首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Streptomyces peucetius var. caesius produces a family of secondary metabolites called anthracyclines. Production of these compounds is negatively affected in the presence of glucose, galactose, and lactose, but the greatest effect is observed under conditions of excess glucose. Other carbon sources, such as arabinose or glutamate, show either no effect or stimulate production. Among the carbon sources that negatively affect anthracycline production, glucose is consumed in greater concentrations. We determined glucose and galactose transport in S. peucetius var. caesius and in a mutant of this strain whose anthracycline production is insensitive to carbon catabolite repression (CCR). In the original strain, incorporation of glucose and galactose was stimulated when the microorganism was grown in media containing these sugars, although we also observed basal galactose incorporation. Both the induced and the basal incorporation of galactose were suppressed when the microorganism was grown in the presence of glucose. Furthermore, adding glucose directly during the transport assay also inhibited galactose incorporation. In the mutant strain, we observed a reduction in both glucose (48%) and galactose (81%) incorporation compared to the original. Galactose transport in this mutant showed reduced sensitivity to the negative effect of glucose; however, it was still sensitive to inhibition. The deficient transport of these sugars, as well as CCR sensitivity to glucose in this mutant was corrected when the mutant was transformed with the SCO2127 region of the Streptomyces coelicolor genome. Our results support a role for glucose as the most easily utilized carbon source capable of exerting the greatest repression on anthracycline biosynthesis. In consequence, glucose also prevented the repressive effect of galactose by suppressing its incorporation. This suggests the participation of an integral regulatory system, which is initiated by an increase in incorporation of repressive sugars and their metabolism as a prerequisite for establishing the phenomenon of CCR in S. peucetius var. caesius.  相似文献   

2.
A 13C-NMR study of the biosynthesis of daunomycin adriamycin from propionate[1-13C] has been carried out in cultures of Streptomyces peucetius var. caesius. Results give direct support for the postulate that a propionate ‘starter’ is involved in the biosynthesis of both metabolites.  相似文献   

3.
Glucose kinases (Glks) are enzymes of the glycolytic pathway involved in glucose phosphorylation. These enzymes can use various phosphoryl donors such as ATP, ADP, and polyphosphate. In several streptomycetes, ATP-glucose kinase (ATP-Glk) has been widely studied and regarded as the main glucose phosphorylating enzyme and is likely a regulatory protein in carbon catabolite repression. In cell extracts from the doxorubicin overproducing strain Streptomyces peucetius var. caesius, grown in glucose, a polyphosphate-dependent Glk (Pp-Glk) was detected by zymogram. Maximum activity was observed during the stationary growth phase (48 h) of cells grown in 100 mM glucose. No activity was detected when 20 mM glutamate was used as the only carbon source, supporting a role for glucose in inducing this enzyme. Contrary to wild-type strains of Streptomyces coelicolor, Streptomyces lividans, and Streptomyces thermocarboxydus K-155, S. peucetius var. caesius produced 1.8 times more Pp-Glk than ATP-Glk. In addition, this microorganism produced five and four times more Pp-Glk and anthracyclines, respectively, than its wild-type S. peucetius parent strain, supporting a role for this enzyme in antibiotic production in the overproducer strain. A cloned 726-bp DNA fragment from S. peucetius var. caesius encoded a putative Pp-Glk, with amino acid identities between 83 and 87 % to orthologous sequences from the above-cited streptomycetes. The cloned fragment showed the polyphosphate-binding sequences GXDIGGXXIK, TXGTGIGSA, and KEX(4)SWXXWA. Sequences for the Zn-binding motif were not detected in this fragment, suggesting that Pp-Glk is not related to the Glk ROK family of proteins.  相似文献   

4.
5.
Semisynthetic derivatives of daunomycinone with 7,9-isopropylacetal, 7-O-methyl, 7-O-(4-penten-2-yl), and 7-O-(2-hydroxyethyl) substituents were converted byStreptomyces peucetius var.caesius (an adriamycin-blocked mutant) into 7-deoxy-13-dihydrodaunomycinone, while daunomycinone was transformed into 13-dihydrodaunomycinone (predominantly) and 7-deoxy-13-dihydrodaunomycinone.S. coeruleorubidus mutants 24–74 (accumulating aclavinone derivatives instead of daunomycin and related compounds) and 96-85 (producing no anthracycline substances), andS. aureofaciens B-96 (a tetracycline-blocked mutant) transformed the above substrates into the corresponding 13-dihydro derivatives, with the exception of 7,9-isopropylacetal daunomycinone which remained intact. 7-O-Propyn-1-yl daunomycinone was not transformed by any of the strains used under the conditions.  相似文献   

6.
Strains of the actinomycetes Streptomyces nogalater Lv65, S. echinatus DSM40730, and S. peucetius subsp. caesius ATCC27952 are producers of the anthracycline antibiotics nogalamycin, aranciamycin, and doxorubicin, respectively. This work was focused on the impact produced by the expression of the regulatory lndYR and wblA gh genes on the secondary metabolism and morphogenesis of these bacteria. Introducing regulators into the composition of replicative plasmids in the streptomycetes in question leads to a decrease in the synthesis of anthracyclines, whereas the expression of lndYR in cells of S. peucetius subsp. caesius ATCC27952 suppresses the sporulation of the doxorubicin producer which may indicate the presence of their homologues in the genomes. The identification of these genes for the purpose of their further directed inactivation may be a successful tool for obtaining strains with an increased level of synthesis of clinically important compounds, as well as it can allow us to establish particular stages in the regulation of the secondary metabolism of anthracycline antibiotics.  相似文献   

7.
In Streptomyces peucetius var. caesius, the production of anthracyclines was suppressed either by 330 mM d-glucose or 25 mM phosphate. In addition, the anthracycline doxorubicin and the glucose analogue 2-deoxyglucose inhibited the growth of this microorganism at concentrations of 0.025 mM and 10 mM respectively. Spontaneous and induced mutants, resistant to the action of these compounds, were isolated, tested and chosen by their ability to overproduce anthracyclines. Genetic recombination between representative mutants was carried out by the protoplast fusion technique. Some recombinants carrying resistance to doxorubicin, phosphate and 2-deoxyglucose produced more than 40-fold greater levels of anthracyclines than those obtained with the parental strain. This improvement resulted in total antibiotic titres of more than 2 g/l culture medium at 6 days of fermentation. Received: 14 April 1997 / Received revision: 19 June 1997 / Accepted: 4 July 1997  相似文献   

8.
Streptomyces peucetius var. caesius, obtained from S. peucetius, the daunomycin producing microorganism, by mutagenic treatment, differs from the parent culture by the color of the vegetative and aerial mycelia and by its antibiotic producing ability. S. peucetius var. caesius accumulates adriamycin in submerged and aerated culture on a medium containing glucose, brewer's yeast, and inorganic salts both in shake flasks and in stirred fermenters. Isolation of the product is performed by solvent extraction, chromatography on buffered cellulose columns, and crystallization as the hydrochloride. The new antitumor agent, adriamycin, is the 14-hydroxy derivative of daunomycin.  相似文献   

9.
Abstract

Doxorubicin (DXR), which is produced by Streptomyces peucetius, is an important anthracycline-type antibiotic used for the treatment of various cancers. However, due to the low DXR productivity of wild-type S. peucetius, it is difficult to produce DXR by one-step fermentation. In this study, a DXR-resistance screening method was developed to screen for DXR high-producing mutants. Then, S. peucetius SIPI-11 was treated several times with UV and ARTP (atmospheric and room temperature plasma) to induce mutations. Treated strains were screened by spreading on a DXR-containing plate, isolating a mutant (S. peucetius 33-24) with enhanced DXR yield (570?mg/L vs. 119?mg/L for the original strain). The components of the fermentation medium, including the carbon and nitrogen sources, were optimized to further enhance DXR yield (to 850?mg/L). The pH of the fermentation medium and culture temperature were also optimized for effective DXR production. Finally, DXR production by S. peucetius 33-24 was investigated in flask culture and a fermenter. The yield of DXR was as high as 1100?mg/L in a 5-L fermenter, which is the highest DXR productivity reported thus far, suggesting that S. peucetius 33-24 has the potential to produce DXR by direct fermentation.  相似文献   

10.
11.
Streptomyces peucetius var. caesius is an aerobic bacterium that produces doxorubicin as a secondary metabolite. A mixture design was applied for the screening of suitable complex medium components in the cultivation of S. peucetius var. caesius N47, which is an -rhodomycinone-accumulating mutant strain. -Rhodomycinone is a non-glycosylated precursor of doxorubicin. Best growth results were obtained with soy peptone and beef extract. A central composite face-centered (CCF) experimental design was constructed for the investigation of pH, temperature and dissolved oxygen (DO) effects on the cultivation growth phase. Another CCF was applied to the production phase to investigate the effects of aeration, pH, temperature and stirring rate on -rhodomycinone production. An increase in cultivation temperature increased both cell growth and glucose consumption rate. Best -rhodomycinone productivities were obtained in temperatures around 30°C. DO control increased all growth phase responses, but aeration in the production phase coupled with pH decrease resulted in rapid -rhodomycinone decay in the medium. In non-aerated production phases a pH change resulted in better productivity than in experiments without pH change. A pH increase with a temperature decrease seemed most beneficial for productivity. This implies that dynamic control strategies in batch production of -rhodomycinone could increase the overall process productivity.  相似文献   

12.
The behavior of Streptomyces peucetius var. caesius N47 was studied in a glucose limited chemostat with a complex cultivation medium. The steady-state study yielded the characteristic constants μ max over 0.10 h−1, Y XS 0.536 g g−1, and mS 0.54 mg g−1 h−1. The product of secondary metabolism, ɛ-rhodomycinone, was produced with characteristics Y PX 12.99 mg g−1 and m P 1.20 mg g−1 h−1. Significant correlations were found for phosphate and glucose consumption with biomass and ɛ-rhodomycinone production. Metabolic flux analysis was conducted to estimate intracellular fluxes at different dilution rates. TCA, PPP, and shikimate pathway fluxes exhibited bigger values with production than with growth. Environmental perturbation experiments with temperature, airflow, and pH changes on a steady-state chemostat implied that an elevation of pH could be the most effective way to shift the cells from growing to producing, as the pH change induced the biggest transient increase to the calculated ɛ-rhodomycinone flux.  相似文献   

13.
The effect of glucose on growth and anthracycline production by Streptomyces peucetius var. caesius was examined in a chemically defined medium. Glucose concentrations above 100 mM inhibited anthracycline synthesis in the original strain without causing significant change in growth and final pH values. This effect was observed when the carbohydrate was added initially or after 24 h fermentation, but not when added during the stationary growth phase. When the microorganism was pregrown in 100 mM glucose and then transferred to a resting cell system with 444 mM glucose, no significant differences in antibiotic production were observed compared to the control without glucose. The negative effect of glucose on antibiotic synthesis was not observed in a mutant (2-dogR–21) resistant to growth inhibition by 2-deoxyglucose. Glucose consumption by this mutant was approximately 30% of that utilized by the original strain. Compared to the original strain, the mutant 2-dogR–21 exhibited a reduction of 50% in glucose transport and an 85% decrease in glucose kinase activity. The experimental evidence obtained suggests that glucose represses anthracycline formation in a transitory manner and that this effect is related to glucose transport and phosphorylation. Received: 15 January 1999 / Received revision: 7 April 1999 / Accepted: 1 May 1999  相似文献   

14.
15.
Thorough investigation of Streptomyces peucetius ATCC 27952 genome revealed a sesquiterpene synthase, named spterp13, which encodes a putative protein of 732 amino acids with significant similarity to S. avermitilis MA-4680 (SAV2163, GeoA) and S. coelicolor A3(2) (SCO6073). The proteins encoded by SAV2163 and SCO6073 produce geosmin in the respective strains. However, the spterp13 gene seemed to be silent in S. peucetius. Deletion of the doxorubicin gene cluster from S. peucetius resulted in increased cell growth rate along with detectable production of geosmin. When we over expressed the spterp13 gene in S. peucetius DM07 under the control of an ermE* promoter, 2.4 ± 0.4-fold enhanced production of geosmin was observed.  相似文献   

16.
Intergeneric conjugal transfer of plasmid DNA from Escherichia coli to Streptomyces circumvents problems such as host-controlled restriction and instability of foreign DNA during the transformation of Streptomyces protoplasts. The anthracycline antibiotic-producing strains Streptomyces peucetius and Streptomyces sp. strain C5 were transformed using E. coli ET12567(pUZ8002) as a conjugal donor. When this donor species, carrying pSET152, was mated with Streptomyces strains, the resident plasmid was mobilized to the recipient and the transferred DNA was also integrated into the recipient chromosome. Analysis of the exconjugants showed stable integration of the plasmid at a single chromosomal site (attB) of the Streptomyces genome. The DNA sequence of the chromosomal integration site was determined and shown to be conserved. However, the core sequence, where the crossover presumably occurred in C5 and S. peucetius, is TTC. These results also showed that the C31 integrative recombination is active and the phage attP site is functional in S. peucetius as well as in C5. The efficiency and specificity of C31-mediated site-specific integration of the plasmid in the presence of a 3.7-kb homologous DNA sequence indicates that integrative recombination is preferred under these conditions. The integration of plasmid DNA did not affect antibiotic biosynthesis or biosynthesis of essential amino acids. Integration of a single copy of a mutant chiC into the wild-type S. peucetius chromosome led to the production of 30-fold more chitinase.  相似文献   

17.
Morphological relationships were investigated among diploidStellaria porsildii, polyploidS. longipes, and diploidS. longifolia. Canonical discriminant analysis, based on a priori assumptions to maximize differences among groups, showed thatS. longipes clusters equally distant between the two diploid species along an axis connecting the diploids' centroids, but it differs along an axis perpendicular to this axis. The intermediacy along the former axis is evidence thatS. longipes is an amphiploid derived fromS. longifolia andS. porsildii. The divergence along the latter axis may be attributable to adaptively valuable heterotic traits which were retained following amphidiploidization. The only morphological discontinuity occurred between the two diploids, whereas the morphological range ofS. longipes overlapped the range of both diploids forming a continuum. The lack of discrete clusters is likely due to hybridization and introgression withS. longifolia on one hand, and convergence of traits betweenS. longipes var.monantha andS. porsildii on the other. High a posteriori assignments in classificatory discriminant analysis supports the separation ofS. longipes var.monantha from otherS. longipes specimens. AlthoughS. longipes var.monantha grouped close toS. porsildii, the two groups separate based on leaf shape traits. Overall results support, firstly, the hypothesis thatS. porsildii is a diploid parent species which by hybridizing withS. longifolia gave rise to polyploidS. longipes. Secondly, results suggest thatS. longipes var.monantha converged morphologically towardsS. porsildii relatively recently due to ecological specialization, and merits distinction at least as a variety ofS. longipes.  相似文献   

18.
Molecular variations of Spiranthes sinensis Ames var. australis (R.Br.) H. Hara et Kitam. ex Kitam. in Japan were examined to evaluate the validity of the seasonally differentiated groups and a dwarf form of the species, which is endemic to Yakushima Island, Japan. Sequence differences in the plastid trnL-F locus clearly distinguished Japanese S. sinensis var. australis from S. sinensis var. sinensis collected from Ryukyu. In contrast, the trnL-F sequence of S. sinensis var. australis from Sabah, Malaysia, clearly differed from that of Japanese S. sinensis var. australis, suggesting genetic heterogeneity of Spiranthes sinensis var. australis in Asia. Moreover, a molecular analysis based on the sequences of nuclear ITS1 regions indicated that there are two major groups of S. sinensis var. australis in Japan, with a geographic distribution boundary on Kyushu Island. However, the trnL-F and ITS1 sequences did not support the genetic differentiation of the seasonally differentiated groups or the dwarf form from the other Japanese individuals. Based on these molecular data, the systematic treatment of physiological and morphological variations in the Japanese population of S. sinensis. var. australis is discussed.  相似文献   

19.
Three new species of Swartzieae are described and illustrated:Swartzia alternifoliolata, S. capixabensis, andZollernia cowanii. Swartzia apetala var.blanchetii and var.subcordata are considered to be synonyms ofS. apetala var.apetala, andS. grazielana a synonym ofS. macrostachya var.macrostachya. Keys to southeastern Brazil members ofSwartzia andZollernia are provided.  相似文献   

20.
Daunorubicin and its derivative doxorubicin are antitumour anthracycline antibiotics produced byStreptomyces peucetius. In this study we report isolation of stable mutants ofS. peucetius blocked in different steps of the daunorubicin biosynthesis pathway. Mutants were screened on the basis of colony colour since producer strains are distinctively coloured on agar plates. Different mutants showed accumulation of aklaviketone, ε-rhodomycinone, maggiemycin or 13-dihydrocarminomycin in their culture filtrates. These results indicate that the mutations in these isolates affect steps catalysed bydnrE (mutants SPAK and SPMAG),dnrS (SPFS and SPRHO) anddoxA (SPDHC) gene products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号