. We estimated times and rates of diversification for its lineages and employed a biogeographical analysis in order to reconstruct its evolutionary history. DNA sequence data from one mitochondrial gene and three nuclear genes were analyzed for a total of 74 species in Erebia. The estimated dates of origin and diversification for clades, in combination with a biogeographical analysis, suggest that the genus originated in Asian Russia and started its diversification process around 23 Myr. An important event was the dispersal of a lineage from Asia to Western Europe between 23 and 17 Myr, which allowed the radiation of most of species in the genus. The diversification pattern is consistent with a model of diversity limited by clade richness, which implies an early rapid diversification followed by deceleration due to a decrease in speciation. We argue that these characteristics of the evolutionary history of Erebia are consistent with a density‐dependent scenario, with species radiation limited by filling of niche space and reduced resources. We found that the Boeberia parmenio appears strongly supported in the genus Erebia and therefore we place Boeberia Prout, 1901 as a junior synonym of Erebia Dalman, 1816 ( syn. nov. ).  相似文献   

3.
Euptychiina is the most species‐rich subtribe of Neotropical Satyrinae, with over 450 known species in 47 genera (14 monotypic). Here, we use morphological characters to examine the phylogenetic relationships within Euptychiina. Taxonomic sampling included 105 species representing the majority of the genera, as well as five outgroups. A total of 103 characters were obtained: 45 from wing pattern, 48 from genitalia and 10 from wing venation. The data matrix was analysed using maximum parsimony under both equal and extended implied weights. Euptychiina was recovered as monophyletic with ten monophyletic genera, contrasting previous DNA sequence‐based phylogenies that did not recover the monophyly of the group. In agreement with sequence‐based hypotheses, however, three main clades were recognized: the ‘Megisto clade’ with six monophyletic and three polyphyletic genera, the ‘Taygetis clade’ with nine genera of which three were monophyletic, and the ‘Pareuptyhia clade’ with four monophyletic and two polyphyletic genera. This is the first morphology‐based phylogenetic hypothesis for Euptychiina and the results will be used to complement molecular data in a combined analysis and to provide critical synapomorphies for clades and genera in this taxonomically confused group.  相似文献   

4.
We have inferred the most comprehensive phylogenetic hypothesis to date of butterflies in the tribe Satyrini. In order to obtain a hypothesis of relationships, we used maximum parsimony and model‐based methods with 4435 bp of DNA sequences from mitochondrial and nuclear genes for 179 taxa (130 genera and eight out‐groups). We estimated dates of origin and diversification for major clades, and performed a biogeographic analysis using a dispersal–vicariance framework, in order to infer a scenario of the biogeographical history of the group. We found long‐branch taxa that affected the accuracy of all three methods. Moreover, different methods produced incongruent phylogenies. We found that Satyrini appeared around 42 Mya in either the Neotropical or the Eastern Palaearctic, Oriental, and/or Indo‐Australian regions, and underwent a quick radiation between 32 and 24 Mya, during which time most of its component subtribes originated. Several factors might have been important for the diversification of Satyrini: the ability to feed on grasses; early habitat shift into open, non‐forest habitats; and geographic bridges, which permitted dispersal over marine barriers, enabling the geographic expansions of ancestors to new environments that provided opportunities for geographic differentiation, and diversification.
相似文献   

5.
We have inferred the first empirically supported hypothesis of relationships for the cosmopolitan butterfly subfamily Satyrinae. We used 3090 base pairs of DNA from the mitochondrial gene COI and the nuclear genes EF-1alpha and wingless for 165 Satyrinae taxa representing 4 tribes and 15 subtribes, and 26 outgroups, in order to test the monophyly of the subfamily and elucidate phylogenetic relationships of its major lineages. In a combined analysis, the three gene regions supported an almost fully resolved topology, which recovered Satyrinae as polyphyletic, and revealed that the current classification of suprageneric taxa within the subfamily is comprised almost completely of unnatural assemblages. The most noteworthy findings are that Manataria is closely related to Melanitini; Palaeonympha belongs to Euptychiina; Oressinoma, Orsotriaena and Coenonympha group with the Hypocystina; Miller's (1968). Parargina is polyphyletic and its components group with multiple distantly related lineages; and the subtribes Elymniina and Zetherina fall outside the Satyrinae. The three gene regions used in a combined analysis prove to be very effective in resolving relationships of Satyrinae at the subtribal and tribal levels. Further sampling of the taxa closely related to Satyrinae, as well as more extensive sampling of genera within the tribes and subtribes for this group will be critical to test the monophyly of the subfamily and establish a stronger basis for future biogeographical and evolutionary studies.  相似文献   

6.
We describe the chromosome numbers of a monophyletic group of Satyroid subfamilies of primary fruit-attracted butterflies from South America: Charaxinae, Morphinae (including Brassolini) and Satyrinae. The charaxines do not have a distinct modal number. Their chromosome numbers are in the range n  = 6–50, with n  = 7–9, n  = 12, n  = 16, n  = 19–21, n  = 26, and n  = 28–31 being the most common numbers. Within the Morphinae, the Morphini have a modal n  = 28 and the Brassolini a modal n  = 29, with few exceptions. The Neotropical satyrines, in particular the basal species, have a weak modal n  = 29, which is a strong modal number in Palearctic satyrines. The African satyrines have an equally strong modal n  = 28. Most Neotropical satyrines have, like charaxines, chromosome numbers lower than the weak modal n  = 29, and often half this modal, but there are genera with stable numbers among the satyrines and charaxines. Evidently, the Neotropical satyroids descend from basal Nymphalidae with the typical lepidopteran modal number of n  = 31, which have also given rise to the Heliconiini with modal n  = 31 and 21 and Ithomiinae with modal numbers of n  = 14–15.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 92 , 467–481.  相似文献   

7.
Abstract.  The genus Pararge comprises three species: P. aegeria , distributed in Europe and North Africa; P. xiphia , endemic to Madeira; and P. xiphioides , endemic to the Canary Islands. Two subspecies are recognized in P. aegeria , P. a. tircis and P. a. aegeria , distributed in northern and southern Europe, respectively. In the 1970s, P. aegeria appeared on Madeira. However, despite the status of P. aegeria as a model species in ecological studies, the evolutionary history of Pararge remains unknown. We studied the phylogenetic relationships of the three Pararge species, using the mitochondrial gene cytochrome oxidase subunit I and the nuclear gene wingless to infer modes and times of speciation. On the basis of our analyses, Pararge forms a strongly supported monophyletic group, with the DNA haplotypes of the three species also forming well-supported monophyletic groups. We found that P. xiphia diverged first from the common ancestor a maximum of five million years ago, with P. xiphioides and P. aegeria being sister species that diverged a maximum of three million years ago. The two subspecies, P. a. tircis and P. a. aegeria , were not distinguishable on the basis of DNA haplotypes; instead, our data clearly distinguished between European specimens and those from North Africa. Madeiran P. aegeria has North African haplotypes and thus originated from there rather than from Europe. We hypothesize that the Mediterranean Sea forms a strong barrier to dispersal for Pararge butterflies, and has done so for approximately the past one million years.  相似文献   

8.
We investigated the phylogeny of butterflies in the tribe Nymphalini sensu Harvey 1991, comprising the genera Vanessa, Cynthia, Bassaris, Aglais, Inachis, Nymphalis, Polygonia, Kaniska, Antanartia, Hypanartia, Symbrenthia, Mynes and Araschnia . Evidence from the mitochondrial gene ndl, the nuclear gene 'wingless' and from morphology/ ecology/behaviour were used separately and combined to analyse relationships. Phylogenies based on the different types of data agreed in many aspects of basic topology. We show that an analysis of only wing pattern characters (based on Nijhout's homology system) results in a topology broadly similar to the one resulting from analysis of the complete matrix. We found support for a monophyletic Nymphalini, where Hypanartia may be the sister clade to all other genera. Mynes, Symbrenthia and Araschnia together seem to form another basal clade. Evidence presented gives only moderate support for a monophyletic Vanessa in the wide sense, including also Cynthia and Bassaris , but strong support for the monophyly of the largely holarctic clade Aglais + Inachis + Nymphalis + Polygonia + Kaniska + Roddia . Within the latter group there is strong support for a clade consisting of Aglais + Inachis and for a second clade which includes Nymphalis, Polygonia (and its sister clade, the monotypic Kaniska) as well as Roddia l-album (= Nymphalis vaualbum ). As a consequence of this topology, Aglais is recognized as a taxon separate from Nymphalis . We present a hypothesis of species relationships within the focal group of genera. We also analyse and discuss the implications of excluding or including ecological data in phylogenetic tree construction, when the tree is to be used for studies in phylogenetic ecology.  相似文献   

9.
The Mediterranean islands of Sardinia and Corsica are known for their multitude of endemics. Butterflies in particular have received much attention. However, no comprehensive studies aiming to compare populations of butterflies from Sardinia and Corsica with those from the neighbouring mainland and Sicily have been carried out. In the present study, the eleven Satyrinae species inhabiting Sardinia and Corsica islands were examined and compared with continental and Sicilian populations by means of geometric morphometrics of male genitalia. Relative warp computation, discriminant analyses, hierarchical clustering, and cross‐validation tests were used to identify coherent distributional patterns including both islands and mainland populations. The eleven species showed multifaceted distributional patterns, although three main conclusions can be drawn: (1) populations from North Africa and Spain are generally different from those belonging to the Italian Peninsula; (2) populations from Sardinia and Sicily often resemble the North Africa/Spain ones; Corsica shows transitional populations similar to those from France; and (3) sea barriers represent filters to dispersal, although their efficacy appears to be unrelated to their extension. Indeed, the short sea straits between Sardinia and Corsica and between Sicily and the Italian Peninsula revealed a strong effectiveness with respect to preventing faunal exchanges; populations giving onto sea channels between Corsica and Northern Italy and between Sicily and Tunisia showed a higher similarity. A comparison of island and mainland distributions of the eleven taxa have helped to unravel the complex co‐occurrence of historical factors, refugial dynamics, and recent (post‐glacial) dispersal with respect to shaping the populations of Mediterranean island butterflies. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 195–212.  相似文献   

10.
Microsatellite markers are suitable tools for studying dispersal pattern among local populations. I report on the characterization of seven polymorphic microsatellite loci in the scarce heath butterfly (Coenonympha hero), from one unenriched and one enriched genomic library. Number of alleles ranged from two to 20 when 108 individuals from seven populations were screened. HO ranged from 0.140 to 0.889. Primers were also tested on three other butterfly species. Amplification was successful for all loci in Erebia triaria, while only one gave products in Maculinea alcon and Maculinea rebeli. To my knowledge, these are the first microsatellite markers published in the Nymphalidae subfamily Satyrinae.  相似文献   

11.
Phylogeny of the Nymphalidae (Lepidoptera)   总被引:9,自引:0,他引:9  
A generic-level phylogeny for the butterfly family Nymphalidae was produced by cladistic analysis of 234 characters from all life stages. The 95 species in the matrix (selected from the 213 studied) represent all important recognized lineages within this family. The analysis showed the taxa grouping into six main lineages. The basal branch is the Libytheinae, with the Danainae and Ithomiinae on the next branch. The remaining lineages are grouped into two main branches: the Heliconiinae-Nymphalinae, primarily flower-visitors (but including the fruit-attracted Coeini); and the Limenitidinae (sensu strictu), Biblidinae, and the satyroid lineage (Apaturinae, Charaxinae, Biinae, Calinaginae, Morphinae, Brassolinae, and Satyrinae), primarily fruit-attracted. Data partitions showed that the two data sets (immatures and adults) are very different, and a partitioned Bremer support analysis showed that the adult characters are the main source of conflict in the nodes of the combined analysis tree. This phylogeny includes the widest taxon coverage of any morphological study on Nymphalid butterflies to date, and supports the monophyly and relationships of most presently recognized subgroups, providing strong evidence for the presently accepted phylogenetic scheme.  相似文献   

12.
Abstract. We investigated genetic divergence and phylogenetic relationships amongst all known species of Palaearctic butterflies of the genus Melanargia using sequence information from three genes [mitochondrial cox1 barcode region (658 bp), ribosomal 16S rRNA (c. 518 bp), and nuclear wg (404 bp)]. Results show a lack of DNA divergence among several poorly characterized taxa, as well as deep divergences within and between others. We corroborated the molecular information with morphological and genitalic characters as well as with geographic data. We revise the taxonomy of Melanargia, and propose a new systematic scheme for the group. We revive some previous synonymies (M. lucasi meadwaldoi stat. rev. , M. ines fathme stat. rev. , M. ines jahandiezi stat. rev. , M. meridionalis tapaishanensis stat. rev. ), revise the status of some subspecies into species (M. transcaspica stat. nov. , M. lucida stat. nov. , M. wiskotti stat. nov. ) and of several species into subspecies of other taxa (M. evartianae sadjadii stat. nov. , M. larissa hylata stat. nov. , M. larissa grumi stat. nov. , M. larissa syriaca stat. nov. , M. larissa titea stat. nov. , M. lugens montana stat. nov. , M. epimede ganymedes stat. nov. ), revise the status of subspecies and transfer them to other species (M. larissa lorestanensis stat. nov. , M. larissa iranica stat. nov. , M. larissa karabagi stat. rev. , M. larissa kocaki stat. nov. , M. transcaspica eberti stat. nov. ), and propose new synonymies (M. larissa titea = M. titea standfussi syn. nov. = M. titea titania syn. nov. , M. leda leda = M. leda yunnana syn. nov. , M. lugens lugens = M. lugens ahyoui syn. nov. , M. lugens hengshanensis = M. lugens hoenei syn. nov. , M. halimede halimede = M. halimede gratiani syn. nov. , M. asiatica asiatica = M. asiatica dejeani syn. nov. , = M. asiatica elisa syn. nov. , = M. asiatica sigberti syn. nov. ).  相似文献   

13.

Background  

Butterflies of the subtribe Mycalesina (Nymphalidae: Satyrinae) are important model organisms in ecology and evolution. This group has radiated spectacularly in the Old World tropics and presents an exciting opportunity to better understand processes of invertebrate rapid radiations. However, the generic-level taxonomy of the subtribe has been in a constant state of flux, and relationships among genera are unknown. There are six currently recognized genera in the group. Mycalesis, Lohora and Nirvanopsis are found in the Oriental region, the first of which is the most speciose genus among mycalesines, and extends into the Australasian region. Hallelesis and Bicyclus are found in mainland Africa, while Heteropsis is primarily Madagascan, with a few species in Africa. We infer the phylogeny of the group with data from three genes (total of 3139 bp) and use these data to reconstruct events in the biogeographic history of the group.  相似文献   

14.
The skipping flight patterns of three species of Ypthima (Lepidoptera: Nymphalidae) were analyzed using high‐speed video recordings to clarify how wings move and how driving forces are produced. All three species showed a flight pattern that includes a pause that accounts for about 50% of a flap cycle when their wings completely close after each upstroke. The observed pause causes the “skipping” flight trajectory based on the clap–fling mechanism. Pause duration was correlated with upstroke wing motion, suggesting the contribution of the latter to a long pause duration. This is also supported by the temporal relationship between the wing and body motions. The aerodynamic power necessary for the pause flight was calculated for the three species.  相似文献   

15.
Distributions of danaine butterfly species and associated mimetic patterns were compared among fifteen archipelagos of the tropical Pacific Ocean, and within five major archipelagos (the Bismarcks, Fiji, East and West Solomon Islands, and Vanuatu). Using both simple and stepwise linear regression analysis, variation in the total number of danaine species and number of mimetic patterns was assessed with respect to island size, isolation and elevation. Relative to interarchipelago distributions, the distribution of danaine species and number of mimetic patterns on islands within archipelagos exhibited less dependence upon interisland distance and island area. Geographical features influencing the number of mimetic patterns were similar to those of danaines as a whole. Analysis of residuals from stepwise linear regression suggested that factors influencing danaine distributions were different from those for non-danaine butterflies. This result is consistent with the hypothesis of enhancement of danaine species establishment through Müllerian mimicry, although other factors such as host plant availability and similar habitat use may also be important.  相似文献   

16.
《Genomics》2020,112(6):4435-4441
The mitochondrial genome (mitogenome) can help us understand the phylogenetic relationships within the genus Lethe and the subfamily Satyrinae. In this study, we sequenced the complete mitogenomes of 14 Lethe species, which range in size from 15,225 to 15,271 bp, with both 37 genes (13 PCGs, 22 tRNAs, 2 rRNAs) and a noncoding A + T-rich region. The gene arrangement and orientation is similar to typical mitogenomes of Lepidoptera. The Ka/Ks ratio shows that cox1 has the slowest evolutionary rate. The secondary structure of trnN lacks the Pseudouracil loop (TψC loop) in most Lethe species. The inferred phylogenetic analyses show that Lethe is a well-supported monophyletic group, and reveal 2 major clades within the genus Lethe, which is consistent with previous morphological classifications.  相似文献   

17.
Abstract. Neptis melicertula is regarded as the West African subspecies of N. trigonophora Butler, a species previously known only from East, Central and South Africa. N. mixophyes Holland and N. nicobule Holland are redescribed, N. nicodice Grünberg is placed as a synonym of N. mixophyes , and Eltringham's (1922) key to the Neptis species of the Ethiopian Region is modified to include these species. A list is given of twenty-one species known to occur, or likely to occur, in Ghana. Following a principal co-ordinate analysis, there is a discussion of the taxonomic importance of white marks in the forewing ceE and of interior structures on the male valvae.  相似文献   

18.
The Australian fauna is composed of several major biogeographical elements reflecting different spatial and temporal histories. Two groups of particular interest are the Gondwanan Element, reflecting an ancient origin in Gondwana or southern Gondwana (southern vicariance hypothesis), and the Asian Element, reflecting a more recent origin in Asia, Eurasia or Laurasia (northern dispersal hypothesis). Theories regarding the origin and evolution of butterflies (Hesperioidea, Papilionoidea) in Australia are controversial, with no clear consensus. Here, we investigate the phylogenetic and historical biogeographical relationships of the subtribe Aporiina, a widespread taxon with disjunct distributions in each of the major zoogeographical regions. Attention is paid to origins of the subtribe in the Australian Region for which several conflicting hypotheses have been proposed for the Old World genus Delias Hübner. Our phylogenetic reconstruction was based on analysis of fragments of two nuclear genes (elongation factor‐1α, wingless) and one mitochondrial gene (cytochrome oxidase subunit I) for 30 taxa. Phylogenetic analyses based on maximum parsimony, maximum likelihood and Bayesian inference of the combined data set (2729 bp; 917 parsimony informative characters) recovered six major lineages within the monophyletic Aporiina, with the following topology: (Cepora + Prioneris + (Mylothris + (Aporia + Delias group + Catasticta group))). Given a probable age of origin of the stem‐group near the Cretaceous/Tertiary boundary (69–54 Mya), followed by diversification of the crown‐group in the early to mid Tertiary (57–45 Mya), we show that an origin of the Aporiina in either southern Gondwana or Laurasia is equally parsimonious, and that dispersal has played a major role in shaping the underlying phylogenetic pattern. We tentatively conclude that an origin in southern Gondwanan is more likely; however, neither hypothesis satisfactorily explains the present‐day distribution, and additional lower‐level phylogenies are needed to determine the directionality of dispersal events of several taxa and to reject one hypothesis over the other. Dispersal is inferred to have occurred primarily during cooler periods when land bridges or stepping‐stones were available between many of the zoogeographical regions. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 90 , 413–440.  相似文献   

19.
The mycalesine butterfly genus Heteropsis Westwood, 1850 (Satyrinae: Mycalesina) has recently been conceived to be represented in three major palaeotropical regions (Madagascar, Africa and Asia), but there has been no formal taxonomic treatment covering this entire group. Studies aimed at understanding the evolutionary success of Mycalesina in the Old World tropics have been hampered by the lack of both a robust phylogeny and a stable nomenclature for this satyrine subtribe. Here, we present a well‐supported molecular phylogeny based on 10 genes and 133 exemplar taxa, representing almost all known species groups of Heteropsis (s.l.), and including all but four known species in Madagascar. We also combine sequences of the exemplars with a morphological matrix of 428 characters. The widespread ‘Heteropsis clade’ is confirmed as monophyletic, but lineages in different geographic regions also form endemic and well‐supported clades with deep divergences among them. Here we establish this group as comprising three genera, Heteropsis (Malagasy region only), Telinga Moore, 1880 (Asia), and Brakefieldia gen.n. (Africa). We recover the genera Telinga and Brakefieldia as sisters with high support. Each genus is taxonomically characterized and a revised synonymic checklist is appended with new combinations and some changes in rank. With a well‐resolved topology and updates to the taxonomy of the group, researchers are now in a position to explore the drivers of the spectacular radiation of the group, notably in Madagascar, where the highest phenotypic and species diversity occurs. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:AAF9F440‐A2D6‐4483‐BF35‐9BC074D9D29B .  相似文献   

20.
We report a rapid radiation of a group of butterflies within the family Nymphalidae and examine some aspects of popular analytical methods in dealing with rapid radiations. We attempted to infer the phylogeny of butterflies belonging to the subtribe Coenonymphina sensu lato using five genes (4398 bp) with Maximum Parsimony, Maximum Likelihood and Bayesian analyses. Initial analyses suggested that the group has undergone rapid speciation within Australasia. We further analyzed the dataset with different outgroup combinations the choice of which had a profound effect on relationships within the ingroup. Modelling methods recovered Coenonymphina as a monophyletic group to the exclusion of Zipaetis and Orsotriaena, irrespective of outgroup combination. Maximum Parsimony occasionally returned a polyphyletic Coenonymphina, with Argyronympha grouping with outgroups, but this was strongly dependent on the outgroups used. We analyzed the ingroup without any outgroups and found that the relationships inferred among taxa were different from those inferred when either of the outgroup combinations was used, and this was true for all methods. We also tested whether a hard polytomy is a better hypothesis to explain our dataset, but could not find conclusive evidence. We therefore conclude that the major lineages within Coenonymphina form a near-hard polytomy with regard to each other. The study highlights the importance of testing different outgroups rather than using results from a single outgroup combination of a few taxa, particularly in difficult cases where basal nodes appear to receive low support. We provide a revised classification of Coenonymphina; Zipaetis and Orsotriaena are transferred to the tribe Eritina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号