首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The hearing thresholds of the nurse shark, Ginglymostoma cirratum, and the yellow stingray, Urobatis jamaicensis, were measured using auditory evoked potentials (AEP). Stimuli were calibrated using a pressure-velocity probe so that the acoustic field could be completely characterized. The results show similar hearing thresholds for both species and similar hearing thresholds to previously measured audiograms for the lemon shark, Negaprion brevirostris, and the horn shark, Heterodontis francisi. All of these audiograms suggest poor hearing abilities, raising questions about field studies showing attraction of sharks to acoustic signals. By extrapolating the particle acceleration thresholds into estimates of their equivalent far-field sound pressure levels, it appears that these sharks cannot likely detect most of the sounds that have attracted sharks in the field.  相似文献   

2.
A re‐assessment of the diet of the Atlantic sharpnose shark Rhizoprionodon terraenovae was conducted to provide an update on their trophic level. Rhizoprionodon terraenovae primarily consume teleosts, but previously unreported loggerhead sea turtles Caretta caretta were also found in the diet. Analysis suggests that calculated trophic level may depend on diet and geographic area.  相似文献   

3.
Auditory evoked potentials (AEP) were used to measure the hearing range and auditory sensitivity of the American sand lance Ammodytes americanus. Responses to amplitude‐modulated tone pips indicated that the hearing range extended from 50 to 400 Hz. Sound pressure thresholds were lowest between 200 and 400 Hz. Particle acceleration thresholds showed an improved sensitivity notch at 200 Hz but not substantial differences between frequencies and only a slight improvement in hearing abilities at lower frequencies. The hearing range was similar to Pacific sand lance Ammodytes personatus and variations between species may be due to differences in threshold evaluation methods. AEPs were also recorded in response to pulsed sounds simulating humpback whale Megaptera novaeangliae foraging vocalizations termed megapclicks. Responses were generated with pulses containing significant energy below 400 Hz. No responses were recorded using pulses with peak energy above 400 Hz. These results show that A. americanus can detect the particle motion component of low‐frequency tones and pulse sounds, including those similar to the low‐frequency components of megapclicks. Ammodytes americanus hearing may be used to detect environmental cues and the pulsed signals of mysticete predators.  相似文献   

4.
Recent studies on shark assemblages on the northeast Florida and southeast Georgia coast (hereafter referred to collectively as the “First Coast”) have demonstrated differences in species and age-class composition of catch from previously characterized estuaries and newly surveyed area beaches, demonstrating that these regions may provide a critical habitat to different segments (i.e., life stages) of local shark populations. In this study, carbon and nitrogen stable isotopes (δ13C and δ15N) from muscle tissue and blood plasma were used to examine trophic dynamics (and temporal variability thereof) of the three dominant co-occurring species found along First Coast beaches (the Atlantic Sharpnose shark Rhizoprionodon terraenovae, Blacknose shark Carcharhinus acronotus and Blacktip shark Carcharhinus limbatus) to determine if they exhibit overlap in resource use along with spatial and temporal habitat use. Although considered spatially segregated from the beach species, a dominant, age-class species found in First Coast estuaries (juvenile Sandbar sharks Carcharhinus plumbeus) was also included in this analysis for comparison. Temporal variability of resource-use characteristics was detected at the species level. Resource-use overlap among species varied by tissue type and was generally higher for blood plasma, suggesting greater resource sharing over more recent time periods. Over longer time periods Atlantic Sharpnose and Blacktip sharks exhibited resource-use expansion, whereas Blacknose sharks exhibited a narrowing in resource use, suggesting a more specialized foraging strategy compared to the other species. The resource-use breadth of Sandbar sharks also expanded between blood plasma and muscle tissue. Significant size relationships were detected in Blacktip and Sandbar sharks, indicating ontogenetic resource shifts for both species. A diversity of highly productive resource pools likely support shark populations along the First Coast such that resource-use differentiation is not required to facilitate species co-occurrence. This work may shed light on understanding patterns of species co-occurrence as well as aid in future conservation efforts.  相似文献   

5.
Synopsis Spermatozoa stored in oviducal glands of sharks sampled off the North American east coast were revealed by viewing stained tissue sections using light microscopy. Of eleven species surveyed, sperm were found in nine:Alopias vulpinus, Lamna nasus, Carcharhinus obscurus, Carcharhinus plumbeus, Galeocerdo cuvieri, Prionace glauca, Rhizoprionodon terraenovae, Sphyrna lewini andSphyrna tiburo. Three insemination patterns are proposed to account for differences noted in these findings: (1) non-storage/immediate insemination for sharks such asLamna nasus; (2) short-term storage/delayed insemination as found in sharks in which ovulation is prolonged over weeks or months such asRhizoprionodon terraenovae, and (3) long-term storage/repeated insemination, a characteristic of nomadic sharks such asPrionace glauca andCarcharhinus obscurus which can store sperm in specialized tubules for months to years.  相似文献   

6.
褐菖鲉的听觉阈值研究   总被引:1,自引:0,他引:1  
利用听觉诱发电位记录技术研究了褐菖鲉(Sebasticus marmoratus)的听觉阈值。通过采用听觉生理系统记录和分析了8尾褐菖鲉对频率范围在100—1000 Hz的7种不同频率的声音刺激的诱发电位反应。结果表明, 褐菖鲉的听觉阈值在整体上随着频率增加而增加, 对100—300 Hz的低频声音信号敏感, 最敏感频率为150 Hz, 对应的听觉阈值为70 dB re 1 μPa。褐菖鲉的听觉敏感区间与其发声频率具有较高的匹配性, 表明其声讯交流的重要性。同时, 人为低频噪声可能对其声讯交流造成影响。  相似文献   

7.
Quantifying the trophic role of sharks in coastal ecosystems is crucial for the construction of accurate ecosystem models. This is particularly important for wide-ranging species like the Atlantic sharpnose shark (Rhizoprionodon terraenovae), ubiquitous across the northern Gulf of Mexico. We used gut content and stable isotope analyses to determine if differences in abundance of Atlantic sharpnose sharks in the waters around Mobile Bay, Alabama translated into differences in dietary sources or trophic position among sharks sampled east and west relative to the mouth of the bay. Gut content analysis suggested that Atlantic sharpnose sharks eat primarily teleost fishes (%IRI?>?90% across size classes), and both stomach content and stable isotope analyses highlighted an ontogenetic shift in diet. Nitrogen stable isotope data from liver and muscle tissues indicated regional shifts in trophic position for Atlantic sharpnose sharks. The mixing model SIAR (stable isotope analysis in R) v.4.0.2 was used to suggest possible contributions from likely prey items for Atlantic sharpnose sharks sampled east and west of Mobile Bay. Portunid crabs and shrimp made higher contributions to the diet of Atlantic sharpnose sharks in the western region, compared to higher and more variable contributions from fish like croaker (Micropogonias undulatus) and hardhead catfish (Arius felis) in the eastern region. Our results suggest trophic plasticity in Atlantic sharpnose sharks, findings that emphasize the importance of examining regional variation in trophic position when constructing coastal foodweb models.  相似文献   

8.
Summary Hearing sensitivity and psychophysical tuning curves were determined for the mormyridGnathonemus petersii. Pure tone hearing thresholds were determined from 100 Hz to 2,500 Hz, with best sensitivity being about –31 dB (re: 1 dyne/ cm2) from 300 Hz to 1,000 Hz. In order to determine frequency tuning of the auditory system, psychophysical tuning curves (PTC's) were measured with the masker presented simultaneously with, or just ahead of, the 500 Hz test signal. The sound level for different frequencies needed to just mask the test tone were determined from 100 to 800 Hz. Maximum masking occurred in both forward and simultaneous conditions when the masker and the test tone were at the same frequency. As the masker was moved in frequency from 500 Hz, higher sound levels of maskers were needed to afford masking of the test tone. The data were similar in simultaneous and forward masking, with theQ 10 dB, a measure of sharpness of tuning, being about 5 in both cases. Data were compared for other species for which behavioral thresholds and PTC's are available.Gnathonemus hears about as wide a range of frequencies as the goldfish,Carassius auratus, although the PTC's for the two species are strikingly different. The PTC's forGnathonemus resemble those determined in a forward-masking paradigm for the clown knife fish,Notopterus chitala, even thoughGnathonemus has a wider hearing bandwidth.Abbreviations AM amplitude modulated - EOD electric organ discharge - PTC psychophysical tuning curve  相似文献   

9.
Identifying critical habitat for highly mobile species such as sharks is difficult, but essential for effective management and conservation. In regions where baseline data are lacking, non‐traditional data sources have the potential to increase observational capacity for species distribution and habitat studies. In this study, a research and education organization conducted a 5‐year (2013–2018) survey of shark populations in the coastal waters of west‐central Florida, an area where a diverse shark assemblage has been observed but no formal population analyses have been conducted. The objectives of this study were to use boosted regression tree (BRT) modeling to quantify environmental factors impacting the distribution of the shark assemblage, create species distribution maps from the model outputs, and identify spatially explicit hot spots of high shark abundance. A total of 1036 sharks were captured, encompassing eleven species. Abundance hot spots for four species and for immature sharks (collectively) were most often located in areas designated as “No Internal Combustion Engine” zones and seagrass bottom cover, suggesting these environments may be fostering more diverse and abundant populations. The BRT models were fitted for immature sharks and five species where n > 100: the nurse shark (Ginglymostoma cirratum), blacktip shark (Carcharhinus limbatus), blacknose shark (C. acronotus), Atlantic sharpnose shark (Rhizoprionodon terraenovae), and bonnethead (Sphyrna tiburo). Capture data were paired with environmental variables: depth (m), sea surface temperature (°C), surface, middle, and bottom salinity (psu), dissolved oxygen (mg/L), and bottom type (seagrass, artificial reef, or sand). Depth, temperature, and bottom type were most frequently identified as predictors with the greatest marginal effect on shark distribution, underscoring the importance of nearshore seagrass and barrier island habitats to the shark assemblage in this region. This approach demonstrates the potential contribution of unconventional science to effective management and conservation of coastal sharks.  相似文献   

10.
Several anabantoid species produce broad-band sounds with high-pitched dominant frequencies (0.8–2.5 kHz), which contrast with generally low-frequency hearing abilities in (perciform) fishes. Utilizing a recently developed auditory brainstem response recording-technique, auditory sensitivities of the gouramis Trichopsis vittata, T. pumila, Colisa lalia, Macropodus opercularis and Trichogaster trichopterus were investigated and compared with the sound characteristics of the respective species. All five species exhibited enhanced sound-detecting abilities and perceived tone bursts up to 5 kHz, which qualifies this group as hearing specialists. All fishes possessed a high-frequency sensitivity maximum between 800 Hz and 1500 Hz. Lowest hearing thresholds were found in T. trichopterus (76 dB re 1 μPa at 800 Hz). Dominant frequencies of sounds correspond with the best hearing bandwidth in T. vittata (1–2 kHz) and C. lalia (0.8–1 kHz). In the smallest species, T. pumila, dominant frequencies of acoustic signals (1.5–2.5 kHz) do not match lowest thresholds, which were below 1.5 kHz. However, of all species studied, T. pumila had best hearing sensitivity at frequencies above 2 kHz. The association between high-pitched sounds and hearing may be caused by the suprabranchial air-breathing chamber, which, lying close to the hearing and sonic organs, enhances both sound perception and emission at its resonant frequency. Accepted: 26 November 1997  相似文献   

11.

Background

Data on sex-specific differences in sound production, acoustic behaviour and hearing abilities in fishes are rare. Representatives of numerous catfish families are known to produce sounds in agonistic contexts (intraspecific aggression and interspecific disturbance situations) using their pectoral fins. The present study investigates differences in agonistic behaviour, sound production and hearing abilities in males and females of a callichthyid catfish.

Methodology/Principal Findings

Eight males and nine females of the armoured catfish Megalechis thoracata were investigated. Agonistic behaviour displayed during male-male and female-female dyadic contests and sounds emitted were recorded, sound characteristics analysed and hearing thresholds measured using the auditory evoked potential (AEP) recording technique. Male pectoral spines were on average 1.7-fold longer than those of same-sized females. Visual and acoustic threat displays differed between sexes. Males produced low-frequency harmonic barks at longer distances and thumps at close distances, whereas females emitted broad-band pulsed crackles when close to each other. Female aggressive sounds were significantly shorter than those of males (167 ms versus 219 to 240 ms) and of higher dominant frequency (562 Hz versus 132 to 403 Hz). Sound duration and sound level were positively correlated with body and pectoral spine length, but dominant frequency was inversely correlated only to spine length. Both sexes showed a similar U-shaped hearing curve with lowest thresholds between 0.2 and 1 kHz and a drop in sensitivity above 1 kHz. The main energies of sounds were located at the most sensitive frequencies.

Conclusions/Significance

Current data demonstrate that both male and female M. thoracata produce aggressive sounds, but the behavioural contexts and sound characteristics differ between sexes. Sexes do not differ in hearing, but it remains to be clarified if this is a general pattern among fish. This is the first study to describe sex-specific differences in agonistic behaviour in fishes.  相似文献   

12.
Ultrasonic telemetry was used to compare post‐release survival and movements of Atlantic sharpnose sharks Rhizoprionodon terraenovae in a coastal area of the north‐east Gulf of Mexico. Ten fish were caught with standardized hook‐and‐line gear during June to October 1999. Atlantic sharpnose sharks were continuously tracked after release for periods of 0·75 to 5·90 h and their positions recorded at a median interval of 9 min. Individual rate of movement was the mean of all distance and time measurements for each fish. Mean ± s.e . individual rate of movement was 0·45 ± 0·06 total lengths per second (LT s?1) and ranged from 0·28 to 0·92 LT s?1 over all fish. Movement patterns did not differ between jaw and internally hooked Atlantic sharpnose sharks. Individual rate of movement was inversely correlated with bottom water temperature at capture (r2 = 0·52, P ≤ 0·05). No consistent direction in movement was detected for Atlantic sharpnose sharks after release, except that they avoided movement towards shallower areas. Capture‐release survival was high (90%), with only one fish not surviving, i.e. this particular fish stopped movement for a period of 10 min. Total rate of movement was total distance over total time (m min?1) for each Atlantic sharpnose shark. Mean total rate of movement was significantly higher immediately after release at 21·5 m min?1 over the first 1·5 h of tracking, then decreased to 11·2 m min?1 over 1·5–6 h, and 7·7 m min?1 over 3–6 h (P ≤ 0·002), which suggested initial post‐release stress but quick recovery from capture. Thus, high survival (90%) and quick recovery indicate that the practice of catch‐and‐release would be a viable method to reduce capture mortality for R. terraenovae.  相似文献   

13.
Summary Airborne sound signals emitted by dancing bees (Apis mellifera) play an essential role in the bees' dance communication. It has been shown earlier that bees can learn to respond to airborne sounds in an aversive conditioning paradigm. Here we present a new training paradigm. A Y-choice situation was used to determine the frequency range and amplitude thresholds of hearing in bees. In addition, spontaneous reactions of bees to airborne sound were observed and used to determine thresholds of hearing. Both methods revealed that bees are able to detect sound frequencies up to about 500 Hz. The hearing threshold is 100–300 mm/s peak-to-peak velocity and is roughly constant over the range of detectable frequencies. The amplitude of the signals emitted in the dance language is 5 to 10 times higher, so we can conclude that bees can easily detect the dance sounds.  相似文献   

14.
Despite Springer’s (1964) revision of the sharpnose sharks (genus Rhizoprionodon), the taxonomic definition and ranges of Rhizoprionodon in the western Atlantic Ocean remains problematic. In particular, the distinction between Rhizoprionodon terraenovae and R. porosus, and the occurrence of R. terraenovae in South American waters are unresolved issues involving common and ecologically important species in need of fishery management in Caribbean and southwest Atlantic waters. In recent years, molecular markers have been used as efficient tools for the detection of cryptic species and to address controversial taxonomic issues. In this study 415 samples of the genus Rhizoprionodon captured in the western Atlantic Ocean from Florida to southern Brazil were examined for sequences of the COI gene and the D-loop and evaluated for nucleotide differences. The results on nucleotide composition, AMOVA tests, and relationship distances using Bayesian-likelihood method and haplotypes network, corroborates Springer’s (1964) morphometric and meristic finding and provide strong evidence that supports consideration of R. terraenovae and R. porosus as distinct species.  相似文献   

15.
Summary Auditory sensitivity was determined for the oscar, Astronotus ocellatus, a cichlid fish that has no known structural specializations to enhance hearing. Trained A. ocellatus behaviorally responded to sound stimuli from 200 Hz to 800 Hz with best sensitivity of 18 dB (re: 1 bar) to 21 dB for frequencies between 200 and 400 Hz. This is significantly poorer than hearing sensitivity for fish classified as hearing specialists, but well within the range of hearing capabilities reported for non-specialist teleost species.  相似文献   

16.
The pure-tone thresholds of four domestic female chickens were determined from 2 Hz to 9 kHz using the method of conditioned suppression/avoidance. At a level of 60 dB sound pressure level (re 20 μN/m2), their hearing range extends from 9.1 Hz to 7.2 kHz, with a best sensitivity of 2.6 dB at 2 kHz. Chickens have better sensitivity than humans for frequencies below 64 Hz; indeed, their sensitivity to infrasound exceeds that of the homing pigeon. However, when threshold testing moved to the lower frequencies, the animals required additional training before their final thresholds were obtained, suggesting that they may perceive frequencies below 64 Hz differently than higher frequencies.  相似文献   

17.
The study objective was to explore the effects of noise generated by a 2000 hp containership on the reaction of Chinese sucker Myxocyprinus asiaticus. The noise was played back for various durations (1, 2, 4, 8, 24 h) at 142.8 dB re 1 μPa. Immediately after the noise exposure, hearing abilities of the fish were tested using the auditory evoked potential (AEP) protocol and compared with the response to a control group with no noise exposure. After 1 h noise exposure no significant differences were found compared to control fish; however, significant auditory threshold shifts began to occur at 800 Hz after 2 h of noise exposure. After 24 h of noise exposure, significant auditory threshold shifts were found at all tested frequencies (100–3000 Hz) when compared to control fish. Recoveries were also measured until the auditory thresholds returned to the hearing levels of the control fish. Auditory thresholds of all Chinese suckers fully returned to control levels within 96 h of recovery time. The results indicate that ship noise exposure can lead to threshold shifts in Chinese sucker and that these threshold shifts are temporary, referred to as temporary threshold shift (TTS).  相似文献   

18.
Psychophysical experiments demonstrated that the hearing abilities of two damselfish species change during ontogeny. Auditory thresholds of four size-groups of juvenile bicolor damselfish. Pomacentrus partitus, and for comparative purposes, three different sized juveniles belonging to a closely related species, P. variablis, were determined through classical conditioning experiments conducted in a standing wave tube. Young juveniles (10–27 days post-metamorphosis) exhibited poor hearing, with detection limens ranging from 54 dB (at 300 Hz) to 15 dB (at 1500 Hz) higher than known adult thresholds. Thresholds decreased exponentially with increasing age, while rapidly approaching adult levels. Youngest juveniles exhibited flat, untuned audiograms, with the appearance of a best frequency and a pattern of increasing acuity progressing in a manner similar to that observed in mammals and birds.  相似文献   

19.
Selachohemecus benzi Bullard & Overstreet n. sp. infects the heart and kidney of the blacktip shark Carcharhinus limbatus in the northern Gulf of Mexico off Florida and Mississippi, USA. Specimens of S.␣olsoni Short, 1954, the only congener and only other named blood fluke reported from a chondrichthyan in the Gulf of Mexico, were collected from the heart of the Atlantic sharpnose shark Rhizoprionodon terraenovae from two new localities, Apalachicola Bay, Florida, and Mississippi Sound, Mississippi, USA. The new species differs from S. olsoni by having a larger body (1.4–3.8 mm long), robust tegumental body spines numbering 51–63 along each lateral body margin, a testis extending from the posterior caeca to the ovary, and a medial ovary with lobes. We amend the diagnosis of Selachohemecus Short, 1954 to accommodate it and provide a diagnostic key for all named chondrichthyan blood flukes.  相似文献   

20.
Auditory evoked potential (AEP) measurements are useful for describing the variability of hearing among individuals in marine mammal populations, an important consideration in terms of basic biology and the design of noise mitigation criteria. In this study, hearing thresholds were measured for 16 male California sea lions at frequencies ranging from 0.5 to 32 kHz using the auditory steady state‐response (ASSR), a frequency‐specific AEP. Audiograms for most sea lions were grossly similar to previously reported psychophysical data in that hearing sensitivity increased with increasing frequency up to a steep reduction in sensitivity between 16 and 32 kHz. Average thresholds were not different from AEP thresholds previously reported for male and female California sea lions. Two sea lions from the current study exhibited abnormal audiograms: a 26‐yr‐old sea lion had impaired hearing with a high‐frequency hearing limit (HFHL) between 8 and 16 kHz, and an 8‐yr‐old sea lion displayed elevated thresholds across most tested frequencies. The auditory brainstem responses (ABRs) for these two individuals and an additional 26‐yr‐old sea lion were aberrant compared to those of other sea lions. Hearing loss may have fitness implications for sea lions that rely on sound during foraging and reproductive activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号