首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arbuscular mycorrhizal fungi (AMF) form symbioses with many plants. Black locust (Robinia pseudoacacia L.) is an important energy tree species that can associate with AMF. We investigated the effects of AMF (Rhizophagus irregularis and Glomus versiforme) on the growth, gas exchange, chlorophyll (Chl) fluorescence, carbon content, and calorific value of black locust seedlings in the greenhouse. The total biomass of the arbuscular mycorrhizal (AM) seedlings was 4 times greater than that of the nonmycorrhizal (NM) seedlings. AMF greatly promoted the photosynthesis of black locust seedlings. AM seedlings had a significantly greater leaf area, higher carboxylation efficiency, Chl content, and net photosynthetic rate (P N) than NM seedlings. AMF also significantly increased the effective photochemical efficiency of PSII and significantly enhanced the carbon content and calorific value of black locust seedlings. Seedlings inoculated with G. versiforme had the largest leaf area and highest biomass, Chl content, P N, and calorific value.  相似文献   

2.
Long-lived radionuclides such as 90Sr and 137Cs can be naturally or accidentally deposited in the upper soil layers where they emit β/γ radiation. Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can accumulate and transfer radionuclides from soil to plant, but there have been no studies on the direct impact of ionizing radiation on AMF. In this study, root organ cultures of the AMF Rhizophagus irregularis MUCL 41833 were exposed to 15.37, 30.35, and 113.03 Gy gamma radiation from a 137Cs source. Exposed spores were subsequently inoculated to Plantago lanceolata seedlings in pots, and root colonization and P uptake evaluated. P. lanceolata seedlings inoculated with non-irradiated AMF spores or with spores irradiated with up to 30.35 Gy gamma radiation had similar levels of root colonization. Spores irradiated with 113.03 Gy gamma radiation failed to colonize P. lanceolata roots. P content of plants inoculated with non-irradiated spores or of plants inoculated with spores irradiated with up to 30.35 Gy gamma radiation was higher than in non-mycorrhizal plants or plants inoculated with spores irradiated with 113.03 Gy gamma radiation. These results demonstrate that spores of R. irregularis MUCL 41833 are tolerant to chronic ionizing radiation at high doses.  相似文献   

3.
A potential alternative strategy to chemical control of plant diseases could be the stimulation of plant defense by arbuscular mycorrhizal fungi (AMF). In the present study, the influence of three parameters (phosphorus supply, mycorrhizal inoculation, and wheat cultivar) on AMF protective efficiency against Blumeria graminis f. sp. tritici, responsible for powdery mildew, was investigated under controlled conditions. A 5-fold reduction (P/5) in the level of phosphorus supply commonly recommended for wheat in France improved Funneliformis mosseae colonization and promoted protection against B. graminis f. sp. tritici in a more susceptible wheat cultivar. However, a further decrease in P affected plant growth, even under mycorrhizal conditions. Two commercially available AMF inocula (F. mosseae, Solrize®) and one laboratory inoculum (Rhizophagus irregularis) were tested for mycorrhizal development and protection against B. graminis f. sp. tritici of two moderately susceptible and resistant wheat cultivars at P/5. Mycorrhizal levels were the highest with F. mosseae (38 %), followed by R. irregularis (19 %) and Solrize® (SZE, 8 %). On the other hand, the highest protection level against B. graminis f. sp. tritici was obtained with F. mosseae (74 %), followed by SZE (58 %) and R. irregularis (34 %), suggesting that inoculum type rather than mycorrhizal levels determines the protection level of wheat against B. graminis f. sp. tritici. The mycorrhizal protective effect was associated with a reduction in the number of conidia with haustorium and with an accumulation of polyphenolic compounds at B. graminis f. sp. tritici infection sites. Both the moderately susceptible and the most resistant wheat cultivar were protected against B. graminis f. sp. tritici infection by F. mosseae inoculation at P/5, although the underlying mechanisms appear rather different between the two cultivars. This study emphasizes the importance of taking into account the considered parameters when considering the use of AMF as biocontrol agents.  相似文献   

4.
A comparative proteomic approach was performed to analyze the differential accumulation of leaf proteins in response to the symbiosis between Solanum lycopersicum and the arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis. Protein profiling was examined in leaves from tomato plants colonized with AMF (M), as well as non-colonized plants fertilized with low phosphate (20 μM P; NM-LP) and non-colonized plants fertilized with regular phosphate Hoagland’s solution (200 μM P; NM-RP). Comparisons were made between these groups, and 2D-SDS-PAGE revealed that 27 spots were differentially accumulated in M vs. NM-LP. Twenty-three out of the 27 spots were successfully identified by mass spectrometry. Two of these proteins, 2-methylene-furan-3-one reductase and auxin-binding protein ABP19a, were up-accumulated in M plants. The down-accumulated proteins in M plants were associated mainly with photosynthesis, redox, and other molecular functions. Superoxide dismutase, harpin binding protein, and thioredoxin peroxidase were down-accumulated in leaves of M tomato plants when compared to NM-LP and NM-RP, indicating that these proteins are responsive to AMF colonization independently of the phosphate regime under which they were grown. 14-3-3 protein was up-accumulated in NM-RP vs. NM-LP plants, whereas it was down-accumulated in M vs. NM-LP and M vs. NM-RP, regardless of their phosphate nutrition. This suggests a possible regulation by P nutrition and AMF colonization. Our results demonstrate AMF-induced systemic changes in the expression of tomato leaf proteins, including the down-accumulation of proteins related to photosynthesis and redox function.  相似文献   

5.
Arbuscular mycorrhizal fungi (AMF) can promote plant growth performance, but their effectiveness varies depending on soil nitrogen (N) availability. To clarify the effectiveness of exogenous AMF along an N-fertilization gradient (0, 2, 10, 20, and 30 mM), the impacts of exogenous Rhizophagus irregularis and N on the growth, photochemical activity, and nutritional status of Populus?×?canadensis ‘Neva’ in natural soil were evaluated in a pot experiment. The results showed that the 10 mM N level was the optimal fertilization regime with the highest promotion effect on plant growth and the maximum quantum yield of photosystem II (PSII) (Fv/Fm). Excess N (20 and 30 mM) fertilization reduced the actual quantum yield of PSII (ФPSII) and the Fv/Fm of the plants. Regardless of the N availability, inoculated plants exhibited greater Fv/Fm values than did non-inoculated plants. The biomass of inoculated plants was significantly higher compared with the control under low N levels (0 and 2 mM). Under high N levels, inoculated plants showed significant increases in ФPSII. Moreover, the nutrient imbalance of plants inoculated with exogenous R. irregularis was eased by increasing P, Fe, Mn and Cu uptake in roots and higher P, Ca, Mg, Fe, Mn and Zn concentrations in leaves. Moreover, the Fv/Fm and ФPSII exhibited positive correlations with P, Ca, Mg and Zn concentrations in leaves. In conclusion, inoculation with exogenous R. irregularis can benefit plant fitness by improving the photochemical capacity and nutrient composition of poplar under different N levels.  相似文献   

6.
The influence of arbuscular mycorrhiza (AM) and drought stress on aquaporin (AQP) gene expression, water status, and photosynthesis was investigated in black locust (Robinia pseudoacacia L.). Seedlings were grown in potted soil inoculated without or with the AM fungus Rhizophagus irregularis, under well-watered and drought stress conditions. Six full-length AQP complementary DNAs (cDNAs) were isolated from Robinia pseudoacacia, named RpTIP1;1, RpTIP1;3, RpTIP2;1, RpPIP1;1, RpPIP1;3, and RpPIP2;1. A phylogenetic analysis of deduced amino acid sequences demonstrated that putative proteins coded by these RpAQP genes belong to the water channel protein family. Expression analysis revealed higher RpPIP expression in roots while RpTIP expression was higher in leaves, except for RpTIP1;3. AM symbiosis regulated host plant AQPs, and the expression of RpAQP genes in mycorrhizal plants depended on soil water condition and plant tissue. Positive effects were observed for plant physiological parameters in AM plants, which had higher dry mass and lower water saturation deficit and electrolyte leakage than non-AM plants. Rhizophagus irregularis inoculation also slightly increased leaf net photosynthetic rate and stomatal conductance under well-watered and drought stress conditions. These findings suggest that AM symbiosis can enhance the drought tolerance in Robinia pseudoacacia plants by regulating the expression of RpAQP genes, and by improving plant biomass, tissue water status, and leaf photosynthesis in host seedlings.  相似文献   

7.
Arbuscular mycorrhizal fungi (AMF) and plant growth promoting rhizobacteria (PGPR) have potential to control soil-borne diseases including plant-parasitic nematodes. First, the effects of dual inoculation of mycorrhiza (Rhizophagus irregularis) and two stains of pseudomonads (Pseudomonas jessenii strain R62 and Pseudomonas synxantha strain R81) on tomato (Solanum lycopersicum cv. PT-3) growth were tested. Further, the physiological and biochemical changes caused by these beneficial organisms during infection by the root-knot nematode Meloidogyne incognita were studied. The experiment was conducted under glass house conditions and carried out up to one month after nematode inoculation. Plants treated with dual or individual inoculation of AMF and PGPR showed significantly enhanced plant growth and reduced nematode infection. In addition, they exhibited potent activity of phenolics (28 %) and defensive enzymes i.e. peroxidase (PO; 1.26 fold), polyphenyloxidase (PPO; 1.35 fold) and superoxide dismutase (SOD; 1.09 fold) while a significant reduction in malondialdehyde (MDA; 1.63 fold) and hydrogen peroxide (H2O2; 1.30 fold) content was recorded when compared to the nematode-infected plants. These findings indicate the feasibility of AMF and PGPR individually or in combinations as potential biocontrol agents for the management of root-knot nematodes.  相似文献   

8.
Rhizophagus irregularis (previously named Glomus irregulare) is one of the most widespread and common arbuscular mycorrhizal fungal (AMF) species. It has been recovered worldwide in agricultural and natural soils, and the isolate DAOM-197198 has been utilized as a commercial inoculant for two decades. Despite the ecological and economical importance of this taxon, specific markers for quantification of propagules by quantitative real-time PCR (qPCR) are extremely limited and none have been rigorously validated for quality control of manufactured products such as biofertilizers. From the sequencing of 14 complete AMF mitochondrial (mt) genomes, a qPCR assay using a hydrolysis probe designed in the single copy cox3-rnl intergenic region was tested and validated to specifically and accurately quantify the spores of R. irregularis isolate DAOM-197198. Specificity tests were performed using standard PCR and qPCR, and results clearly showed that the primers specifically amplified the isolate DAOM-197198, yielding a PCR product of 106 bp. According to the qPCR analyses on spores produced in vitro, the average copy number of mt genomes per spore was 3172?±?304 SE (n?=?6). Quantification assays were successfully undertaken on known and unknown samples in liquid suspensions and commercial dry formulations to show the accuracy, precision, robustness, and reproducibility of the qPCR assay. This study provides a powerful molecular toolkit specifically designed to quantify spores of the model AMF isolate DAOM-197198. The approach of molecular toolkit used in our study could be applied to other AMF taxa and will be useful to research institutions and governmental and industrial laboratories running routine quality control of AMF-based products.  相似文献   

9.
Root hairs and arbuscular mycorrhiza (AM) coexist in root systems for nutrient and water absorption, but the relation between AM and root hairs is poorly known. A pot study was performed to evaluate the effects of four different AM fungi (AMF), namely, Claroideoglomus etunicatum, Diversispora versiformis, Funneliformis mosseae, and Rhizophagus intraradices on root hair development in trifoliate orange (Poncirus trifoliata) seedlings grown in sand. Mycorrhizal seedlings showed significantly higher root hair density than non-mycorrhizal seedlings, irrespective of AMF species. AMF inoculation generally significantly decreased root hair length in the first- and second-order lateral roots but increased it in the third- and fourth-order lateral roots. AMF colonization induced diverse responses in root hair diameter of different order lateral roots. Considerably greater concentrations of phosphorus (P), nitric oxide (NO), glucose, sucrose, indole-3-acetic acid (IAA), and methyl jasmonate (MeJA) were found in roots of AM seedlings than in non-AM seedlings. Levels of P, NO, carbohydrates, IAA, and MeJA in roots were correlated with AM formation and root hair development. These results suggest that AMF could alter the profile of root hairs in trifoliate orange through modulation of physiological activities. F. mosseae, which had the greatest positive effects, could represent an efficient AM fungus for increasing fruit yields or decreasing fertilizer inputs in citrus production.  相似文献   

10.
In recent years, studies on arbuscular mycorrhizal fungi (AMF) have been revealing that the belowground symbiosis can influence the performance of aboveground herbivores and their natural enemies through its effects on the host plant. In this study, we tested whether the colonization of tomato plants by the arbuscular mycorrhizal fungus Rhizophagus irregularis (Syn. Glomus intraradices Schenk and Smith) (Glomeromycota: Glomeraceae) affects the performance of the zoophytophagous mirid bug Macrolophus pygmaeus Rambur (Hemiptera: Miridae). Mycorrhizal colonization in tomato plants positively influenced the predator host-plant acceptance for feeding and oviposition, as well as nymphal survival and female weight. We hypothesize that AMF can modify mirid bug foraging behavior and performance.  相似文献   

11.

Background and aims

We studied, through exudates employment, the effect of Epichloë (endophytic fungi), both independently and in association with Bromus auleticus (grass), on arbuscular mycorrhizal fungi (AMF) colonization, host and neighbouring plants biomass production and soil changes.

Methods

Through in vitro and greenhouse experiments, Epichloë endophytes effect on AMF development was evaluated. In vitro studies of exudates effect on Gigaspora rosea and Rhizophagus intraradices were performed using root or endophyte exudates. A 6-month greenhouse experiment was conducted to determine Bromus auleticus endophytic status effect and endophyte exudates role in biomass production, neighbouring plants mycorrhizal colonization and soil properties.

Results

Endophyte exudates and E+ plant root exudates promoted in vitro AMF development in the pre-infective stage of G. rosea and in carrot root culture mycelium of R. intraradices in a dose-response relationship, while control media and E- plants exudates had no effect. R. intraradices colonization and plant growth was clearly increased by endophytes and their exudates.

Conclusions

This is the first work evidencing the direct effect of Epichloë endophytes and infected plants root exudates on AMF extramatrical development. While higher levels of AMF colonization were observed in E+ plants, no clear effect was detected in neighbouring plants colonization, plant biomass or soil properties.
  相似文献   

12.
Abiotic stresses present a real environmental problem in agriculture field. In our paper, we examine the significance of arbuscular mycorrhizal fungi (AMF) and soil amendment with water retaining superpolymers (hydrogel) on growth and physiology performance of olive plantlets. Our experiment was carried out in nursery conditions, to test the impact of hydrogel (TH) and mycorrhizal fungi (TM), used individually or combined (THM), and compare them with non inoculated plants (TC), to understand and reduce the water stress damage in olive plantlets (cv. Chemlali). We also evaluate interactions between hydrogel, mycorrhizal treatments and water regimes. Results of mycorrhization (M%) show that roots colonized by Rhizophagus irregularis of well-watered plants were about 40.87%. In combined treatment (THM), M% was about 32.14%. Compared to TC treatment, TM treatment enhances significantly the dry weights of the whole plant under the two water regimes. The TM treatment had the highest relative water content (66.50%) and Chl (a?+?b) (0.83 mg g??1) in stressed conditions. We found also that under water stress, the maximal quantum efficiency of the photosystem II measurements in leaves were significantly improved by 50.70% in TH treatment compared to control. For phenolic contents, TH treatment decreased significantly total phenols by 50.10% compared to TC. Our study gives evidence that the use of AMF and the hydrogel separately or in combination may enhance the capacity to avoid drought damages of olive plantlets and improve olive performances.  相似文献   

13.
As it is well known, arbuscular mycorrhizal (AM) colonization can be initiated from the following three types of fungal propagules: spores, extraradical mycelium (ERM), and mycorrhizal root fragments harboring intraradical fungal structures. It has been shown that biomass allocation of AM fungi (AMF) among these three propagule types varies between fungal taxa, as also differs the ability of the different AMF propagule fractions to initiate new colonizations. In this study, the composition of the AMF community in the roots of rosemary (Rosmarinus officinalis L., a characteristic Mediterranean shrub), inoculated with the three different propagule types, was analyzed. Accordingly, cuttings from this species were inoculated with either AMF spores, ERM, or colonized roots extracted from a natural soil. The AMF diversity within the rosemary roots was characterized using terminal restriction fragment length polymorphism (T-RFLP) of the small subunit (SSU) rDNA region. The AMF community established in the rosemary plants was significantly different according to the type of propagule used as inoculum. AMF taxa differed in their ability to initiate new colonizations from each propagule type. Results suggest different colonization strategies for the different AMF families involved, Glomeraceae and Claroideoglomeraceae colonizing mainly from colonized roots whereas Pacisporaceae and Diversisporaceae from spores and ERM. This supports that AMF taxa show contrasting life-history strategies in terms of their ability to initiate new colonizations from the different propagule types. Further research to fully understand the colonization and dispersal abilities of AMF is essential for their rational use in ecosystem restoration programs.  相似文献   

14.
15.
In arid environments, the propagule density of arbuscular mycorrhizal fungi (AMF) may limit the extent of the plant–AMF symbiosis. Inoculation of seedlings with AMF could alleviate this problem, but the success of this practice largely depends on the ability of the inoculum to multiply and colonize the growing root system after transplanting. These phenomena were investigated in Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush) seedlings inoculated with native AMF. Seedlings were first grown in a greenhouse in soil without AMF (non-inoculated seedlings) or with AMF (inoculated seedlings). In spring and fall, 3-month-old seedlings were transplanted outdoors to 24-L pots containing soil from a sagebrush habitat (spring and fall mesocosm experiments) or to a recently burned sagebrush habitat (spring and fall field experiments). Five or 8 months after transplanting, colonization was about twofold higher in inoculated than non-inoculated seedlings, except for the spring field experiment. In the mesocosm experiments, inoculation increased survival during the summer by 24 % (p?=?0.011). In the field experiments, increased AMF colonization was associated with increases in survival during cold and dry periods; 1 year after transplanting, survival of inoculated seedlings was 27 % higher than that of non-inoculated ones (p?<?0.001). To investigate possible mechanisms by which AMF increased survival, we analyzed water use efficiency (WUE) based on foliar 13C/12C isotope ratios (δ 13C). A positive correlation between AMF colonization and δ 13C values was observed in the spring mesocosm experiment. In contrast, inoculation did not affect the δ 13C values of fall transplanted seedlings that were collected the subsequent spring. The effectiveness of AMF inoculation on enhancing colonization and reducing seedling mortality varied among the different experiments, but average effects were estimated by meta-analyses. Several months after transplanting, average AMF colonization was in proportion 84 % higher in inoculated than non-inoculated seedlings (p?=?0.0042), while the average risk of seedling mortality was 42 % lower in inoculated than non-inoculated seedlings (p?=?0.047). These results indicate that inoculation can increase AMF colonization over the background levels occurring in the soil, leading to higher rates of survival.  相似文献   

16.
Methyl jasmonate (MeJA) is an essential and promising plant growth regulation factor that can improve plant development and growth. Here, we explored the mechanism by which MeJA regulates the tolerance of black locust (Robinia pseudoacacia L.) to salt stress. In this study, diploid and tetraploid R. pseudoacacia were subjected to three treatments: 500 mM NaCl; 100 μM MeJA; and 500 mM NaCl and 100 μM MeJA, and the changes in plant growth, endogenous MeJA levels and the anti-oxidative metabolism of leaves were investigated. The results showed that salt stress significantly inhibited plant growth and induced the accumulation of Na+ and Cl? ions, malondialdehyde (MDA) content and reactive oxygen species. However, these adverse effects could be alleviated by applying MeJA, which was followed by a marked increase in the activities of antioxidant enzymes. In addition, some genes encoding several antioxidant enzymes were also up-regulated. Simultaneously, the endogenous MeJA content in MeJA-treated plants was lower than in salt-treated plants. It is noteworthy that tetraploids always possessed higher salt tolerance and obtained greater positive effects from MeJA than diploids. These results suggested that MeJA might play a protective role in defense responses, enabling diploid and tetraploid black locust, especially tetraploid, to better tolerate the adverse effects of salt stress.  相似文献   

17.
Non-native plants often dominate novel habitats where they did not co-evolve with the local species. The novel weapons hypothesis suggests that non-native plants bring competitive traits against which native species have not adapted defenses. Novel weapons may directly affect plant competitors by inhibiting germination or growth, or indirectly by attacking competitor plant mutualists (degraded mutualisms hypothesis). Japanese knotweed (Fallopia japonica) and European buckthorn (Rhamnus cathartica) are widespread plant invaders that produce potent secondary compounds that negatively impact plant competitors. We tested whether their impacts were consistent with a direct effect on the tree seedlings (novel weapons) or an indirect attack via degradation of seedling mutualists (degraded mutualism). We compared recruitment and performance using three Ulmus congeners and three Betula congeners treated with allelopathic root macerations from allopatric and sympatric ranges. Moreover, given that the allelopathic species would be less likely to degrade their own fungal symbiont types, we used arbuscular mycorrhizal (AMF) and ectomycorrhizal (ECM) tree species to investigate the effects of F. japonica (no mycorrhizal association) and Rhamnus cathartica (ECM association) on the different fungal types. We also investigated the effects of F. japonica and R. cathartica exudates on AMF root colonization. Our results suggest that the allelopathic plant exudates impact seedlings directly by inhibiting germination and indirectly by degrading fungal mutualists. Novel weapons inhibited allopatric seedling germination but sympatric species were unaffected. However, seedling survivorship and growth appeared more dependent on mycorrhizal fungi, and mycorrhizal fungi were inhibited by allopatric species. These results suggest that novel weapons promote plant invasion by directly inhibiting allopatric competitor germination and indirectly by inhibiting mutualist fungi necessary for growth and survival.  相似文献   

18.
The most extensive study to be carried out in Poland, and one of only a few worldwide, regarding the influence of location, tree age and forest habitat type on the basic fuel properties of silver birch (Betula pendula Roth.) wood was conducted in 12 Forestry Districts of the Polish State Forests. The field study included trees in three age groups of approximately 30, 50 and 70 years. The research was carried out in a fresh broadleaved forest (FBF) habitat type, where in Poland silver birch stands predominate in respect of coverage area and merchantable volume. Additionally, for five selected Forestry Districts, a comparative study was conducted in a fresh mixed broadleaved forest (FMBF), the second most important habitat of this tree species. A total of 306 test trees were examined. For every sample, calorific value and contents of ash, carbon, hydrogen, nitrogen, sulphur and chlorine were determined. The results indicated a statistically significant influence of location on the calorific value (p?=?0.0001) and on the contents of ash (p?<?0.0001), carbon (p?<?0.0001), hydrogen (p?<?0.0001), nitrogen (p?<?0.0001) and chlorine (p?<?0.0001) in the analysed wood. Moreover, statistically significant differences were observed between values of ash content (p?=?0.046) and of calorific value (p?=?0.0026) depending on the forest habitat type. Tree age was found to have no significant influence on the calorific value of silver birch wood.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号