首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Metapopulation theory predicts that species richness and total population density of habitat specialists increase with increasing area and regional connectivity of the habitat. To test these predictions, we examined the relative contributions of habitat patch area, connectivity of the regional habitat network and local habitat quality to species richness and total density of butterflies and day-active moths inhabiting semi-natural grasslands. We studied butterflies and moths in 48 replicate landscapes situated in southwest Finland, including a focal patch and the surrounding network of other semi-natural grasslands within a radius of 1.5 km from the focal patch. By applying the method of hierarchical partitioning, which can distinguish between independent and joint contributions of individual explanatory variables, we observed that variables of the local habitat quality (e.g. mean vegetation height and nectar plant abundance) generally showed the highest independent effect on species richness and total density of butterflies and moths. Habitat area did not show a significant independent contribution to species richness and total density of butterflies and moths. The effect of habitat connectivity was observed only for total density of the declining butterflies and moths. These observations indicate that the local habitat quality is of foremost importance in explaining variation in species richness and total density of butterflies and moths. In addition, declining butterflies and moths have larger populations in well-connected networks of semi-natural grasslands. Our results suggest that, while it is crucial to maintain high-quality habitats by management, with limited resources it would be appropriate to concentrate grassland management and restoration to areas with well-connected grassland networks in which the declining species currently have their strongest populations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
The preservation of remaining semi-natural grasslands in Europe has a high conservation priority. Previously, the effects of artificial fertilisation and grazing intensity on grassland animal and plant taxa have been extensively investigated. In contrast, little is known of the effects of tree and shrub cover within semi-natural grasslands and composition of habitats in the surrounding landscape on grassland taxa. We evaluated the effect that each of these factors has on species richness and community structure of vascular plants, butterflies, bumble bees, ground beetles, dung beetles and birds surveyed simultaneously in 31 semi-natural pastures in a farmland landscape in south-central Sweden. Partial correlation analyses showed that increasing proportion of the pasture area covered by shrubs and trees had a positive effect on species richness on most taxa. Furthermore, species richness of nectar seeking butterflies and bumble bees were negatively associated with grazing intensity as reflected by grass height. At the landscape level, species richness of all taxa decreased (butterflies and birds significantly so) with increasing proportion of urban elements in a 1-km2 landscape area centred on each pasture, while the number of plant and bird species were lower in landscapes with large proportion of arable fields. Our results differed markedly depending on whether the focus was on species richness or community structure. Canonical correspondence analyses (CCA) showed that the abundance of most taxa was ordered along a gradient describing tree cover within pastures and proportion of arable fields in the landscape. However, subsets of grassland birds and vascular plants, respectively, showed markedly different distribution patterns along axis one of the CCA. In contrast to current conservation policy of semi-natural pastures in Sweden, our results strongly advise against using a single-taxon approach (i.e., grassland vascular plants) to design management and conservation actions in semi-natural pastures. Careful consideration of conservation values linked to the tree and shrub layers in grasslands should always precede decisions to remove trees and shrubs on the grounds of promoting richness of vascular plants confined to semi-natural grasslands. Finally, the importance of landscape composition for mobile organisms such as birds entails that management activities should focus on the wider countryside and not exclusively on single pastures.  相似文献   

3.
Pollinating insect populations, essential for maintaining wild plant diversity and agricultural productivity, rely on (semi)natural habitats. An increasing human population is encroaching upon and deteriorating pollinator habitats. Thus the population persistence of pollinating insects and their associated ecosystem services may depend upon on man-made novel habitats; however, their importance for ecosystem services is barely understood. We tested if man-made infrastructure (railway embankments) in an agricultural landscape establishes novel habitats that support large populations of pollinators (bees, butterflies, hoverflies) when compared to typical habitats for these insects, i.e., semi-natural grasslands. We also identified key environmental factors affecting the species richness and abundance of pollinators on embankments. Species richness and abundance of bees and butterflies were higher for railway embankments than for grasslands. The occurrence of bare (non-vegetated) ground on embankments positively affected bee species richness and abundance, but negatively affected butterfly populations. Species richness and abundance of butterflies positively depended on species richness of native plants on embankments, whereas bee species richness was positively affected by species richness of non-native flowering plants. The density of shrubs on embankments negatively affected the number of bee species and their abundance. Bee and hoverfly species richness were positively related to wood cover in a landscape surrounding embankments. This is the first study showing that railway embankments constitute valuable habitat for the conservation of pollinators in farmland. Specific conservation strategies involving embankments should focus on preventing habitat deterioration due to encroachment of dense shrubs and maintaining grassland vegetation with patches of bare ground.  相似文献   

4.
One response to biodiversity decline is the definition of ecological networks that extend beyond protected areas and promote connectivity in human-dominated landscapes. In farmland, landscape ecological research has focused more on wooded than open habitat networks. In our study, we assessed the influence of permanent grassland connectivity, described by grassland amount and spatial configuration, on grassland biodiversity. We selected permanent grasslands in livestock farming areas of north-western France, which were sampled for plants, carabids and birds. At two spatial scales we tested the effects of amount and configuration of grasslands, wooded habitats and crops on richness and abundance of total assemblages and species ecological groups. Grassland connectivity had no significant effects on total richness or abundance of any taxonomic group, regardless of habitat affinity or dispersal ability. The amount of wooded habitat and length of wooded edges at the 200 m scale positively influenced forest and generalist animal groups as well as grassland plant species, in particular animal-dispersed species. However, for animal groups such as open habitat carabids or farmland bird specialists, the same wooded habitats negatively influenced richness and abundance at the 500 m scale. The scale and direction of biodiversity responses to landscape context were therefore similar among taxonomic groups, but opposite for habitat affinity groups. We conclude that while grassland connectivity is unlikely to contribute positively to biodiversity, increasing or maintaining wooded elements near grasslands would be a worthwhile conservation goal. However, the requirements of open farmland animal species groups must be considered, for which such action may be deleterious.  相似文献   

5.
Ockinger E  Smith HG 《Oecologia》2006,149(3):526-534
During the last 50 years, the distribution and abundance of many European butterfly species associated with semi-natural grasslands have declined. This may be the result of deteriorating habitat quality, but habitat loss, resulting in decreasing area and increasing isolation of remaining habitat, is also predicted to result in reduced species richness. To investigate the effects of habitat loss on species richness, we surveyed butterflies in semi-natural grasslands of similar quality and structure, but situated in landscapes of different habitat composition. Using spatially explicit habitat data, we selected one large (6–10 ha) and one small (0.5–2 ha) grassland site (pasture) in each of 24 non-overlapping 28.2 km2 landscapes belonging to three categories differing in the proportion of the area that consisted of semi-natural grasslands. After controlling for local habitat quality, species richness was higher in grassland sites situated in landscapes consisting of a high proportion of grasslands. Species richness was also higher in larger grassland sites, and this effect was more pronounced for sedentary than for mobile species. However, the number of species for a given area did not differ between large and small grasslands. There was also a significant relationship between butterfly species richness and habitat quality in the form of vegetation height and abundance of flowers. In contrast, butterfly density was not related to landscape composition or grassland size. When species respond differently to habitat area or landscape composition this leads to effects on community structure, and nestedness analysis showed that depauperate communities were subsets of richer ones. Both grassland area and landscape composition may have contributed to this pattern, implying that small habitat fragments and landscapes with low proportions of habitat are both likely to mainly contain common generalist species. Based on these results, conservation efforts should aim at preserving landscapes with high proportions of the focal habitat.  相似文献   

6.
Semi-natural grasslands can support diverse faunal and floral communities, including grassland birds, beneficial insects, and native wildflowers. Monitoring biodiversity of this type of ecosystem is important to assess abundance and richness of grassland-associated species, evaluate success of establishing grasslands, and to assess overall ecosystem health. We tested butterflies as surrogates for birds and plants to assess establishment success of semi-natural grassland buffers in north-central Mississippi using Spearman rank correlation (Spearman’s ρ). Disturbance and grassland butterfly guilds were generally not suitable surrogates for grassland bird metrics, non-grassland bird metrics, or nest density metrics. Butterflies did have consistent positive correlations with plant species richness and forb metrics, as well as consistent negative correlations with grass metrics, but these correlations were generally smaller than what is considered suitable to serve as surrogates. In general, butterflies were not suitable surrogates for birds or plants in semi-natural grassland buffers.  相似文献   

7.
Benjamin Krause  Heike Culmsee 《Flora》2013,208(5-6):299-311
There is a growing concern that land use intensification is having negative effects on semi-natural grasslands and that it leads to a general loss of biodiversity among all types of formerly extensively managed grasslands of poor to medium nutrient richness. Since the 1950s, many Central European uplands have been subject to an increase in grassland cover as a result of changes in land use practices. Using such a landscape in Lower Saxony, Germany, as a model region, we assessed environmental factors that control grassland diversity, including plant community composition, species richness and pollination trait composition. In 2007, 189 vegetation sampling sites were randomly distributed among grasslands covering some 394 ha within a 2500 ha study area. Plant communities were classified using TWINSPAN and the effects of environmental factors (soil, topography, current management and habitat continuity) were analysed by canonical correspondence analysis and regression analysis reducing for the effects of spatial autocorrelation by using principal coordinates of neighbour matrices.We found a wide range of six species-poor (<15 plant spp.) to extremely species-rich (>27 spp.) grassland types under mesic to dry site conditions, including sown, Cynosurion, Arrhenatherion and semi-natural grasslands. Grassland community composition was best explained by soil factors and species richness and pollination type composition by combined effects of current management and habitat continuity. During the 1950/60s, the extent of grassland area within the studied landscape rapidly increased to more than double its previous extent, and in 2007, grasslands comprised 16%. Natura 2000 grassland types comprised 1% of the surveyed site and medium-rich, high-nature-value grasslands a further 5%. While the number of wind-pollinated plant species was equal among all grassland types, there was a parallel decline in insect-pollinated plants and overall median species richness in the grassland communities along a gradient of increasing land use intensity (mowing, nutrient supply). Moreover, insect-pollinated plants occurring in intensively managed grasslands were found to additionally have the ability for self-pollination. Species-rich grasslands – including semi-natural grasslands and a semi-improved, species-rich Arrhenatherion community – occurred exclusively on old sites (with >100 years of habitat continuity) that had been used for traditional sheep grazing (environmental contracting). Medium-rich Arrhenatherion grasslands were established primarily on less productive, formerly arable fields (<30 years). We conclude that conservation efforts should focus on extant species-rich grassland types and should aim to implement traditional land use practices such as sheep grazing. Additional restoration efforts should focus on establishing new grasslands on less productive sites in the proximate surroundings of species-rich grasslands to facilitate seed dispersal, but nitrogen deposition should be buffered where appropriate. These measures would enhance the interaction between nature reserves and agricultural grasslands and thus improve the ecological quality of grasslands at the landscape scale.  相似文献   

8.
Changes in land use during the last century have caused fragmentation and a reduction in area of many species-rich habitats in the hemiboreal region. We examined abundances of plant species and their occurrence in different habitats in south-east Sweden. We found 361 plant species in 146 sample sites, which represented 14 different types of habitat. Most species were rare and occurred only in a few habitats. Almost half of all species (49%) were found in one or two habitats. Of these, 99 species occurred in one habitat only. The habitats with largest number of restricted species, i.e. habitat specialists, were dry to mesic semi-natural grasslands and remnant habitats such as road verges and mid field islets. The occurrence of 52 species was analysed with respect to topography, top- and subsoil and land use history. Few of the 52 species were affected by aspect or type of topsoil. Subsoil affected nearly half of the species and habitats with a convex landform influenced occurrence of > 90% of the species. Seventeen species were positively associated with a long continuity of grassland management, whereas two species were associated with lack of management. Open grasslands that are encroached by trees and shrubs show a decline in species number. Deciduous forests, especially wet deciduous forests, have a potential for restoring moist to mesic grassland habitats. Small remnant habitats are important for many of the species restricted to semi-natural grasslands. These habitats may function as "rescue sites" for the species, which in turn may promote dispersal and increase likelihood of restoration success. Therefore, remnant habitats are important for maintaining and restoring species richness in rural landscapes.  相似文献   

9.
Islands are vulnerable ecosystems worldwide, increasingly exposed to human pressure, global climate change and invasive species. Thus, understanding island species diversity is key for nature conservation. Recent studies on insular plant communities indicated that habitat-specific species composition and richness might largely affect diversity patterns observed at the island scale. In consequence, habitat-based approaches are needed to (i) estimate how environmental changes at the habitat scale may affect island diversity, and to (ii) estimate the contribution of different patches of the same habitat to island diversity with respect to habitat-specific environmental constraints.In the present study, we tested these habitat-to-island diversity relationships for shoreline habitats (brackish reeds, salt marsh, rocky shore, tall herbs) and island interior habitats (rocks, semi-natural grassland, pioneer forest, coniferous forest, mixed forest) using 108 islands of three Baltic archipelagos in Sweden. These islands differed in terms of island-scale variables describing effects of island configuration and distance, and habitat-scale variables representing the effects of habitat area, abiotic environment and land-use.The studied habitats differed in their contribution to island species diversity, called habitat specificity. Shoreline habitats shared many common specialist species adapted to extreme conditions like sea salt or bird grazing, while habitats of the island interior harbored mainly species adapted to the specific conditions of a single habitat. We found high variability in habitat specificity as a consequence of habitat-specific environmental factors. Variability was highest for grasslands, where it was related to abandonment and soil fertility, stressing the importance of grassland management for maintaining island biodiversity. Habitats with high habitat specificity through either high species richness or many habitat-specific specialists should be the primary targets for biodiversity management.  相似文献   

10.
Using species and environmental data from an extensive grassland area in south-western Finland, we investigated the effect of patch area and connectivity, management and local habitat variables on the occurrence of spring-flowering vascular plants and their richness in boreal agricultural landscapes. Generalized linear models (GLM) and variation partitioning were used to study the explanatory power of the three groups of variables and their combined contributions on the richness and occurrence of six spring-flowering plant species. Generalized additive models (GAMs) and associated cross-validation tests were used to evaluate the predictability of the species occurrence and richness patterns. Present-day grassland patch area and connectivity were important predictors for occurrence and richness of the studied plant species. In addition, local habitat factors, especially radiation, accounted for major fractions of occurrence patterns of the studied species. Hybrid models including variables from all three variable groups had higher explanatory power and predictive capability than partial models. However, performance of the separate single-species models varied considerably between the six study species. Exclusion of radiation or connectivity from the hybrid models decreased their predictive performance, suggesting that these factors are of particular importance for grassland plant species at their northern range margins. When developing conservation and management planning for grassland plant species in Northern Europe, attention should be paid to well-connected networks of grassland patches including large, steeply-sloped patches with a favorable microclimate.  相似文献   

11.
Plebejus argyrognomon is one of the grassland‐dwelling butterflies undergoing rapid decline in recent decades. Grassland habitats for butterflies are generally threatened by fragmentation and invasive species, hence are among the most vulnerable ecosystems. We studied the seasonal abundance of P. argyrognomon at habitat patches along the banks of the Kinugawa River in eastern Japan, to identify environmental factors suitable for population persistence of this species, including habitat patch connectivity. Results showed that the patch's host plant cover had a positive effect on abundance in all three seasons, while the shading of the host plants by surrounding non‐host plants and nearby forested area showed negative effects. Additionally, habitat patch connectivity and nectar richness could be considered as positive factors in autumn and summer, respectively. Analysis of habitat connectivity also showed that the Kinugawa River did not appear to act as a dispersal barrier for P. argyrognomon. Our findings emphasize the importance of understanding environmental factors that may vary among seasons, and such understanding could contribute to habitat management of multivoltine butterflies in fragmented landscapes.  相似文献   

12.
Land-use intensification and loss of semi-natural habitats have induced a severe decline of bee diversity in agricultural landscapes. Semi-natural habitats like calcareous grasslands are among the most important bee habitats in central Europe, but they are threatened by decreasing habitat area and quality, and by homogenization of the surrounding landscape affecting both landscape composition and configuration. In this study we tested the importance of habitat area, quality and connectivity as well as landscape composition and configuration on wild bees in calcareous grasslands. We made detailed trait-specific analyses as bees with different traits might differ in their response to the tested factors. Species richness and abundance of wild bees were surveyed on 23 calcareous grassland patches in Southern Germany with independent gradients in local and landscape factors. Total wild bee richness was positively affected by complex landscape configuration, large habitat area and high habitat quality (i.e. steep slopes). Cuckoo bee richness was positively affected by complex landscape configuration and large habitat area whereas habitat specialists were only affected by the local factors habitat area and habitat quality. Small social generalists were positively influenced by habitat area whereas large social generalists (bumblebees) were positively affected by landscape composition (high percentage of semi-natural habitats). Our results emphasize a strong dependence of habitat specialists on local habitat characteristics, whereas cuckoo bees and bumblebees are more likely affected by the surrounding landscape. We conclude that a combination of large high-quality patches and heterogeneous landscapes maintains high bee species richness and communities with diverse trait composition. Such diverse communities might stabilize pollination services provided to crops and wild plants on local and landscape scales.  相似文献   

13.
Semi‐natural grasslands are vital for maintaining grassland butterflies in Japan, as well as in Europe. However, severe decline in these grassland environments has recently attracted attention to linear grasslands, such as firebreaks and power‐line corridors, as alternative habitats for grassland insects. We surveyed butterflies in an abandoned grassland and nearby linear mown firebreaks adjacent to different vegetation at the northern foot of Mt. Fuji, central Japan, over 5 successive years, particularly focusing on species on the 2012 Japanese Red List of Threatened Species (“red‐list” species). We found that the firebreaks were consistently higher in species richness and abundance of butterflies than the long‐term abandoned grassland, and that species composition differed among the firebreaks depending on conditions of the adjacent vegetation. The firebreaks surrounded by forests were mainly utilized by forest and edge species, whereas the firebreaks adjacent to the grassland were essential for conserving red‐list grassland species. Thus, only the mown firebreaks adjacent to the grassland were regarded as a high‐quality alternative habitat for many grassland butterflies, but the area was limited. Therefore, creating heterogeneity in the abandoned grassland by infrequent mowing could help conserve grassland butterflies, including red‐list species.  相似文献   

14.
Habitat loss and fragmentation affect species richness in fragmented habitats and can lead to immediate or time‐delayed species extinctions. Asynchronies in extinction and extinction debt between interacting species may have severe effects on ecological networks. However, these effects remain largely unknown. We evaluated the effects of habitat patch and landscape changes on antagonistic butterfly larvae–plant trophic networks in Mediterranean grasslands in which previous studies had shown the existence of extinction debt in plants but not in butterflies. We sampled current species richness of habitat‐specialist and generalist butterflies and vascular plants in 26 grasslands. We assessed the direct effects of historical and current patch and landscape characteristics on species richness and on butterfly larvae–plant trophic network metrics and robustness. Although positive species‐ and interactions–area relationships were found in all networks, structure and robustness was only affected by patch and landscape changes in networks involving the subset of butterfly specialists. Larger patches had more species (butterflies and host plants) and interactions but also more compartments, which decreased network connectance but increased network stability. Moreover, most likely due to the rescue effect, patch connectivity increased host‐plant species (but not butterfly) richness and total links, and network robustness in specialist networks. On the other hand, patch area loss decreased robustness in specialist butterfly larvae–plant networks and made them more prone to collapse against host plant extinctions. Finally, in all butterfly larvae–plant networks we also detected a past patch and landscape effect on network asymmetry, which indicates that there were different extinction rates and extinction debts for butterflies and host plants. We conclude that asynchronies in extinction and extinction debt in butterfly–plant networks provoked by patch and landscape changes caused changes in species richness and network links in all networks, as well as changes in network structure and robustness in specialist networks.  相似文献   

15.
Wide-spread fragmentation and isolation of habitats with high nature conservation value lends increasing importance to a better understanding of the factors which determine species richness in isolated habitat patches. Using data of one of the most abundant invertebrate groups in grasslands, Orthoptera, we analysed how species richness and distribution in 60 isolated semi-natural grassland remnants in Austria were affected by five environmental variables (altitude, habitat and land use diversity within each patch, habitat diversity of areas adjacent to each patch, patch size), and related to diversity of their main food source, i.e. vascular plants. We found a significant positive correlation between Orthoptera and vascular plant species richness, with threatened Orthoptera species having the lowest correlation coefficients. Life form diversity of plants was only moderately positively correlated with Orthoptera species richness. Habitat diversity within and adjacent to the grassland patch had by far the highest loadings on the first two axes of the principal component analysis, which jointly explained 99?% of the variance, and proved to be significant for total, threatened and not threatened Orthoptera, as well as for the two Orthoptera orders occurring in Central Europe (Caelifera, Ensifera). Additionally, the distribution of the majority of those 14 Orthoptera species analysed individually was mainly correlated with habitat diversity within and adjacent to the grassland patch. However, the distribution of a significant proportion of species was associated with other factors: five species were closely related to on-site land use diversity and patch size, and the distribution of three Ensifera species was not significantly correlated to any of the explanatory variables. We conclude that a surrogate taxa approach, i.e. the use of well-known taxonomic groups (e.g. vascular plants), may indeed deliver good results for capturing total, but less so for threatened, Orthoptera species richness in semi-natural grassland remnants. Small scale habitat diversity may be crucial to allow for the co-existence of a large number of Orthoptera species and has to be taken equally into account as patch size in nature conservation.  相似文献   

16.
Landscape context and habitat quality may have pronounced effects on the diversity of flower visiting insects. We investigated whether the effects of landscape context and habitat quality on flower visiting insects interact in agricultural landscapes in the Netherlands. Landscape context was expressed as the area of semi-natural habitats or the density of linear landscape features, and was quantified at spatial scales ranging from 250 to 2000 m. Habitat quality was determined as flower abundance. Species richness and abundance of hoverflies and bees were determined along 16 stream banks experiencing similar environmental conditions but situated in areas with contrasting landscape context. Only flower abundance and the area of semi-natural habitats within 500–1000 m were significantly related to species richness of hoverflies and bees and these factors had interacting effects on both species groups. Our results suggest that the regional area of semi-natural habitats had a positive effect on hoverfly species richness when flower abundance was relatively high, but not when flower abundance was low. Moreover, flower abundance had positive effects on hoverfly species richness only in areas with relatively many semi-natural habitats. Contrastingly, flower abundance had a more positive effect on bee species richness in landscapes with few semi-natural habitats compared to landscapes with more semi-natural habitats. Our results suggest that the importance of landscape context for the species richness of flower visiting insects depends upon the quality of the habitat patches.  相似文献   

17.
Landscape effects on butterfly assemblages in an agricultural region   总被引:11,自引:0,他引:11  
We examined the butterfly fauna at 62 sites in southeastern Sweden within a region exhibiting high variation in the landscape surrounding the studied grasslands. The landscape varied from an intensively-managed agricultural landscape with a large amount of open fields to a landscape with a high amount of deciduous forest/semi-natural grassland. We made 12 179 observations of 57 species of butterflies. The amount of neighbouring deciduous forest/semi-natural grassland, with >25% tree and bush cover, was the most important environmental factor explaining the variation in the butterfly assemblages. Landscape analyses at three different spatial scales showed that the variation in butterfly assemblages could be explained only at the largest scale (radius 5000 m) and not at the smaller ones (radii 500 and 2000 m).
Logistic regressions were used to predict presence/absence of butterfly species. Our study indicated that there may be critical thresholds for the amount of habitat at the landscape scale for several butterfly species as well as for species richness. For Melitaea athalia , there was a sharp increase in occupancy probability between 3 and 10% deciduous forests/semi-natural grasslands at the 5000-m scale. For 12 other species, the value for 50% probability of occurrence varied between 2 and 12% deciduous forest/semi-natural grassland. Species which had high occupancy probabilities in landscapes with a low amount of surrounding deciduous forests/semi-natural grasslands were significantly more mobile than others.
Our study highlights the importance of applying a landscape perspective in conservation management, and that single-patch management might fail in maintaining a diverse butterfly assemblage.  相似文献   

18.
A widespread decline in biodiversity in agro-ecosystems has been reported for several groups of organisms in Western Europe. The butterfly fauna was studied in 60 selected semi-natural grasslands in a coniferous-dominated boreal landscape in south-eastern Sweden. The aim was to investigate how butterfly assemblages were affected by the amount of semi-natural grasslands in the surrounding landscape. Furthermore, we wanted to determine if semi-natural grasslands in boreal landscapes harboured species otherwise declining in other parts of Europe. For each study site, the amounts of semi-natural grasslands in the landscape within radii of 500, 2,000 and 5,000 m were studied. Nine local habitat factors were also recorded. Only the amount of semi-natural grasslands within a 5,000 m radius could explain a significant part of the variation in butterfly composition, but there was no clear relationship between the amount of semi-natural grassland and butterfly diversity. Instead, this study showed that local habitat quality was very important for butterfly diversity at individual sites. Flower abundance, sward height and herb composition were the most important local factors. Patches surrounded by a small amount of semi-natural grasslands had high butterfly diversity, contrary to expectations. This may be explained by the fact that forest habitat provides a matrix with several features suitable for butterflies. The butterfly fauna was rich in species representative of low-productivity grasslands, species that are declining in other countries in Western Europe.  相似文献   

19.
In suburban regions, vacant lots potentially offer significant opportunities for biodiversity conservation. Recently, in Japan, due to an economic recession, some previously developed lands have become vacant. Little is known, however, about the legacy of earlier earthmoving, which involves topsoil removal and ground leveling before residential construction, on plant community composition in such vacant lots. To understand (dis)assembly processes in vacant lots, we studied 24 grasslands in a suburban region in Japan: 12 grasslands that had experienced earthmoving and 12 that had not. We surveyed plant community composition and species richness, and clarified compositional turnover (replacement of species) and nestedness (nonrandom species loss) by distance‐based β‐diversities, which were summarized by PCoA analysis. We used piecewise structural equation modeling to examine the effects of soil properties, mowing frequency, past and present habitat connectivities on compositional changes. As a result, past earthmoving, mowing frequency, soil properties, and past habitat connectivity were found to be the drivers of compositional turnover. In particular, we found legacy effects of earthmoving: earthmoving promoted turnover from native grassland species to weeds in arable lands or roadside by altering soil properties. Mowing frequency also promoted the same turnover, implying that extensive rather than intensive mowing can modify the negative legacy effects and maintain grassland species. Decrease in present habitat connectivity marginally enhanced nonrandom loss of native grassland species (nestedness). Present habitat connectivity had a positive effect on species richness, highlighting the important roles of contemporary dispersal. Our study demonstrates that community assembly is a result of multiple processes differing in spatial and temporal scales. We suggest that extensive mowing at local scale, as well as giving a high conservation priority to grasslands with high habitat connectivity at regional scale, is the promising actions to maintain endangered native grassland species in suburban landscapes with negative legacy effects of earthmoving.  相似文献   

20.
Butterflies are important components of biodiversity in grassland ecosystems and provide ecosystem services such as pollination. Although agricultural intensification has led to a scarcity of native grassland habitats within most agricultural landscapes of North America, fragmented remnants and semi-natural habitats may support diverse communities, including butterflies, as long as vital resources such as host plants are available. The United States Department of Agriculture’s (USDA) Conservation Reserve Program practice CP33 Habitat Buffers for Upland Birds (USDA 2004) provides semi-natural grassland habitat in agricultural landscapes, but a knowledge gap exists about impacts of prescribed disturbance (e.g. burning or disking) on butterflies. We monitored butterfly habitat and butterfly communities on experimentally manipulated CP33 grassland buffers in Clay County, Mississippi from 2007 to 2009. Disturbance guild butterfly species richness did not differ among treatments. However, disturbance guild abundance was positively affected by disking in both the first and second growing seasons following disking, and the magnitude of this response varied between years. Effects of burning on disturbance guild abundance did not differ from the control treatment. There were no treatment differences for grassland guild butterfly abundance and species richness suggesting that periodic disturbance does not unduly impact grassland-associated butterflies in the southeastern US. Our results support current USDA practice standards that require periodic disturbance during the 10-year contract, but restrict the disturbance to 1/3 or 1/4 of grassland buffer area in a given year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号