首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The processes of island colonization and speciation are investigated through mtDNA studies on Canary Island beetles. The genus Nesotes (Coleoptera: Tenebrionidae) is represented by 19 endemic species on the Canary Islands, the majority of which are single island endemics. Nesotes conformis is the most widespread, occurring on Gran Canaria, Tenerife, La Palma and El Hierro. Nesotes conformis forms a paraphyletic assemblage, with a split between Gran Canaria and the other three islands. Nesotes conformis of the western Canary Islands cluster with Nesotes altivagans and Nesotes elliptipennis from Tenerife. Fifty‐two individuals from this western islands species complex have been sequenced for 675 base pairs of the mtDNA cytochrome oxidase II gene, representing Tenerife, La Palma and El Hierro. A neighbour joining analysis of maximum likelihood distances resulted in three distinct mtDNA lineages for N. conformis, two of which also include mitotypes of N. altivagans and N. elliptipennis. Through application of parametric bootstrap tests, we are able to reject hypotheses of monophyly for both N. conformis and N. altivagans. Nesotes altivagans and N. elliptipennis are poorly separated morphologically and mtDNA sequence data adds support to this being one species with a highly variable morphology. We propose that N. altivagans/N. elliptipennis is recently derived from two ancestral mtDNA lineages within N. conformis from the Teno region of Tenerife. We further propose colonization of the younger islands of La Palma and El Hierro by N. conformis from a mitochondrial lineage within the Teno massif (colonization; diversification; mitochondrial DNA; Canary Islands; Coleoptera).  相似文献   

2.
Three species of boid snakes are recognized in Madagascar, namely the genus Sanzinia (one species and two subspecies) and the genus Acrantophis (two species). In the present study, we studied the patterns of genetic variation of these species across Madagascar using a fragment of the mitochondrial 16S rRNA gene in 77 specimens. To support the phylogenetic relationships of the lineages identified, three further gene fragments (cytochrome b, 12S rRNA and c‐mos) were analyzed in a reduced but representative set of samples. The results obtained corroborate that the genus Sanzinia includes two highly divergent mitochondrial lineages that evolved independently from each other on the east versus the west side of Madagascar. Each of these lineages presents a further subdivision that separates northern from southern groups. The nuclear marker showed no variation among the Malagasy boas, indicating either very low substitution rates in this gene or relatively recent speciation events coupled with high mitochondrial substitution rates. Because the broad geographic sampling detected no admixture among haplotypic lineages within Sanzinia, it is hypothesized that these may represent distinct species. Deviant haplotypes of snakes morphologically similar to Acrantophis dumerili indicate that this taxon may be a complex of two species as well. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 640–652.  相似文献   

3.
Many studies have addressed evolution and phylogeography of plant taxa in oceanic islands, but have primarily focused on endemics because of the assumption that in widespread taxa the absence of morphological differentiation between island and mainland populations is due to recent colonization. In this paper, we studied the phylogeography of Scrophularia arguta, a widespread annual species, in an attempt to determine the number and spatiotemporal origins of dispersal events to Canary Islands. Four different regions, ITS and ETS from nDNA and psbA‐trnH and psbJ‐petA from cpDNA, were used to date divergence events within S. arguta lineages and determine the phylogenetic relationships among populations. A haplotype network was obtained to elucidate the phylogenetic relationships among haplotypes. Our results support an ancient origin of S. arguta (Miocene) with expansion and genetic differentiation in the Pliocene coinciding with the aridification of northern Africa and the formation of the Mediterranean climate. Indeed, results indicate for Canary Islands three different events of colonization, including two ancient events that probably happened in the Pliocene and have originated the genetically most divergent populations into this species and, interestingly, a recent third event of colonization of Gran Canaria from mainland instead from the closest islands (Tenerife or Fuerteventura). In spite of the great genetic divergence among populations, it has not implied any morphological variation. Our work highlights the importance of nonendemic species to the genetic richness and conservation of island flora and the significance of the island populations of widespread taxa in the global biodiversity.  相似文献   

4.
Sequences from fragments of the 12S ribosomal RNA and cytochrome b mitochondrial genes were used to analyze phylogenetic relationships among geckos of genus Tarentola from the Canary Islands. A surprisingly high level of within island differentiation was found in T. delalandii in Tenerife and T. boettgeri in Gran Canaria. Molecular differentiation between populations of T. angustimentalis on Lanzarote and Fuerteventura, and between Moroccan and Iberian Peninsula T. mauritanica, also indicate that at least two subspecies should be recognized within each of them. Phylogenetic relationships among these species reveals a higher level of differentiation and a more complex colonization pattern than those found for the endemic genus Gallotia. Lack of evidence for the presence of T. boettgeri bischoffi on the island of Madeira does not seem to support the origin of T. delalandii, T. gomerensis and the canarian subspecies of T. boettgeri from this island, whereas molecular data confirms that T. angustimentalis is a sister species of the continental T. mauritanica. Several independent colonization events from the continent and the extinction of some species are probably responsible for the current distribution of Tarentola in the Canary Islands.  相似文献   

5.
The phylogeny and population history of Meladema diving beetles (Coleoptera, Dytiscidae) were examined using mitochondrial DNA sequence from 16S ribosomal RNA and cytochrome oxidase I genes in 51 individuals from 22 populations of the three extant species (M. imbricata endemic to the western Canary Islands, M. lanio endemic to Madeira and M. coriacea widespread in the Western Mediterranean and on the western Canaries), using a combination of phylogenetic and nested clade analyses. Four main lineages are observed within Meladema, representing the three recognized species plus Corsican populations of M. coriacea. Phylogenetic analyses demonstrate the sister relationship of the two Atlantic Island taxa, and suggest the possible paraphyly of M. coriacea. A molecular clock approach reveals that speciation within the genus occurred in the Early Pleistocene, indicating that the Atlantic Island endemics are not Tertiary relict taxa as had been proposed previously. Our results point to past population bottlenecks in all four lineages, with recent (Late-Middle Pleistocene) range expansion in non-Corsican M. coriacea and M. imbricata. Within the Canary Islands, M. imbricata seems to have independently colonized La Gomera and La Palma from Tenerife (although a colonization of La Palma from La Gomera cannot be discarded), and M. coriacea has independently colonized Tenerife and Gran Canaria from separate mainland lineages. In the Mediterranean basin this species apparently colonized Corsica on a single occasion, relatively early in its evolutionary history (Early Pleistocene), and has colonized Mallorca recently on multiple occasions. On the only island where M. coriacea and M. imbricata are broadly sympatric (Tenerife), we report evidence of bidirectional hybridization between the two species.  相似文献   

6.
Aim To investigate the molecular phylogenetic divergence and historical biogeography of cave crickets belonging to the genus Dolichopoda (Orthoptera, Rhaphidophoridae). Location Caves in continental and insular Greece. Methods We sequenced 1967 bp of mitochondrial DNA, corresponding to three fragments of the small and large subunit of the ribosomal RNA (16S and 12S rRNA, respectively) and to the subunit I of cytochrome oxidase (COI), to reconstruct phylogenetic relationships among all 30 known Greek species of Dolichopoda. Alternative hypotheses about the colonization of the Hellenic Peninsula by Dolichopoda species were tested by comparing the degree of discordance between species trees and gene trees under four plausible biogeographical scenarios. Results The present study revealed a rather well resolved phylogeny at species level, identifying a number of clades that represent long‐separated lineages and diverse evolutionary histories within the genus Dolichopoda. Two main clades were revealed within Hellenic–Aegean species, identifying a north‐western and a south‐eastern species group. Based on Bayesian analysis, we applied a relaxed molecular clock to estimate the divergence times between the lineages. The results revealed that the origins of eastern Mediterranean lineages are much older than those of previously studied western Mediterranean Dolichopoda. Tests of alternative biogeographical hypotheses showed that a double colonization of the Hellenic Peninsula, following separate continental and trans‐Aegean routes during the Messinian stage, best accounts for the present distribution of Greek Dolichopoda species. Main conclusions Reconstruction and biogeographical hypothesis testing indicated that the colonization of Greece by Dolichopoda species comprised two episodes and two different routes. The southern lineage probably arose from a trans‐Aegean colonization during the Messinian salinity crisis (5.96–5.33 Ma). The northern lineage could be the result of dispersal from the north through the Balkan Peninsula. The opening of the Mid‐Aegean Trench could have promoted an initial diversification within the uprising Anatolian Plateau, while the Messinian marine regression offered the conditions for a rapid dispersal through the whole Aegean–Hellenic region. In addition, climatic events during the Plio‐Pleistocene may have been responsible for the speciation within each of the two different phylogeographical units, principally attributable to vicariance events.  相似文献   

7.
The Canaries have recently served as a test‐bed island system for evaluating newly developed parametric biogeographical methods that can incorporate information from molecular phylogenetic dating and ages of geological events. To use such information successfully, knowledge of geological history and the fossil record is essential. Studies presenting phylogenetic datings of plant groups on oceanic islands often through necessity, but perhaps inappropriately, use the geological age of the oldest island in an archipelago as a maximum‐age constraint for earliest possible introductions. Recently published papers suggest that there is little chance of informative fossil floras being found on volcanic islands, and that nothing could survive violent periods of volcanic activity. One such example is the Roque Nublo period in Gran Canaria, which is assumed to have caused the extinction of the flora of the island (c. 5.3–3.7 Ma). However, recent investigations of Gran Canaria have identified numerous volcanic and sedimentological settings where plant remains are common. We argue, based on evidence from the Miocene–Pliocene rock and fossil records, that complete sterilization of the island is implausible. Moreover, based on fossil evidence, we conclude that the typical ecosystems of the Canary Islands, such as the laurisilva, the Pinus forest and the thermophilous scrubland, were already present on Gran Canaria during the Miocene–Pliocene. The fossil record we present provides new information, which may be used as age constraints in phylogenetic datings, in addition to or instead of the less reliable ages of island emergences or catastrophic events. We also suggest island environments that are likely to yield further fossil localities. Finally, we briefly review further examples of fossil floras of Macaronesia.  相似文献   

8.
Three new species of microfungi belonging to the genus Penicillium Link ex Fries are described and illustrated. All but one have been isolated from the atmosphere of las Palmas, capital city of the island of Gran Canaria (Canary Islands, Spain). They clearly differ from all species of the genus described so far and are, therefore, described and proposed as new species: Penicillium hispanicum sp. nov., Penicillium grancanariae sp. nov., and Penicillium palmensis sp. nov.  相似文献   

9.
The conservation of endangered taxa often critically depends on accurate taxonomic designations. The status of the Gran Canaria population of the blue chaffinch Fringilla teydea polatzeki has not been reevaluated since the early 1900s when this taxon was described as a subspecies and combined with the much more common Tenerife blue chaffinch F. t. teydea in a single species. We show that multiple diagnostic differences in plumage, songs, calls and morphometrics distinguish F. t. polatzeki from F. t. teydea. Preliminary playback experiments suggest that F. t. polatzeki is able to discriminate between songs of both taxa. Along with previously reported differences in mitochondrial DNA, these findings show that the blue chaffinches on Gran Canaria and Tenerife represent two distinctive species: F. polatzeki and F. teydea. Gran Canaria blue chaffinch is Europe's rarest passerine species and should be classified as critically endangered. Its long‐term survival in the wild currently depends on a very small (< 20 km2) area in southwest Gran Canaria. Reclassification of Gran Canaria blue chaffinch as a species increases the urgency of ongoing conservation efforts. Our study underscores the critical importance of taxonomic clarification of threatened taxa that are currently classified as ‘subspecies’.  相似文献   

10.
The genus Nesotes (Coleoptera: Tenebrionidae) is represented in the Canary Islands by 19 endemic species, the majority of which are single island endemics. Nesotes conformis and N. fusculus are described on four and three islands, respectively, but each forms a paraphyletic assemblage between Gran Canaria and the other islands. The other described species for Gran Canaria are N. quadratus, N. lindbergi and N. piliger. Thirty-six individuals representing the five species on Gran Canaria have been sequenced for 675 bp of the mitochondrial DNA (mtDNA) cytochrome oxidase II gene. Neighbour-joining analysis of maximum likelihood distances resulted in five distinct mtDNA lineages for N. quadratus, two of which also include mitotypes of N. conformis. Each of the other three species is found on only one mtDNA lineage. We propose from the molecular data that differentiation in a widespread N. quadratus-type ancestor was followed by morphological adaptation to coastal, pine and laurel forest habitats.  相似文献   

11.
The genus Calathus Bonelli comprises 24 species on the Canary Islands. Sequences of 927 and 687 bp of the mitochondrial cytochrome oxidase I and II genes, respectively, as well as the intervening tRNA leu gene in 21 of the 24 species, have identified three genetically divergent and unequivocally monophyletic groupings. A phylogeographic analysis is presented for the major monophyletic group comprising all the species of Gran Canaria, La Gomera, and El Hierro, and two Tenerifean species. A distance-based phylogenetic analysis and maximum parsimony analysis have clearly shown that this clade is composed of four distinct lineages. DNA sequence data suggest a recent origin for this clade and that lineages have not evolved at the same rate. Compared with diversification patterns observed in other Coleoptera on the Canary Islands, diversification has been recent relative to the time of colonization within the islands of Gran Canaria and La Gomera. Calathus diversification on La Gomera has been greater than on Gran Canaria. The influences of geological and ecological history are discussed in relation to Calathus diversification.  相似文献   

12.
Aim We used a phylogenetic framework to examine island colonization and predictions pertaining to differentiation within Macaronesian Tarphius (Insecta, Coleoptera, Zopheridae), and explain the paucity of endemics in the Azores compared with other Macaronesian archipelagos. Specifically, we test whether low diversity in the Azores could be due to recent colonization (phylogenetic lineage youth), cryptic speciation (distinct phylogenetic entities within species) or the young geological age of the archipelago. Location Macaronesian archipelagos (Azores, Madeira and the Canary Islands), northern Portugal and Morocco. Methods Phylogenetic analyses of mitochondrial and nuclear genes of Tarphius beetles of the Azores, other Macaronesian islands and neighbouring continental areas were used to investigate the origin of island biodiversity and to compare patterns of colonization and differentiation. A comparative nucleotide substitution rate test was used to select the appropriate substitution rate to infer clade divergence times. Results Madeiran and Canarian Tarphius species were found to be more closely related to each other, while Azorean taxa grouped separately. Azorean taxa showed concordance between species and phylogenetic clades, except for species that occur on multiple islands, which segregated by island of origin. Divergence time estimates revealed that Azorean Tarphius are an old group and that the most recent intra‐island speciation event on Santa Maria, the oldest island, occurred between 3.7 and 6.1 Ma. Main conclusions Our phylogenetic approach provides new evidence to understand the impoverishment of Azorean endemics: (1) Tarphius have had a long evolutionary history within the Azores, which does not support the hypothesis of fewer radiation events due to recent colonization; (2) the current taxonomy of Azorean Tarphius does not reflect common ancestry and cryptic speciation is responsible for the underestimation of endemics; (3) intra‐island differentiation in the Azores was found only in the oldest island, supporting the idea that young geological age of the archipelago limits the number of endemics; and (4) the lack of evidence for recent intra‐island diversification in Santa Maria could also explain the paucity of Azorean endemics. Phylogenetic reconstructions of other species‐rich taxa that occur on multiple Macaronesian archipelagos will reveal whether our conclusions are taxon specific, or of a more general nature.  相似文献   

13.
The species of Lasioserica are highly diversified within the south Asian orogenic belt, such as the Himalaya, south‐eastern Tibet and the mountains of northern Indochina. The study presents a preliminary phylogeny of Lasioserica based on adult morphology. Sixty‐one species were examined for the cladistic analysis based on parsimony using successive approximations weighting and including 84 characters. As a result of the phylogenetic hypothesis on Lasioserica elaborated here, the taxonomic definition of Lasioserica and the validity of Amiserica are questionable and need to be revised. Taxonomic conclusions are here limited so far to the genus assignment of Amiserica antennalis ( Nomura 1974 ) comb. n. The cladistic analysis revealed a large monophyletic clade of Lasioserica containing almost all species assigned to this group so far. Among this monophylum the following pattern have become evident: (1) a number of ancestral lineages from the eastern Himalaya and Indochina, (2) a large clade with almost exclusively Himalayan species and (3) one clade with only Chinese and Indochinese taxa. Based on this topology we may suggest that the more recent evolution of Lasioserica was more independent in these two major regions (Himalaya/Indochina). There is comparatively good evidence from range positions of closely related species for allopatric geographical speciation in Lasioserica with the majority of closely related central Himalayan species occurring allopatrically or parapatrically. The tree topology does not permit conclusions whether speciation progressed more often from east to west or vice versa. More easterly distributed lineages in the Himalaya seem to contrast this pattern with a greater part of closely related species occurring sympatrically. Since cumulative ranges of the major lineages of the Himalayan clade overlap in all respects, diversification of the almost strictly Himalayan clade of Lasioserica should be attributed to a rather long and persistent evolution within the Himalaya.  相似文献   

14.
15.
The tremendous diversity of endemic Hawaiian crickets is thought to have originated primarily through intraisland radiations, in contrast to an interisland mode of diversification in the native Hawaiian Drosophila. The Hawaiian cricket genus Laupala (family Gryllidae) is one of several native genera of flightless crickets found in rain-forest habitat across the Hawaiian archipelago. I examined the phylogenetic relationships among mitochondrial DNA (mtDNA) sequences sampled from 17 species of Laupala, including the 12S ribosomal RNA (rRNA), transfer RNA (RNA)val and 16S rRNA regions. The distribution of mtDNA variants suggests that species within Laupala are endemic to single islands. The phylogenetic estimate produced from both maximum likelihood and maximum parsimony supports the hypothesis that speciation in Laupala occurred mainly within islands. The inferred biogeographical history suggests that diversification in Laupala began on Kauai, the oldest rain-forested Hawaiian island. Subsequently, colonization to younger islands in the archipelago resulted in a radiation of considerable phylogenetic diversity. Phylogenetic patterns in mtDNA are not congruent with prior systematic or taxonomic hypotheses. Hypotheses that may explain the conflict between the phylogenetic patterns of mtDNA variation and the species taxonomy are discussed.  相似文献   

16.
The 14 species of Crambe L. sect. Dendrocrambe DC. (Brassicaceae) form a monophyletic group endemic to the Canary and Madeira archipelagos. Both parsimony and maximum likelihood analyses of sequence data from the two internal transcribed spacer regions of nuclear ribosomal DNA were used to estimate phylogenetic relationships within this section. These analyses support the monophyly of three major clades. No clade is restricted to a single island, and therefore it appears that inter-island colonization has been the main avenue for speciation in these two archipelagos. The two species endemic to Fuerteventura (C. sventenii) and Madeira (C. fruticosa) comprise a clade, providing the first evidence for a floristic link between the Eastern Canary Islands and the archipelago of Madeira. Both maximum likelihood and weighted parsimony analyses show that this clade is sister to the two other clades, although bootstrap support for this relationship is weak. Parsimony optimizations of ecological zones and island distribution suggest a colonization route from the low-altitude areas of the lowland scrub toward the high-elevation areas of the laurel and pine forests. In addition, Tenerife is likely the ancestral island for species endemic to the five westernmost islands of Gran Canaria, La Gomera, El Hierro, La Palma, and Tenerife.  相似文献   

17.
Aim We investigate the directionality of mainland‐to‐island dispersals, focusing on a case study of an African‐Malagasy bat genus, Triaenops (Hipposideridae). Taxa include T. persicus from east Africa and three Triaenops species from Madagascar (T. auritus, T. furculus, and T. rufus). The evolution of this bat family considerably post‐dated the tectonic division of Madagascar from Africa, excluding vicariance as a viable hypothesis. Therefore, we consider three biogeographical scenarios to explain these species' current ranges: (A) a single dispersal from Africa to Madagascar with subsequent speciation of the Malagasy species; (B) multiple, unidirectional dispersals from Africa to Madagascar resulting in multiple, independent Malagasy lineages; or (C) early dispersal of a proto‐species from Africa to Madagascar, with later back‐dispersal of a descendant Malagasy taxon to Africa. Location East Africa, Madagascar, and the Mozambique Channel. Methods We compare the utility of phylogenetic and coalescent methodologies to address the question of directionality in a mainland‐to‐island dispersal event for recently diverged taxa. We also emphasize the application of biologically explicit demographic systems, such as the non‐equilibrium isolation‐with‐migration model. Here, these methods are applied to a four‐species haploid genetic data set, with simulation analyses being applied to validate this approach. Results Coalescent simulations favour scenario B: multiple, unidirectional dispersals from Africa to Madagascar resulting in multiple, independent Malagasy bat lineages. From coalescent dating, we estimate that the genus Triaenops was still a single taxon approximately 2.25 Ma. The most recent Africa to Madagascar dispersal occurred much more recently (c. 660 ka), and led to the formation of the extant Malagasy species, T. rufus. Main conclusions Haploid genetic data from four species of Triaenops are statistically most consistent with multiple, unidirectional dispersals from mainland Africa to Madagascar during the late Pleistocene.  相似文献   

18.
An analysis of the sequences of the mitochondrial cytochrome b gene (1005 bp) of the Parus teneriffae-group from the Canary Islands and North Africa revealed new insights into the phylogeography of this taxon. The origin of the radiation on the Canarian Archipelago was apparently one of the central islands—Tenerife or Gran Canaria. The populations on El Hierro (P. t. ombriosus) and La Palma (P. t. palmensis) represent distinct monophyletic lineages. Blue tits from Gran Canaria are genetically distinct from those of La Gomera and Tenerife (P. t. teneriffae), which supports the results of other studies and suggests the existence of an—until now—undescribed taxon there. In contrast, the populations on the eastern islands of Fuerteventura and Lanzarote (P. t. degener) could not be distinguished from North African blue tits (P. t. ultramarinus), and these populations should be subsumed under the subspecies ultramarinus. Taxonomic recommendations based on these results include the distinction of the northern European P. caeruleus from P. teneriffae, including blue tits from North Africa and the Canary Islands, the treatment of degener and ultramarinus as synonymous (P. teneriffae ultramarinus) and a new blue tit taxon on the island of Gran Canaria (P. t. hedwigii nov. ssp.), which is formally described. The genetic results are in parts supported by bioacoustic and morphological data.  相似文献   

19.
The Canary archipelago, located on the northwestern Atlantic coast of Africa, is comprised of seven islands aligned from east to west, plus seven minor islets. All the islands were formed by volcanic eruptions and their geological history is well documented providing a historical framework to study colonization events. The Canary Island pine (Pinus canariensis C. Sm.), nowadays restricted to the westernmost Canary Islands (Gran Canaria, Tenerife, La Gomera, La Palma and El Hierro), is considered an old (Lower Cretaceous) relic from an ancient Mediterranean evolutionary centre. Twenty seven chloroplast haplotypes were found in Canary Island pine but only one of them was common to all populations. The distribution of haplotypic variation in P. canariensis suggested the colonization of western Canary Islands from a single continental source located close to the Mediterranean Basin. Present-day populations of Canary Island pine retain levels of genetic diversity equivalent to those found in Mediterranean continental pine species, Pinus pinaster and Pinus halepensis. A hierarchical analysis of variance (AMOVA) showed high differentiation among populations within islands (approximately 19%) but no differentiation among islands. Simple differentiation models such as isolation by distance or stepping-stone colonization from older to younger islands were rejected based on product-moment correlations between pairwise genetic distances and both geographic distances and population-age divergences. However, the distribution of cpSSR diversity within the islands of Tenerife and Gran Canaria pointed towards the importance of the role played by regional Pliocene and Quaternary volcanic activity and long-distance gene flow in shaping the population genetic structure of the Canary Island pine. Therefore, conservation strategies at the population level are strongly recommended for this species.Communicated by D.B. NealeA. Gómez and S.C. González-Martínez as joint authors  相似文献   

20.
Population divergence and speciation are often explained by geographical isolation, but may also be possible under high gene flow due to strong ecology‐related differences in selection pressures. This study combines coalescent analyses of genetic data (11 microsatellite loci and 1 Kbp of mtDNA) and ecological modelling to examine the relative contributions of isolation and ecology to incipient speciation in the scincid lizard Chalcides sexlineatus within the volcanic island of Gran Canaria. Bayesian multispecies coalescent dating of within‐island genetic divergence of northern and southern populations showed correspondence with the timing of volcanic activity in the north of the island 1.5–3.0 Ma ago. Coalescent estimates of demographic changes reveal historical size increases in northern populations, consistent with expansions from a volcanic refuge. Nevertheless, ecological divergence is also supported. First, the two morphs showed non‐equivalence of ecological niches and species distribution modelling associated the northern morph with mesic habitat types and the southern morph with xeric habitat types. It seems likely that the colour morphs are associated with different antipredator strategies in the different habitats. Second, coalescent estimation of gene copy migration (based on microsatellites and mtDNA) suggest high rates from northern to southern morphs demonstrating the strength of ecology‐mediated selection pressures that maintain the divergent southern morph. Together, these findings underline the complexity of the speciation process by providing evidence for the combined effects of ecological divergence and ancient divergence in allopatry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号