首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Classic cadherins are calcium dependent homophilic cell adhesion molecules that play a key role in developmental processes such as morphogenesis, compartmentalization and maintenance of a tissue. They also play important roles in development and function of the nervous system. Although classic cadherins have been shown to be involved in the migration of non-neuronal cells, little is known about their role in neuronal migration. Here, we show that classic cadherins are essential for the migration of precerebellar neurons. In situ hybridization analysis shows that at least four classic cadherins, cadherin 6 (Cad6), cadherin 8 (Cad8), cadherin11 (Cad11) and N-cadherin (Ncad), are expressed in the migratory streams of lateral reticular nucleus and external cuneate nucleus (LRN/ECN) neurons. Functional analysis performed by electroporation of cadherin constructs into the hindbrain indicates requirement for cadherins in the migration of LRN/ECN neurons both in vitro and in vivo. While overexpression of full-length classic cadherins, NCAD and CAD11, has no effect on LRN/ECN neuron migration, overexpression of two dominant negative (DN) constructs, membrane-bound form and cytoplasmic form, slows it down. Introduction of a DN construct does not alter some characteristics of LRN/ECN cells as indicated by a molecular marker, TAG1, and their responsiveness to chemotropic activity of the floor plate (FP). These results suggest that classic cadherins contribute to contact-dependent mechanisms of precerebellar neuron migration probably via their adhesive property.  相似文献   

2.
Role of N-cadherin in bone formation   总被引:2,自引:0,他引:2  
Cell-cell adhesion mediated by cadherins is essential for the function of bone forming cells during osteogenesis. Here, the evidence that N-cadherin is an important regulator of osteoblast differentiation and osteogenesis is reviewed. Osteoblasts express a limited number of cadherins, including the classic N-cadherin. The expression profile of N-cadherin in osteoblasts during bone formation in vivo and in vitro suggests a role of this molecule in osteogenesis. Functional studies using neutralizing antibodies or antisense oligonucleotides indicate that N-cadherin is involved in the control the expression of osteoblast marker gene expression and differentiation. Cleavage of N-cadherin during osteoblast apoptosis also suggests a role of N-cadherin-mediated-cell-cell adhesion in osteoblast survival. Hormonal and local factors that regulate osteoblast function also regulate N-cadherin expression and subsequent cell-cell adhesion associated with osteoblast differentiation or survival. Signaling mechanisms involved in N-cadherin-mediated cell-cell adhesion and osteoblast gene expression have also been identified. Alterations of N-cadherin expression are associated with abnormal osteoblast differentiation and osteogenesis in pathological conditions. These findings indicate that N-cadherin plays a role in normal and pathological bone formation and provide some insight into the process involved in N-cadherin-mediated cell-cell adhesion and differentiation in osteoblasts.  相似文献   

3.
In the olfactory epithelium (OE), olfactory cells (OCs) and supporting cells (SCs), which express different cadherins, are arranged in a characteristic mosaic pattern in which OCs are enclosed by SCs. However, the mechanism underlying this cellular patterning is unclear. Here, we show that the cellular pattern of the OE is established by cellular rearrangements during development. In the OE, OCs express nectin-2 and N-cadherin, and SCs express nectin-2, nectin-3, E-cadherin, and N-cadherin. Heterophilic trans-interaction between nectin-2 on OCs and nectin-3 on SCs preferentially recruits cadherin via α-catenin to heterotypic junctions, and the differential distributions of cadherins between junctions promote cellular intercalations, resulting in the formation of the mosaic pattern. These observations are confirmed by model cell systems, and various cellular patterns are generated by the combinatorial expression of nectins and cadherins. Collectively, the synergistic action of nectins and cadherins generates mosaic pattern, which cannot be achieved by a single mechanism.  相似文献   

4.
Genetic dissection of cadherin function during nephrogenesis   总被引:5,自引:0,他引:5       下载免费PDF全文
The distinct expression of R-cadherin in the induced aggregating metanephric mesenchyme suggests that it may regulate the mesenchymal-epithelial transition during kidney development. To address whether R-cadherin is required for kidney ontogeny, R-cadherin-deficient mice were generated. These mice appeared to be healthy and were fertile, demonstrating that R-cadherin is not essential for embryogenesis. The only kidney phenotype of adult mutant animals was the appearance of dilated proximal tubules, which was associated with an accumulation of large intracellular vacuoles. Morphological analysis of nephrogenesis in R-cadherin(-/-) mice in vivo and in vitro revealed defects in the development of both ureteric bud-derived cells and metanephric mesenchyme-derived cells. First, the morphology and organization of the proximal parts of the ureteric bud epithelium were altered. Interestingly, these morphological changes correlated with an increased rate of apoptosis and were further supported by perturbed branching and patterning of the ureteric bud epithelium during in vitro differentiation. Second, during in vitro studies of mesenchymal-epithelial conversion, significantly fewer epithelial structures developed from R-cadherin(-/-) kidneys than from wild-type kidneys. These data suggest that R-cadherin is functionally involved in the differentiation of both mesenchymal and epithelial components during metanephric kidney development. Finally, to investigate whether the redundant expression of other classic cadherins expressed in the kidney could explain the rather mild kidney defects in R-cadherin-deficient mice, we intercrossed R-cadherin(-/-) mice with cadherin-6(-/-), P-cadherin(-/-), and N-cadherin(+/-) mice. Surprisingly, however, in none of the compound knockout strains was kidney development affected to a greater extent than within the individual cadherin knockout strains.  相似文献   

5.
Retinoic acid (RA) signaling is necessary for proper patterning and morphogenesis during embryonic development. Tissue-specific RA signaling requires precise spatial and temporal synthesis of RA from retinal by retinaldehyde dehydrogenases (Raldh) and the conversion of retinol to retinal by retinol dehydrogenases (Rdh) of the short-chain dehydrogenase/reducatase gene family (SDR). The SDR, retinol dehydrogenase 10 (RDH10), is a major contributor to retinal biosynthesis during mid-gestation. We have identified a missense mutation in the Rdh10 gene (Rdh10(m366Asp) ) using an N-ethyl-N-nitrosourea-induced forward genetic screen that result in reduced RA levels and signaling during embryonic development. Rdh10(m366Asp) mutant embryos have unique phenotypes, such as edema, a massive midline facial cleft, and neurogenesis defects in the forebrain, that will allow the identification of novel RA functions.  相似文献   

6.
Adhesive subdivisions intrinsic to the epithelial somites.   总被引:6,自引:0,他引:6  
Developing somites express two subtypes of classic cadherin adhesion receptors, N-cadherin and cadherin-11 (cad11). To investigate the role of these adhesion molecules in somite morphogenesis, we analyzed the somites of mice whose N-cadherin and cad11 genes were disrupted. The epithelial somites of N-cadherin null mutant mice were fragmented as reported, whereas those of cad11(-/-) mice showed no structural anomaly. In mice double homozygous for N-cadherin and cad11 mutation, however, somites were further fragmented into smaller clusters than in the N-cadherin-deficient mice, suggesting that these two cadherins cooperate in the maintenance of epithelial somites. Despite the disorganization of epithelial structures, dorsoventral polarity markers were expressed in their correct patterns in all of these mutant somites. Uncx4.1, whose expression is localized only in the caudal region of each somite, was also expressed in a normal pattern in the mutant somites. However, the staining for Uncx4.1 revealed that, in the N-cadherin mutants, each somite tended to be cleaved at the border between the Uncx4. 1-positive and -negative regions and that the cleaved subunits maintained the clustered state, often exhibiting epithelioid morphology. This separation of the rostral and caudal regions was observed as soon as the epithelial somites had been formed. In the N-cadherin/cad11 double-homozygous mutants, this tendency was also observed, although each half of the somite further disintegrated into randomly arranged cell clusters. These results suggest that cells of the rostral and caudal regions of each epithelial somite have an activity to aggregate independently or separate from one another and that one role of N-cadherin and cad11 is to connect the two halves into a single unit.  相似文献   

7.
Regulation of embryonic cell adhesion by the cadherin cytoplasmic domain.   总被引:49,自引:0,他引:49  
C Kintner 《Cell》1992,69(2):225-236
Differential adhesion between embryonic cells has been proposed to be mediated by a family of closely related glycoproteins called the cadherins. The cadherins mediate adhesion in part through an interaction between the cadherin cytoplasmic domain and intracellular proteins, called the catenins. To determine whether these interactions could regulate cadherin function in embryos, a form of N-cadherin was generated that lacks an extracellular domain. Expression of this mutant in Xenopus embryos causes a dramatic inhibition of cell adhesion. Analysis of the mutant phenotype shows that at least two regions of the N-cadherin cytoplasmic domain can inhibit adhesion and that the mutant cadherin can inhibit catenin binding to E-cadherin. These results suggest that cadherin-mediated adhesion can be regulated by cytoplasmic interactions and that this regulation may contribute to morphogenesis when emerging tissues coexpress several cadherin types.  相似文献   

8.
Endothelial cells express two classical cadherins, VE-cadherin and N-cadherin. VE-cadherin is absolutely required for vascular morphogenesis, but N-cadherin is thought to participate in vessel stabilization by interacting with periendothelial cells during vessel formation. However, recent data suggest a more critical role for N-cadherin in endothelium that would regulate angiogenesis, in part by controlling VE-cadherin expression. In this study, we have assessed N-cadherin function in vascular development using an in vitro model derived from embryonic stem (ES) cell differentiation. We show that pluripotent ES cells genetically null for N-cadherin can differentiate normally into endothelial cells. In addition, sprouting angiogenesis was unaltered, suggesting that N-cadherin is not essential for the early events of angiogenesis. However, the lack of N-cadherin led to an impairment in pericyte covering of endothelial outgrowths. We conclude that N-cadherin is necessary neither for vasculogenesis nor proliferation and migration of endothelial cells but is required for the subsequent maturation of endothelial sprouts by interacting with pericytes.  相似文献   

9.
Cadherins are a superfamily of Ca(2+)-dependent adhesion molecules found in metazoans. Several classes of cadherins have been defined from which two - classic cadherins and Fat-like cadherins - have been studied by genetic approaches. Recent in vivo studies in Caenorhabditis elegans and Drosophila show that cadherins play an active role in a number of distinct morphogenetic processes. Classic cadherins function in epithelial polarization, epithelial sheet or tube fusion, cell migration, cell sorting, and axonal patterning. Fat-like cadherins are required for epithelial morphogenesis, proliferation control, and epithelial planar polarization.  相似文献   

10.
E- and N-cadherin are members of a family of calcium-dependent, cell surface glycoproteins involved in cell-cell adhesion. Extracellularly, the transmembrane cadherins self-associate, while, intracellularly, they interact with the actin-based cytoskeleton. Several intracellular proteins, collectively termed catenins, have been noted to co-immunoprecipitate with E- and N-cadherin and are thought to be involved in linking the cadherins to the cytoskeleton. Two catenins have been identified recently: a 102-kD vinculin-like protein (alpha-catenin) and a 92-kD Drosophila armadillo/plakoglobin-like protein (beta-catenin). Here, we show that plakoglobin, or an 83-kD plakoglobin-like protein, co-immunoprecipitates and colocalizes with both E- and N-cadherin. The 83-kD protein is immunologically distinct from the 92-kD beta-catenin and, because of its molecular mass, likely represents the cadherin-associated protein called gamma-catenin. Thus, two different members of a plakoglobin family associate with N- and E-cadherin and, together with the 102-kD alpha-catenin, appear to participate in linking the cadherins to the actin-based cytoskeleton.  相似文献   

11.
The expression patterns of the seven members of the ADAM (a disintegrin and metalloprotease) family, ADAM9, ADAM10, ADAM12, ADAM13, ADAM17, ADAM22, and ADAM23 were analyzed in the developing chicken retina by in situ hybridization and immunohistochemistry. Results show that each individual ADAM is expressed and regulated spatiotemporally in the developing retinal layers. ADAM9, ADAM10 and ADAM17 are widely expressed in the differential layers of the retina throughout the whole embryonic period, while ADAM12 and ADAM13 are mainly expressed in the ganglion cell layer at a later stage. ADAM22 and ADAM23 are restricted to the inner nuclear layer and the ganglion cell layer at a later stage. Furthermore, ADAM10 protein is co-expressed with the four members of the classic cadherins, N-cadherin, R-cadherin, cadherin-6B and cadherin-7 in distinct retinal layers. Therefore, the differential expression of the investigated ADAMs in the developing retina suggests the contribution of them to the retina development.  相似文献   

12.
Cell migration is a process which is essential during embryonic development, throughout adult life and in some pathological conditions. Cadherins, and more specifically the neural cell adhesion molecule N-cadherin, play an important role in migration. In embryogenesis, N-cadherin is the key molecule during gastrulation and neural crest development. N-cadherin mediated contacts activate several pathways like Rho GTPases and function in tyrosine kinase signalling (for example via the fibroblast growth factor receptor). In cancer, cadherins control the balance between suppression and promotion of invasion. E-cadherin functions as an invasion suppressor and is downregulated in most carcinomas, while N-cadherin, as an invasion promoter, is frequently upregulated. Expression of N-cadherin in epithelial cells induces changes in morphology to a fibroblastic phenotype, rendering the cells more motile and invasive. However in some cancers, like osteosarcoma, N-cadherin may behave as a tumour suppressor. N-cadherin can have multiple functions: promoting adhesion or induction of migration dependent on the cellular context.  相似文献   

13.
The two major cadherins of endothelial cells are neural (N)-cadherin and vascular endothelial (VE)- cadherin. Despite similar level of protein expression only VE-cadherin is located at cell–cell contacts, whereas N-cadherin is distributed over the whole cell membrane. Cotransfection of VE-cadherin and N-cadherin in CHO cells resulted in the same distribution as that observed in endothelial cells indicating that the behavior of the two cadherins was not cell specific but related to their structural characteristics. Similar amounts of α- and β-catenins and plakoglobin were associated to VE- and N-cadherins, whereas p120 was higher in the VE-cadherin complex. The presence of VE-cadherin did not affect N-cadherin homotypic adhesive properties or its capacity to localize at junctions when cotransfectants were cocultured with cells transfected with N-cadherin only. To define the molecular domain responsible for the VE-cadherin–dominant activity we prepared a chimeric construct formed by VE-cadherin extracellular region linked to N-cadherin intracellular domain. The chimera lost the capacity to exclude N-cadherin from junctions indicating that the extracellular domain of VE-cadherin alone is not sufficient for the preferential localization of the molecule at the junctions. A truncated mutant of VE-cadherin retaining the full extracellular domain and a short cytoplasmic tail (Arg621–Pro702) lacking the catenin-binding region was able to exclude N-cadherin from junctions. This indicates that the Arg621–Pro702 sequence in the VE-cadherin cytoplasmic tail is required for N-cadherin exclusion from junctions. Competition between cadherins for their clustering at intercellular junctions in the same cell has never been described before. We speculate that, in the endothelium, VE- and N-cadherin play different roles; whereas VE-cadherin mostly promotes the homotypic interaction between endothelial cells, N-cadherin may be responsible for the anchorage of the endothelium to other surrounding cell types expressing N-cadherin such as vascular smooth muscle cells or pericytes.  相似文献   

14.
Endothelial cells express two classic cadherins, VE-cadherin and N-cadherin. The importance of VE-cadherin in vascular development is well known; however, the function of N-cadherin in endothelial cells remains poorly understood. Contrary to previous studies, we found that N-cadherin localizes to endothelial cell-cell junctions in addition to its well-known diffusive membrane expression. To investigate the role of N-cadherin in vascular development, N-cadherin was specifically deleted from endothelial cells in mice. Loss of N-cadherin in endothelial cells results in embryonic lethality at mid-gestation due to severe vascular defects. Intriguingly, loss of N-cadherin caused a significant decrease in VE-cadherin and its cytoplasmic binding partner, p120ctn. The down-regulation of both VE-cadherin and p120ctn was confirmed in cultured endothelial cells using small interfering RNA to knockdown N-cadherin. We also show that N-cadherin is important for endothelial cell proliferation and motility. These findings provide a novel paradigm by which N-cadherin regulates angiogenesis, in part, by controlling VE-cadherin expression at the cell membrane.  相似文献   

15.
Cell-cell adhesion mediated by cadherins is believed to play an essential role in the control of cell differentiation and tissue formation. Our recent studies indicate that N-cadherin is involved in human osteoblast differentiation. However, the signalling molecules that regulate cadherins in osteoblasts are not known. We tested the possibility that N-cadherin expression and function may be regulated by direct activation of protein kinase C (PKC) in human osteoblasts. Treatment of immortalized human neonatal calvaria (IHNC) cells with phorbol 12,13-dibutyrate (100 nM) transiently increased PKC activity. RT-PCR analysis showed that transient treatment with phorbol ester transiently increased N-cadherin mRNA levels at 4-12 h. Western blot analysis showed that N-cadherin protein levels were increased by phorbol ester at 24-48 h, and this was confirmed by immunocytochemical analysis. In contrast, E-cadherin expression was not affected. Transient treatment of IHNC cells with phorbol ester increased cell-cell aggregation, which was suppressed by neutralizing N-cadherin antibody, showing that the increased N-cadherin induced by phorbol ester was functional. Finally, phorbol ester dose-dependently increased alkaline phosphatase activity, an early marker of osteoblast differentiation. This effect was comparable to the promoting effect of BMP-2, a potent activator of osteoblast differentiation. These data show that direct activation of PKC by phorbol ester increases N-cadherin expression and function, and promotes ALP activity in human calvaria osteoblasts, which provides a signaling mechanism by which N-cadherin is regulated and suggests a role for PKC in N-cadherin-mediated control of human osteoblast differentiation.  相似文献   

16.
Ectopic expression of N-cadherin perturbs histogenesis in Xenopus embryos   总被引:8,自引:0,他引:8  
Xenopus embryos express N-cadherin in a pattern similar to that observed in other species, and cells expressing Xenopus N-cadherin can bind to cells expressing chicken N-cadherin in vitro. To investigate the developmental role of this molecule, we injected mRNA encoding chicken N-cadherin into one blastomere of 2-cell-stage Xenopus embryos and examined the effect of its expression on their development. The ectopic expression of N-cadherin occurred in various regions of the injected embryos and induced abnormal histogenesis, such as thickening, clumping or fusion of cell layers. These results suggest that the precise quantitative and qualitative regulation of the expression of cadherins is essential to embryonic morphogenesis.  相似文献   

17.
In spite of structural similarities Epithelial- (E-) and Neural- (N-) cadherins are expressed at two types of synapses and differ significantly in dimer disassembly kinetics. Recent studies suggested that the formation of an X-dimer intermediate in E-cadherin is the key requirement for rapid disassembly of the adhesive dimer (Harrison et al., Nat Struct Mol Biol 2010;17:348-357 and Hong et al., J Cell Biol 2011;192:1073-1083). The X-interface in E-cadherin involves three noncovalent interactions, none of which is conserved in N-cadherin. Dimer disassembly is slow at low calcium concentration in N-cadherin, which may be due to the differences in the X-interface residues. To investigate the origin of the slow disassembly kinetics we introduced three point mutations into N-cadherin to provide the opportunity for the formation of X-interface interactions. Spectroscopic studies showed that the triple mutation did not affect the stability or the calcium-binding affinity of the X-enabled N-cadherin mutant. Analytical size exclusion chromatography was used to assay for the effect of the mutation on the rate of dimer disassembly. Contrary to our expectation, the disassembly of dimers of the X-enabled N-cadherin mutant was as slow as seen for wild-type N-cadherin in the apo-state. Thus, the differences in the X-interface residues are not the origin of slow disassembly kinetics of N-cadherin in the apo-state.  相似文献   

18.
E-cadherin has been termed an "invasion suppressor," yet the mechanism of this suppression is not known. In contrast, several reports indicate N-cadherin does not suppress but, rather, promotes cell motility and invasion. Here, by characterizing a series of chimeric cadherins we defined a previously uncharacterized region consisting of the transmembrane domain and an adjacent portion of the cytoplasmic segment that is responsible for the difference in ability of E- and N-cadherin to suppress movement of mammary carcinoma cells, as quantified from time-lapse video recordings. A mutation in this region enabled N-cadherin to suppress motility, indicating that both E- and N-cadherin can suppress, but the activity of N-cadherin is latent, presumably repressed by binding of a specific inhibitor. To define regions common to E- and N-cadherin that are required for suppression, we analyzed a series of deletion mutants. We found that suppression of movement requires E-cadherin amino acids 699-710. Strikingly, beta-catenin binding is not sufficient for and p120ctn is not involved in suppression of these mammary carcinoma cells. Furthermore, the comparable region of N-cadherin can substitute for this required region in E-cadherin and is required for suppression by the mutant form of N-cadherin that is capable of suppressing. Variations in expression of factors that bind to the two regions we have identified may explain previously observed differences in response of tumor cells to cadherins.  相似文献   

19.
N-cadherin regulates target specificity in the Drosophila visual system   总被引:6,自引:0,他引:6  
Lee CH  Herman T  Clandinin TR  Lee R  Zipursky SL 《Neuron》2001,30(2):437-450
Using visual behavioral screens in Drosophila, we identified multiple alleles of N-cadherin. Removal of N-cadherin selectively from photoreceptor neurons (R cells) causes deficits in specific visual behaviors that correlate with disruptions in R cell connectivity. These defects include disruptions in the pattern of neuronal connections made by all three classes of R cells (R1-R6, R7, and R8). N-cadherin is expressed in both R cell axons and their targets. By inducing mitotic recombination in a subclass of eye progenitors, we generated mutant R7 axons surrounded by largely wild-type R cell axons and a wild-type target. R7 axons lacking N-cadherin mistarget to the R8 recipient layer. We consider the implications of these findings in the context of the proposed role for cadherins in target specificity.  相似文献   

20.
cDNAs encoding a novel member of the cadherin cell adhesion receptor family were cloned. This cadherin is expressed in the retina of the chicken and is termed R-cadherin. It is similar to other cadherins in its primary structure, but most resembles N-cadherin, showing 74% amino acid identity. Cells expressing R-cadherin can adhere to those expressing N-cadherin when mixed, but they form homotypic clusters within their chimeric aggregates. In the development of the neural retina, R-cadherin begins to be expressed around embryonic day 8 in both neuronal and glial cells, and this expression continues up to the hatching stage. The pattern of the expression of R-cadherin was different from that of N-cadherin, suggesting distinctive roles in retinal morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号