首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment with mature brain-derived neurotrophic factor (mBDNF) promotes functional recovery after ischemia in animal trials but the possible role of its precursor protein proBDNF and its receptors or the factors responsible for the conversion of proBDNF to mBDNF in ischemic stroke are not known. The main aim of this study was to characterize the time-dependent expression of genes and/or proteins related to BDNF processing and signaling after ischemia as well as the sensorimotor behavioral dysfunction in a photothrombotic ischemic model in rats. Characterization of different genes and proteins related to BDNF processing and signaling was performed using qPCR, immunoblotting and enzyme-linked immunosorbent assays. We showed in this study that some sensory and motor functional deficiencies appeared in the ischemic group at day 1 and persisted until day 14. Most changes in gene expression of BDNF and its processing enzymes occurred within the first 24 h in the ipsilateral cortex, but not in the contralateral cortex. At the protein level, proBDNF expression was increased at 6 h, mBDNF expression was increased between 15 h and 1 day while p75 receptor protein expression was increased between 6 h and 3 days in the ipsilateral cortex, but not in the contralateral cortex. Therefore, cerebral ischemia in rats led to the up-regulation of genes and/or proteins of BDNF, proBDNF and their processing enzymes and receptors in a time-dependent manner. We propose that the balance between BDNF and proBDNF and their associated proteins may play an important role in the pathogenesis and recovery from ischemia.  相似文献   

2.
Nitric oxide (NO) mediates pharmacological effects of opiates including dependence and abstinence. Modulation of NO synthesis during the induction phase of morphine dependence affects manifestations of morphine withdrawal syndrome, though little is known about mechanisms underlying this phenomenon. Neurotrophic and growth factors are involved in neuronal adaptation during opiate dependence. NO-dependent modulation of morphine dependence may be mediated by changes in expression and activity of neurotrophic and/or growth factors in the brain. Here, we studied the effects of NO synthesis inhibition during the induction phase of morphine dependence on the expression of brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and insulin-like growth factor 1 (IGF1) as well as their receptors in rat brain regions after spontaneous morphine withdrawal in dependent animals. Morphine dependence in rats was induced within 6 days by 12 injections of morphine in increasing doses (10–100 mg/kg), and NO synthase inhibitor L-NG-nitroarginine methyl ester (L-NAME) (10 mg/kg) was given 1 h before each morphine injection. The expression of the BDNF, GDNF, NGF, IGF1, and their receptors in the frontal cortex, striatum, hippocampus, and midbrain was assessed 40 h after morphine withdrawal. L-NAME treatment during morphine intoxication resulted in an aggravation of the spontaneous morphine withdrawal severity. Morphine withdrawal was accompanied by upregulation of BDNF, IGF1, and their receptors TrkB and IGF1R, respectively, on the mRNA level in the frontal cortex, and only BDNF in hippocampus and midbrain. L-NAME administration during morphine intoxication decreased abstinence-induced upregulation of these mRNAs in the frontal cortex, hippocampus and midbrain. L-NAME prevented from abstinence-induced elevation of mature but not pro-form of BDNF polypeptide in the frontal cortex. While morphine abstinence did not affect TrkB protein levels as well as its phosphorylation status, inhibition of NO synthesis decreased levels of phosphorylated TrkB after withdrawal. Thus, NO signaling during induction of dependence may be involved in the mechanisms of BDNF expression and processing at abstinence, thereby affecting signaling through TrkB in the frontal cortex.  相似文献   

3.
Selective activation of serotonin 5-HT(1A)-receptors produced different effects on immunological reactivity in mice of ASC strain with genetic predisposition to depressive-like behavior, and parental CBA and AKR strains displaying no depressive reactions. Administration of 5-HT(1A)-receptors agonist 8-OH-DPAT at low dose (0.1 mg/kg) affecting upon presynaptic receptors resulted in immunostimulation in CBA mice and did not change the immune response level in mice of ASC strain. Activation of postsynaptic 5-HT(1A)-receptors with higher dose of 8-OH-DPAT (1.0 mg/kg) caused immunosuppression in CBA and AKR strains while under the same conditions the immune response of ASC mice was increased. Decrease the immune reactions in ASC mice was observed only after application of 8-OHDPAT at dose of 5 mg/kg. The changes of functional activity of pre- and postsynaptic 5-HT(1A)-receptors under a high predisposition to depressive-like behavior providing different effects of this receptor activation on immune function are discussed.  相似文献   

4.
Feng H  Lu LM  Huang Y  Zhu YC  Yao T 《生理学报》2005,57(5):537-544
高浓度的皮质酮可引起海马形态与功能的损伤,其中脑源性神经营养因子(brain-derived neurotrophic factor,BDNF) 表达的改变在海马形态与功能损伤中扮演重要角色。本实验的目的是观察单次皮下注射皮质酮后海马内BDNF-mRNA、前 体蛋白及成熟型蛋白表达的改变,并观察N-甲基-D-天冬氨酸(N-methyl-D-aspartate NMDA)受体阻滞剂MK801对皮质酮 作用的影响。实验结果显示,单次皮下注射皮质酮2 mg/kg,3 h后海马内BDNF mRNA、前体蛋白及成熟型蛋白的表达 均降低;MK801(0.1 mg/kg)对皮质酮的这一作用有增强效果。单独给予皮质酮或注射MK801 30 min后再给予皮质酮, 均能明显降低海马中cAMP反应元件结合蛋白(cAMP response element binding protein,CREB)的磷酸化水平,MK801与 皮质酮联用时CREB的磷酸化水平降低更为显著(与单独给予皮质酮相比,P<0.05)。实验结果提示,CREB磷酸化水平降 低可能是皮质酮引起海马BDNF表达减少的重要中间环节,阻断NMDA受体可加强皮质酮降低BDNF表达的效应。  相似文献   

5.
Chronic stress and stress-related disorders, such as major depression (MD), have been shown to increase the risk for developing Alzheimer's disease (AD). Brain-derived neurotrophic factor (BDNF) has been postulated as a neurophysiological link between these illnesses. Our previous research has indicated that exposing the APPswe/PS1dE9 mouse model of AD to prenatal maternal stress (PS) induced a depressive-like phenotype, specifically in female mice. Considering the role of BDNF in depressive-like behavior and its interactions with amyloid-β (Aβ), our aim was to explore whether these mice would also exhibit alterations in soluble Aβ, mature BDNF (mBDNF), proBDNF, and the receptors TrkB and p75(NTR) in comparison to non-stressed animals. Our results demonstrate that female APPswe/PS1dE9 mice have higher levels of hippocampal proBDNF and soluble Aβ as compared to their male littermates. Additionally, a tendency was observed for PS to lower mBDNF protein levels in the hippocampus, but only in female mice, while receptor levels remained unaltered by sex or PS exposure. Given that female mice both have higher proBDNF and Aβ levels, these findings suggest an underlying role for BDNF signaling and Aβ production in the selective vulnerability of women for MD and AD development.  相似文献   

6.
The myristoylated alanine-rich C kinase substrate (MARCKS) is a major protein kinase C (PKC) substrate in brain that binds the inner surface of the plasma membrane, calmodulin, and cross-links filamentous actin, all in a PKC phosphorylation-reversible manner. MARCKS has been implicated in hippocampal-dependent learning and long-term potentiation (LTP). Previous studies have shown DBA/2 mice to exhibit poor spatial/contextual learning, impaired hippocampal LTP, and hippocampal mossy fiber hypoplasia, as well as reduced hippocampal PKC activity and expression relative to C57BL/6 mice. In the present study, we assessed the expression (mRNA and protein) and subcellular distribution (membrane and cytolsol) of MARCKS in the hippocampus and frontal cortex of C57BL/6 and DBA/2 mice using quantitative western blotting. In the hippocampus, total MARCKS mRNA and protein levels in C57BL/6J mice were significantly lower ( approximately 45%) compared with DBA/2J mice, and MARCKS protein was observed predominantly in the cytosolic fraction. MARCKS expression in frontal cortex did not differ significantly between strains. To examine the dynamic regulation of MARCKS subcellular distribution, mice from each strain were subjected to 60 min restraint stress and MARCKS subcellular distribution was determined 24 h later. Restraint stress resulted in a significant reduction in membrane MARCKS expression in C57BL/6J hippocampus but not in the DBA/2J hippocampus despite similar stress-induced increases in serum corticosterone. Restraint stress did not affect cytosolic or total MARCKS levels in either strain. Similarly, restraint stress (30 min) in rats also induced a significant reduction in membrane MARCKS, but not total or cytosolic MARCKS, in the hippocampus but not in frontal cortex. In rats, chronic lithium treatment prior to stress exposure reduced hippocampal MARCKS expression but did not affect the stress-induced reduction in membrane MARCKS. Collectively these data demonstrate higher resting levels of MARCKS in the hippocampus of DBA/2J mice compared to C57BL/6J mice, and that acute stress leads to a long-term reduction in membrane MARCKS expression in C57BL/6J mice and rats but not in DBA/2J mice. These strain differences in hippocampal MARCKS expression and subcellular translocation following stress may contribute to the differences in behaviors requiring hippocampal plasticity observed between these strains.  相似文献   

7.
为了探讨SSRI联合抗精神病药物对脑源性神经营养因子(brain derived neurotrophic factor, BDNF)-cAMP反应元件结合蛋白(cAMP response element binding, CREB)信号通路的影响,本研究将SD大鼠随机分成5组,每组10只,各组大鼠分别腹腔注射阿立哌唑(5 mg·kg-1·d-1,阿立哌唑组)、舍曲林(5 mg·kg-1·d-1,舍曲林组)、阿立哌唑+舍曲林(5 mg·kg-1·d-1+5 mg·kg-1·d-1,联合组),奥氮平(5 mg·kg-1·d-1,奥氮平组)和不含药物的溶液(对照组),连续注射3周。研究显示,联合组显著增加大鼠的海马区BDNF平均荧光强度和蛋白水平,但在其他组未观察到对BDNF水平的影响。另外,不同组处理对额皮质中的BDNF水平没有影响。联合组显著增加了海马和额皮质的CREB磷酸化,而单独药物处理对CREB磷酸化无影响。联合组显著增加大鼠的海马和额皮质中CREB和TrkB (BDNF受体)的mRNA表达水平,以及AKT的磷酸化。综上所述,舍曲林联合抗精神病药(阿立哌唑)可显著上调大鼠脑部的CREB和BDNF水平,并且参与调节BDNF-CREB-AKT信号通路及相关分子。  相似文献   

8.
Effects of chronic thyroxine treatment (2mg/l, 60 days) on catalepsy, functional activity and expression of 5-HT(1A) and 5-HT(2A) receptors genes in the brain were studied in adult males of catalepsy-prone ASC and catalepsy-resistant AKR mouse strains. Thyroxine caused an appearance of cataleptics in AKR, but produced an anticataleptic effect on ASC mice. Chronic thyroxine treatment increased the functional activity and expression of 5-HT(2A) receptors in the frontal cortex in AKR, but not in ASC mice. Hormone markedly attenuated hypothermic effect of 8-OH-DPAT, 5-HT(1A) receptor agonist, but did not affect the expression of 5-HT(1A) receptors in ASC mice. The results suggest the involvement of the 5-HT(2A) receptors in the cataleptogenic and the 5-HT(1A) receptors in the anticataleptic effects of hormone.  相似文献   

9.
The antiapoptotic protein Bcl-xL is involved in development of neurobiological resilience to stress; hence, the possibility of use of psychotropic drugs to increase its expression in brain in response to stress is of considerable interest. Lithium is a neurotropic drug widely used in psychiatry. In work, we studied effects of lithium administration (for 2 or 7 days) on the expression of Bcl-xL mRNA and protein in the hippocampi and cortices of rats subjected to stress that induced depression-like behavior in the animals. In contrast to the brain-derived neurotrophic factor (BDNF), whose expression decreased in the hippocampus in response to acute stress, stress increased the level of Bcl-xL mRNA in the hippocampus, but decreased it in the frontal cortex. Treatment of stressed animals with lithium for 2 or 7 days increased Bcl-xL protein levels 1.5-fold in the hippocampus, but it decreased them in the cortex. Therefore, Bcl-xL expression in the brain can be modulated by both stress and psychotropic drugs, and the effects of these factors are brain region-specific: both stress exposure and lithium administration activated Bcl-xL expression in the hippocampus and suppressed it in the frontal cortex. The activation of Bcl-xL expression in the hippocampus by lithium, demonstrated for the first time in this study, suggests an important role of this protein in the therapeutic effects of lithium in the treatment of stress-induced psychoemotional disorders.  相似文献   

10.
Glycoprotein gp130 is involved in the interleukin‐6 (IL‐6) and related cytokines' signaling. Linkage between the gp130 coding gene and freezing reaction (catalepsy) was shown. Here, we compared the expression and function of the gp130 in male mice of catalepsy‐resistant AKR/J strain and catalepsy‐prone congenic AKR.CBA‐D13Mit76 strain created by transferring the gp130 gene allele from catalepsy‐prone CBA/Lac to the genome of AKR/J strain. No difference in the gp130 expression in the frontal cortex, hippocampus and midbrain between AKR and AKR.CBA‐D13Mit76 mice was found. However, AKR.CBA‐D13Mit76 mice were more sensitive to bacterial lipopolysaccharide (LPS). The administration of LPS (50 µg/kg, ip) significantly increased mRNA level of the gene coding IL‐6‐regulated glial fibrillary acidic protein (GFAP) in the midbrain, induced catalepsy and decreased locomotion in the open field and social investigation tests in AKR.CBA‐D13Mit76, but not in AKR mice. The result indicates (1) the association between gp130 and hereditary catalepsy, (2) increased functional activity rather than expression of gp130 in AKR.CBA‐D13Mit76 mice and (3) the involvement of gp130 in the mechanism of LPS‐induced alteration of behavior.  相似文献   

11.
Neurotrophins, including the brain-derived neurotrophic factor (BDNF), are essential for regulating neuronal differentiation in developing brains. BDNF and its receptor tyrosine kinase receptor B (TrkB) are involved in neuronal signaling, survival and plasticity. Cyclosporine A (CsA) is a potent immunosuppressive agent which prevents allograft rejection in organ transplantation and various immunological diseases. We investigated whether chronic administration of CsA decreases BDNF gene expression in rats, and the influence of CsA on mRNA levels of TrkB receptors was also examined. For 30 days of CsA (10 mg/kg/day) administration, the expression of BDNF and TrkB mRNA was significantly decreased in the hippocampus and midbrain, but there was no significant difference in the cortex. CsA (0, 1, 5 10, 15 ug/ml) down-regulated BDNF and TrkB gene expression through cultured SH-SY5Y cells, as did all-trans retinoic acid (ATRA), and there was no effect on cell viability. These experimental results indicate that suppression of the BDNF and TrkB mRNA, protein level of BDNF expression in the hippocampus and midbrain may be related to altered behavior observed following chronic administration of CsA. A common mechanism of adverse effects of CsA induced depressive symptoms may involve neurotoxicity mediated by down-regulation of brain BDNF and TrkB.  相似文献   

12.
Brain-derived neurotrophic factor (BDNF) is critical for the function and survival of neurons that degenerate in the late stage of Alzheimer's disease (AD). There are two forms of BDNF, the BDNF precursor (proBDNF) and mature BDNF, in human brain. Previous studies have shown that BDNF mRNA and protein, including proBDNF, are dramatically decreased in end-stage AD brain. To determine whether this BDNF decrease is an early or late event during the progression of cognitive decline, we used western blotting to measure the relative amounts of BDNF proteins in the parietal cortex of subjects clinically classified with no cognitive impairment (NCI), mild cognitive impairment (MCI) or mild to moderate AD. We found that the amount of proBDNF decreased 21 and 30% in MCI and AD groups, respectively, as compared with NCI, consistent with our previous results of a 40% decrease in end-stage AD. Mature BDNF was reduced 34 and 62% in MCI and AD groups, respectively. Thus, the decrease in mature BDNF and proBDNF precedes the decline in choline acetyltransferase activity which occurs later in AD. Both proBDNF and mature BDNF levels were positively correlated with cognitive measures such as the Global Cognitive Score and the Mini Mental State Examination score. These results demonstrate that the reduction of both forms of BDNF occurs early in the course of AD and correlates with loss of cognitive function, suggesting that proBDNF and BDNF play a role in synaptic loss and cellular dysfunction underlying cognitive impairment in AD.  相似文献   

13.
In the present study, the 5‐HT2A and 5‐HT1A receptors functional activity and 5‐HT2A receptor gene expression were examined in the brain of ASC/Icg and congenic AKR.CBAD13Mit76C mouse strains (genetically predisposed to catalepsy) in comparison with the parental catalepsy‐resistant AKR/J and catalepsy‐prone CBA/Lac mouse strains. The significantly reduced 5‐HT2A receptor functional activity along with decreased 5‐HT2A receptor gene expression in the frontal cortex was found in all mice predisposed to catalepsy compared with catalepsy‐resistant AKR/J. 5‐HT2A agonist DOI (0.5 and 1 mg/kg, i.p.) significantly reduced catalepsy in ASC/Icg and CBA/Lac, but not in AKR.CBAD13Mit76C mice. Essential increase in 5‐HT1A receptor functional activity was shown in catalepsy‐prone mouse strains in comparison with catalepsy‐resistant AKR/J mice. However, in AKR.CBAD13Mit76C mice it was lower than in ASC/Icg and CBA/Lac mice. The inter‐relation between 5‐HT2A and 5‐HT1A receptors in the regulation of catalepsy was suggested. This suggestion was confirmed by prevention of DOI anticataleptic effect in ASC/Icg and CBA/Lac mice by pretreatment with 5‐HT1A receptor antagonist p‐MPPI (3 mg/kg, i.p.). At the same time, the activation of 5‐HT2A receptor led to the essential suppression of 5‐HT1A receptor functional activity, indicating the opposite effect of 5‐HT2A receptor on pre‐ and postsynaptic 5‐HT1A receptors. Thus, 5‐HT2A/5‐HT1A receptor interaction in the mechanism of catalepsy suppression in mice was shown.  相似文献   

14.
A high level of hippocampal brain-derived neurotrophic factor (BDNF) in normally aged as compared with young rats suggests that it is important to maintain a considerable level of hippocampal BDNF during aging in order to keep normal hippocampal functions. To elucidate possible mechanisms of endogenous BDNF increase, changes in levels of BDNF were studied in the rat brain following systemic administration of various convulsant agents; excitotoxic glutamate agonists, NMDA, kainic acid and (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA); GABA receptor antagonists, picrotoxin, pentylenetetrazole (PTZ) and lindane (gamma-hexachlorocyclohexane); and L-type voltage-dependent calcium channel agonist, BAY-K 8644. Kainic acid and AMPA, but not NMDA, caused remarkable increases in BDNF protein in the rat hippocampus and entorhinal cortex. Picrotoxin, PTZ and lindane stimulated BDNF production in the entorhinal cortex and also in the hippocampus of rats showing very severe convulsions. On the other hand, BAY-K 8644 treatment increased BDNF levels in the neocortex and entorhinal cortex. Maximal levels of BDNF protein were observed at 12--24 h, 8--16 h and 6 h following administration of kainic acid, PTZ and BAY-K 8644, respectively. Kainic acid stimulated BDNF synthesis in presynaptic hippocampal granule neurons, but not in postsynaptic neurons with its receptors, while PTZ and BAY-K 8644 produced the same effects in postsynaptic neurons in the entorhinal cortex (in granule neurons in the hippocampus) and in the whole cortex, respectively. Nifedipine inhibited almost completely BAY-K 8644, but not PTZ, effects. omega-Conotoxin GVIA and DCG-IV partially blocked kainic acid-induced enhancement of BDNF, indicating involvement of L-type and N-type voltage-dependent calcium channels, respectively. In addition, BDNF levels in the hippocampus of mice deficient in D-myo-inositol-1,4,5-triphosphate receptor gene were scarcely different from those in the same region of controls, suggesting little involvement of intracellular calcium increase through this receptor. BAY-K 8644, but not kainic acid or PTZ, stimulated the phosphorylation of cyclic AMP responsive element binding protein. Our results indicate convulsant-dependent stimulation of BDNF production and involvement of region-specific voltage-dependent calcium channels.  相似文献   

15.
Neurotrophins regulate key function of nervous tissue cells. Analysis of neurotrophins mRNA expression is an appropriate tool to assess therapeutic efficiency of the anti-stroke drugs. We have analyzed the effect of synthetic peptide semax and its C-terminal Pro-Gly-Pro tripeptide upon mRNAs expression of neurotrophins Ngf, Bdrf, Nt-3 and their receptors TrkA, TrkB, TrkC, p75 in rat frontal lobes, hippocampus and cerebellum after bilateral common carotid artery occlusion. The animals were decapitated 30 min, 1, 2, 4, 8, 12, 24 h after the operation. The mRNA expression of neurotrophins and their receptors was assessed by relative quantification using real-time RT-PCR. Our showed that ischemia causes a significant decrease in gene expression in the hippocampus. Semax and PGP affected the expression of neurotrophins and their receptors predominantly in the frontal cortex and hippocampus of the ischemized animals. In the frontal cortex, Semax treatment resulted in a decrease of mRNA level of receptors, while PGP treatment increased the level of these mRNA. Maximal neuroprotective effect of both peptides has been observed in the hippocampus 12 h after occlusion. A decrease of gene expression of neurotrophins and their receptors caused by the occlusion was overcome by Semax and PGP. These results clarify the semax mechanism of and present certain features of mRNA's expression of neurotrophins and their receptors in experimental conditions.  相似文献   

16.
Neurotrophins activate intracellular signaling pathways necessary for neuronal survival, growth and apoptosis. The most abundant neurotrophin in the adult brain, brain-derived neurotrophic factor (BDNF), is first synthesized as a proBDNF precursor and recent studies have demonstrated that proBDNF can be secreted and that it functions as a ligand for a receptor complex containing p75NTR and sortilin. Activation of proBDNF receptors mediates growth cone collapse, reduces synaptic activity, and facilitates developmental apoptosis of motoneurons but the precise signaling cascades have been difficult to discern. To address this, we have engineered, expressed and purified HBpF-proBDNF, an expression construct containing a 6X-HIS tag, a biotin acceptor peptide (BAP) sequence, a PreScission Protease cleavage site and a FLAG-tag attached to the N-terminal part of murine proBDNF. Intact HBpF-proBDNF has activities indistinguishable from its wild-type counterpart and can be used to purify proBDNF signaling complexes or to monitor proBDNF endocytosis and retrograde transport. HBpF-proBDNF will be useful for characterizing proBDNF signaling complexes and for deciphering the role of proBDNF in neuronal development, synapse function and neurodegenerative disease.  相似文献   

17.
Major depressive disorder (MDD) is a leading contributor to the global burden of disease. However, the causal relationship of risk factors, such as genetic predisposition or experience of augmented stress, remain unknown. Numerous studies in humans and rodents have implicated brain‐derived neurotrophic factor (BDNF) in MDD pathology, as a genetic risk factor and a factor regulated by stress. Until now, the majority of preclinical studies have employed genetically modified mice as their model of choice. However, mice display a limited behavioural repertoire and lack expression of circulating BDNF, which is present in rats and humans. Therefore, heterozygous BDNF (BDNF+/?) rats were tested for affective behaviours and accompanying expression of key genes associated with affective disorders in the brain. We found that BDNF+/? rats, which have reduced BDNF levels in brain and plasma, displayed symptoms of anhedonia, a core symptom of MDD, and anxiety‐like behaviour, but no behavioural despair or cognitive impairments. This was accompanied by changes in the expression of genes that are implicated in modulation of the stress response and affective disorders. Hence, glucocorticoid receptor, neuregulin 1 and disrupted‐in‐schizophrenia 1 gene expression were upregulated in the prefrontal cortex of BDFN+/? rats, whereas FK506 binding protein 5 levels were decreased in the hippocampus. We conclude that a reduction in BDNF levels alters expression of genes associated with affective disorders, which may contribute to the development of depressive‐like symptoms.  相似文献   

18.
It is well known that the characteristics of mastication are important for the maintenance of our physical well-being. In this study, to assess the importance of the effects of food hardness during mastication, we investigated whether a long-term powdered diet might cause changes in emotional behavior tests, including spontaneous locomotor activity and social interaction (SI) tests, and the dopaminergic system of the frontal cortex and hippocampus in mice. Mice fed a powdered diet for 17 weeks from weaning were compared with mice fed a standard diet (control). The dopamine turnover and expression of dopamine receptors mRNA in the frontal cortex were also evaluated. Spontaneous locomotor activity, SI time and dopamine turnover of the frontal cortex were increased in powdered diet-fed mice. On the other hand, the expression of dopamine-4 (D4) receptors mRNA in the frontal cortex was decreased in powdered diet-fed mice. Moreover, we examined the effect of PD168077, a selective D4 agonist, on the increased SI time in powdered diet-fed mice. Treatment with PD168077 decreased the SI time. These results suggest that the masticatory dysfunction induced by long-term powdered diet feeding may cause the increased SI time and the changes in the dopaminergic system, especially dopamine D4 receptor subtype in the frontal cortex.  相似文献   

19.
20.
Brain-derived neurotrophic factor (BDNF) signaling has been implicated in the onset of depression and in antidepressant efficacy, although the exact role of this neurotrophin in the pathophysiology of depression remains to be elucidated. Also, the interaction between chronic stress, which may precede depression, corticosteroids and BDNF is not fully understood. The present study aimed at investigating whether long-lasting, recurrent tethering of sows during a period of 1.5 or 4.5 years leads to enduring effects on measures that may be indicative of chronic stress, compared with animals kept in a group housing system ('loose' sows). Immediately after slaughter, the frontal cortex, dorsal and ventral hippocampus were dissected and protein levels of BDNF and its receptors were analyzed and compared with plasma cortisol levels and adrenal weights. Results indicate that tethering stress reduced BDNF protein levels in the dorsal hippocampus and the frontal cortex, but not in the ventral hippocampus. In addition, levels of TrkB, the high affinity receptor for BDNF, were increased in the dorsal hippocampus. Plasma cortisol levels and adrenal weight were increased after tethering. These stress effects on BDNF levels were more pronounced after 4.5 years of recurrent tethering and negatively correlated in particular in the frontal cortex with cortisol levels and adrenal weight. This suggests that the stress effect of tethered housing on neurotrophin levels may be mediated via cortisol. Taken together, these data indicate that recurrent tethering stress in sows over 4.5 years results in a loss of neurotrophic support by BDNF, mediated by an overactive neuroendocrine system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号