首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have constructed eight restriction site polymorphisms in the DED81-ARG4 region and examined their behavior during meiotic recombination. Tetrad analysis reveals decreasing gradients of gene conversion on both sides of the initiation site for meiotic recombination at the ARG4 locus, extending on one side into the ARG4 gene, and on the other side into the adjacent DED81 gene. Gene conversion events can extend in both directions from the initiation site as the result of a single meiotic event. There is a second gradient of gene conversion in DED81, with high levels near the 5' end of the gene and low levels near the middle of the gene. The peaks of gene conversion activity for the DED81 and ARG4 gradients map to regions where double-strand breaks are found during meiosis. The implications of these results for models of meiotic gene conversion are discussed.  相似文献   

2.
H Sun  D Treco  J W Szostak 《Cell》1991,64(6):1155-1161
Meiosis-specific double-strand breaks occur at the initiation site for meiotic gene conversion in the yeast ARG4 gene. Here we show that the break fragments end in extensive 3'-overhanging, single-stranded tails. The single-stranded tails very in length, generating a gradient of single-strandedness that parallels the gradient of gene conversion frequencies in ARG4. In strains carrying a rad50S mutation, which blocks meiotic recombination, the extensive single-stranded tails do not form, suggesting that their generation is an obligatory step in meiotic recombination. Using the rad50S mutant, we have mapped the site of the ARG4 break to a small region within the genetically defined recombination initiation site. These results strongly support the double-strand break model of meiotic recombination.  相似文献   

3.
K Ohta  T Shibata    A Nicolas 《The EMBO journal》1994,13(23):5754-5763
Transient double-strand breaks (DSBs) occur during Saccharomyces cerevisiae meiosis at recombination hot spots and are thought to initiate most, if not all, homologous recombination between chromosomes. To uncover the regulatory mechanisms active in DSB formation, we have monitored the change in local chromatin structure at the ARG4 and CYS3 recombination hot spots over the course of meiosis. Micrococcal nuclease (MNase) digestion of isolated meiotic chromatin followed by indirect end-labeling revealed that the DSB sites in both loci are hypersensitive to MNase and that their sensitivity increases 2- to 4-fold prior to the appearance of meiotic DSBs and recombination products. Other sensitive sites are not significantly altered. The study of hyper- and hypo-recombinogenic constructs at the ARG4 locus, also revealed that the MNase sensitivity at the DSB site correlates with both the extent of DSBs and the rate of gene conversion. These results suggest that the local chromatin structure and its modification in early meiosis play an important role in the positioning and frequency of meiotic DSBs, leading to meiotic recombination.  相似文献   

4.
We have used nonessential circular minichromosomes to monitor sister chromatid exchange during yeast meiosis. Genetic analysis shows that a 64-kb circular minichromosome undergoes sister chromatid exchange during 40% of meioses. This frequency is not reduced by the presence of a homologous linear minichromosome. Furthermore, sister chromatid exchange can be stimulated by the presence of a 12-kb ARG4 DNA fragment, which contains initiation sites for meiotic gene conversion. Using physical analysis, we have directly identified a product of sister chromatid exchange: a head-to-tail dimer form of a circular minichromosome. This dimer form is absent in a rad50S mutant strain, which is deficient in processing of the ends of meiosis-specific double-stranded breaks into single-stranded DNA tails. Our studies suggest that meiotic sister chromatid exchange is stimulated by the same mechanism as meiotic homolog exchange.  相似文献   

5.
In the phosphoglycerate kinase (PGK) gene of yeast, as in other highly expressed yeast genes, the sequences surrounding the site of RNA initiation have a loosely conserved structure of a CT rich stretch followed by the tetranucleotide CAAG. Using internal deletions and insertions we have identified the elements in the PGK promoter which are required for correct RNA initiation at the CAAG sequence at -39. The results indicate that two different components of the PGK promoter contribute to correct RNA initiation, the TATA homologies, located at -152 and -113, and the sequences at the site of initiation. Both TATA elements can function in RNA initiation. Deletion of the upstream TATA element, TATAI, results in slightly heterogeneous RNA initiation, but the majority of the RNA initiates correctly. Deletion of both the PGK TATA elements results in the majority of the RNA initiating at sites downstream from the wild-type I site, within the structural gene between +40 to +80. The CT rich box is not essential for correct mRNA initiation as shown by deletion analysis. The site of RNA initiation in the PGK promoter appears to be determined by sequences located immediately 5' of the CAAG sequence motif. This short sequence, ACAGATC, when located the correct distance from the TATA elements may be sufficient to determine a discrete initiation site.  相似文献   

6.
In most eukaryotes, the prophase of the first meiotic division is characterized by a high level of homologous recombination between homologous chromosomes. Recombination events are not distributed evenly within the genome, but vary both locally and at large scale. Locally, most recombination events are clustered in short intervals (a few kilobases) called hotspots, separated by large intervening regions with no or very little recombination. Despite the importance of regulating both the frequency and the distribution of recombination events, the genetic factors controlling the activity of the recombination hotspots in mammals are still poorly understood. We previously characterized a recombination hotspot located close to the Psmb9 gene in the mouse major histocompatibility complex by sperm typing, demonstrating that it is a site of recombination initiation. With the goal of uncovering some of the genetic factors controlling the activity of this initiation site, we analyzed this hotspot in both male and female germ lines and compared the level of recombination in different hybrid mice. We show that a haplotype-specific element acts at distance and in trans to activate about 2,000-fold the recombination activity at Psmb9. Another haplotype-specific element acts in cis to repress initiation of recombination, and we propose this control to be due to polymorphisms located within the initiation zone. In addition, we describe subtle variations in the frequency and distribution of recombination events related to strain and sex differences. These findings show that most regulations observed act at the level of initiation and provide the first analysis of the control of the activity of a meiotic recombination hotspot in the mouse genome that reveals the interactions of elements located both in and outside the hotspot.  相似文献   

7.
T. C. Wu  M. Lichten 《Genetics》1995,140(1):55-66
Double-strand DNA breaks (DSBs) initiate meiotic recombination in Saccharomyces cerevisiae. DSBs occur at sites that are hypersensitive in nuclease digests of chromatin, suggesting a role for chromatin structure in determining DSB location. We show here that the frequency of DSBs at a site is not determined simply by DNA sequence or by features of chromatin structure. An arg4-containing plasmid was inserted at several different locations in the yeast genome. Meiosis-induced DSBs occurred at similar sites in pBR322-derived portions of the construct at all insert loci, and the frequency of these breaks varied in a manner that mirrored the frequency of meiotic recombination in the arg4 portion of the insert. However, DSBs did not occur in the insert-borne arg4 gene at a site that is frequently broken at the normal ARG4 locus, even though the insert-borne arg4 gene and the normal ARG4 locus displayed similar DNase I hypersensitivity patterns. Deletions that removed active DSB sites from an insert at HIS4 restored breaks to the insert-borne arg4 gene and to a DSB site in flanking chromosomal sequences. We conclude that the frequency of DSB at a site can be affected by sequences several thousands nucleotides away and suggest that this is because of competition between DSB sites for locally limited factors.  相似文献   

8.
To better understand the means by which chromosomes pair and recombine during meiosis, we have determined the time of appearance of heteroduplex DNA relative to the times of appearance of double-strand DNA breaks and of mature recombined molecules. Site-specific double-strand breaks appeared early in meiosis and were formed and repaired with a timing consistent with a role for breaks as initiators of recombination. Heteroduplex-containing molecules appeared about 1 h after double-strand breaks and were followed shortly by crossover products and the first meiotic nuclear division. We conclude that parental chromosomes are stably joined in heteroduplex-containing structures late in meiotic prophase and that these structures are rapidly resolved to yield mature crossover products. If the chromosome pairing and synapsis observed earlier in meiotic prophase is mediated by formation of biparental DNA structures, these structures most likely either contain regions of non-Watson-Crick base pairs or contain regions of heteroduplex DNA that either are very short or dissociate during DNA purification. Two loci were examined in this study: the normal ARG4 locus, and an artificial locus consisting of an arg4-containing plasmid inserted at MAT. Remarkably, sequences in the ARG4 promoter that suffered double-strand cleavage at the normal ARG4 locus were not cut at significant levels when present at MAT::arg4. These results indicate that the formation of double-strand breaks during meiosis does not simply involve the specific recognition and cleavage of a short nucleotide sequence.  相似文献   

9.
10.
P. Detloff  M. A. White    T. D. Petes 《Genetics》1992,132(1):113-123
Heteroduplexes formed between genes on homologous chromosomes are intermediates in meiotic recombination. In the HIS4 gene of Saccharomyces cerevisiae, most mutant alleles at the 5' end of the gene have a higher rate of meiotic recombination (gene conversion) than mutant alleles at the 3' end of the gene. Such gradients are usually interpreted as indicating a higher frequency of heteroduplex formation at the high conversion end of the gene. We present evidence indicating that the gradient of conversion at HIS4 primarily reflects the direction of mismatch repair rather than the frequency of heteroduplex formation. We also identify a site located between the 5' end of HIS4 and the 3' end of BIK1 that stimulates heteroduplex formation at HIS4 and BIK1.  相似文献   

11.
B de Massy  V Rocco    A Nicolas 《The EMBO journal》1995,14(18):4589-4598
Initiation of meiotic recombination in the yeast Saccharomyces cerevisiae occurs by localized DNA double-strand breaks (DSBs) at several locations in the genome, corresponding to hot spots for meiotic gene conversion and crossing over. The meiotic DSBs occur in regions of chromatin that are hypersensitive to nucleases. To gain insight into the molecular mechanism involved in the formation of these DSBs, we have determined their positions at the nucleotide level at the CYS3 hot spot of gene conversion on chromosome I. We found four major new features of these DSBs: (i) sites of DSBs are multiple with varying intensities and spacing within the promoter region of the CYS3 gene; (ii) no consensus sequence can be found at these sites, indicating that the activity involved in DSB formation has little or no sequence specificity; (iii) the breaks are generated by blunt cleavages; and (iv) the 5' ends are modified in rad50S mutant strains, where the processing of these ends is known to be prevented. We present a model for the initiation of meiotic recombination taking into account the implications of these results.  相似文献   

12.
13.
14.
15.
16.
17.
Haring SJ  Halley GR  Jones AJ  Malone RE 《Genetics》2003,165(1):101-114
This study addresses three questions about the properties of recombination hotspots in Saccharomyces cerevisiae: How much DNA is required for double-strand-break (DSB) site recognition? Do naturally occurring DSB sites compete with each other in meiotic recombination? What role does the sequence located at the sites of DSBs play? In S. cerevisiae, the HIS2 meiotic recombination hotspot displays a high level of gene conversion, a 3''-to-5'' conversion gradient, and two DSB sites located approximately 550 bp apart. Previous studies of hotspots, including HIS2, suggest that global chromosome structure plays a significant role in recombination activity, raising the question of how much DNA is sufficient for hotspot activity. We find that 11.5 kbp of the HIS2 region is sufficient to partially restore gene conversion and both DSBs when moved to another yeast chromosome. Using a variety of different constructs, studies of hotspots have indicated that DSB sites compete with one another for DSB formation. The two naturally occurring DSBs at HIS2 afforded us the opportunity to examine whether or not competition occurs between these native DSB sites. Small deletions of DNA at each DSB site affect only that site; analyses of these deletions show no competition occurring in cis or in trans, indicating that DSB formation at each site at HIS2 is independent. These small deletions significantly affect the frequency of DSB formation at the sites, indicating that the DNA sequence located at a DSB site can play an important role in recombination initiation.  相似文献   

18.
19.
20.
In a previous study, we analyzed meiotic recombination events that occurred in the 22-kb region (LEU2 to CEN3) of chromosome III of Saccharomyces cerevisiae. We found one region with an enhanced level of crossovers (a hotspot) and one region with a depressed level of crossovers. In this study, we show that about one-third of the crossovers that occur between LEU2 and CEN3 are initiated in a 1.3-kb region located approximately 6 kb from the centromere. Both crossovers and gene conversion events are initiated at this site. Events initiated at this position can be resolved as crossovers in regions located either centromere-distally or centromere-proximally from the initiation site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号