首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Francisella tularensis causes the zoonosis tularemia in humans and is one of the most virulent bacterial pathogens. We utilized a global proteomic approach to characterize protein changes in bronchoalveolar lavage fluid from mice exposed to one of three organisms, F. tularensis ssp. novicida, an avirulent mutant of F. tularensis ssp. novicida (F.t. novicida-ΔmglA), and Pseudomonas aeruginosa. The composition of bronchoalveolar lavage fluid (BALF) proteins was altered following infection, including proteins involved in neutrophil activation, oxidative stress, and inflammatory responses. Components of the innate immune response were induced including the acute phase response and the complement system; however, the timing of their induction varied. F. tularensis ssp. novicida infected mice do not appear to have an effective innate immune response in the first hours of infection; however, within 24 h, they show an upregulation of innate immune response proteins. This delayed response is in contrast to P. aeruginosa infected animals which show an early innate immune response. Likewise, F.t. novicida-ΔmglA infection initiates an early innate immune response; however, this response is diminished by 24 h. Finally, this study identifies several candidate biomarkers, including Chitinase 3-like-1 (CHI3L1 or YKL-40) and peroxiredoxin 1, that are associated with F. tularensis ssp. novicida but not P. aeruginosa infection.  相似文献   

2.
Francisella novicida is a facultative intracellular pathogen capable of growing in macrophages. A spontaneous mutant of F. novicida defective for growth in macrophages was isolated on LB media containing the chromogenic phosphatase substrate 5-bromo-4-chloro-3-indolyl phosphate (X-p) and designated GB2. Using an in cis complementation strategy, four strains were isolated that are restored for growth in macrophages. A locus isolated from one of these strains complements GB2 for both the intracellular growth defect and the colony morphology on LB (X-p) media. The locus consists of an apparent operon of two genes, designated mglAB , for macrophage growth locus. Both mglA and mglB transposon insertion mutants are defective for intracellular growth and have a phenotype similar to GB2 on LB (X-p) media. Sequencing of mglA cloned from GB2 identified a missense mutation, providing evidence that both mglA and mglB are required for the intramacrophage growth of F. novicida. mglB expression in GB2 was confirmed using antiserum against recombinant MglB. Cell fractionation studies revealed several differences in the protein profiles of mgl mutants compared with wild-type F. novicida . The deduced amino acid sequences of mglA and mglB show similarity to the SspA and SspB proteins of Escherichia coli and Haemophilus spp. In E. coli , SspA and/or SspB influence the levels of multiple proteins under conditions of nutritional stress, and SspA can associate with the RNA polymerase holoenzyme. Taken together, these observations suggest that in Francisella MglA and MglB may affect the expression of genes whose products contribute to survival and growth within macrophages.  相似文献   

3.
4.
5.
The Francisella tularensis subsp. novicida-containing phagosome (FCP) matures into a late endosome-like stage that acquires the late endosomal marker LAMP-2 but does not fuse to lysosomes, for the first few hours after bacterial entry. This modulation in phagosome biogenesis is followed by disruption of the phagosome and bacterial escape into the cytoplasm where they replicate. Here we examined the role of the Francisella pathogenicity island (FPI) protein IglC and its regulator MglA in the intracellular fate of F. tularensis subsp. novicida within human macrophages. We show that F. tularensis mglA and iglC mutant strains are defective for survival and replication within U937 macrophages and human monocyte-derived macrophages (hMDMs). The defect in intracellular replication of both mutants is associated with a defect in disruption of the phagosome and failure to escape into the cytoplasm. Approximately, 80-90% of the mglA and iglC mutants containing phagosomes acquire the late endosomal/lysosomal marker LAMP-2 similar to the wild-type (WT) strain. Phagosomes harbouring the mglA or iglC mutants acquire the lysosomal enzyme Cathepsin D, which is excluded from the phagosomes harbouring the WT strain. In hMDMs in which the lysosomes are preloaded with BSA-gold or Texas Red Ovalbumin, phagosomes harbouring the mglA or the iglC mutants acquire both lysosomal tracers. We conclude that the FPI protein IglC and its regulator MglA are essential for modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm. Therefore, acquisition of the FPI, within which iglC is contained, is essential for the pathogenic evolution of F. tularensis to evade lysosomal fusion within human macrophages and cause tularemia. This is the first example of specific virulence factors of F. tularensis that are essential for evasion of fusion of the FCP to lysosomes.  相似文献   

6.
Francisella tularensis is the causative agent of tularemia and is a category A select agent. Francisella novicida, considered by some to be one of four subspecies of F. tularensis, is used as a model in pathogenesis studies because it causes a disease similar to tularemia in rodents but is not harmful to humans. F. novicida exhibits a strong restriction barrier which reduces the transformation frequency of foreign DNA up to 10(6)-fold. To identify the genetic basis of this barrier, we carried out a mutational analysis of restriction genes identified in the F. novicida genome. Strains carrying combinations of insertion mutations in eight candidate loci were created and assayed for reduced restriction of unmodified plasmid DNA introduced by transformation. Restriction was reduced by mutations in four genes, corresponding to two type I, one type II, and one type III restriction system. Restriction was almost fully eliminated in a strain in which all four genes were inactive. The strongest contributor to the restriction barrier, the type II gene, encodes an enzyme which specifically cleaves Dam-methylated DNA. Genome comparisons show that most restriction genes in the F. tularensis subspecies are pseudogenes, explaining the unusually strong restriction barrier in F. novicida and suggesting that restriction was lost during evolution of the human pathogenic subspecies. As part of this study, procedures were developed to introduce unmodified plasmid DNA into F. novicida efficiently, to generate defined multiple mutants, and to produce chromosomal deletions of multiple adjacent genes.  相似文献   

7.
To further understand the role of LPS in the pathogenesis of Francisella infection, we characterized murine infection with F. novicida, and compared immunobiological activities of F. novicida LPS and the LPS from F. tularensis live vaccine strain (LVS). F. novicida had a lower intradermal LD(50) in BALB/cByJ mice than F. tularensis LVS, and mice given a lethal F. novicida dose intraperitoneally died faster than those given the same lethal F. tularensis LVS dose. However, the pattern of in vivo dissemination was similar, and in vitro growth of both bacteria in bone marrow-derived macrophages was comparable. F. novicida LPS stimulated very modest in vitro proliferation of mouse splenocytes at high doses, but F. tularensis LVS LPS did not. Murine bone marrow macrophages treated in vitro with F. novicida LPS produced IL12 and TNF-alpha, but did not produce detectable interferon-gamma, IL10, or nitric oxide; in contrast, murine macrophages treated with F. tularensis LVS LPS produced none of these mediators. In contrast to clear differences in stimulation of proliferation and especially cytokines, both types of purified LPS stimulated early protection against lethal challenge of mice with F. tularensis LVS, but not against lethal challenge with F. novicida. Thus, although LPS recognition may not be a major factor in engendering protection, the ability of F. novicida LPS to stimulate the production of proinflammatory cytokines including TNF-alpha likely contributes to the increased virulence for mice of F. novicida compared to F. tularensis LVS.  相似文献   

8.
Francisella novicida (U112), a close relative of the highly virulent bacterium F. tularensis, is known to produce a lipopolysaccharide that is significantly different in biological properties from the LPS of F. tularensis. Here we present the results of the structural analysis of the F. novicida LPS core part, which is found to be similar to that of F. tularensis, differing only by one additional alpha-Glc residue:where R is an O-chain, linked via a beta-bacillosamine (2,4-diamino-2,4,6-trideoxyglucose) residue. The lipid part of F. novicida LPS contains no phosphate substituent and apparently has a free reducing end, a feature also noted in F. tularensis LPS.  相似文献   

9.
Taurine: new implications for an old amino acid   总被引:2,自引:0,他引:2  
We describe here a technique for allelic exchange in Francisella tularensis subsp. novicida utilizing polymerase chain reaction (PCR) products. Linear PCR fragments containing gene deletions with an erythromycin resistance cassette insertion were transformed into F. tularensis. The subsequent ErmR progeny were found to have undergone allelic exchange at the correct location in the genome; the minimum flanking homology necessary was 500 bp. This technique was used to create mglA, iglC, bla, and tul4 mutants in F. tularensis subsp. novicida strains. The mglA and iglC mutants were defective for intramacrophage growth, and the tul4 mutant lacked detectable Tul4 by Western immunoblot, as expected. Interestingly, the bla mutant maintained resistance to ampicillin, indicating the presence of multiple ampicillin resistance genes in F. tularensis.  相似文献   

10.
11.
The Gram-negative bacterium Francisella novicida infects primarily monocytes/macrophages and is highly virulent in mice. Macrophages respond by producing inflammatory cytokines that confer immunity against the infection. However, the molecular details of host cell response to Francisella infection are poorly understood. In this study, we demonstrate that F. novicida infection of murine macrophages induces the activation of Akt. Inhibition of Akt significantly decreases proinflammatory cytokine production in infected macrophages, whereas production of the anti-inflammatory cytokine IL-10 is enhanced. Analysis of the mechanism of Akt influence on cytokine response demonstrated that Akt promotes NF-kappaB activation. We have extended these findings to show that Akt activation may be regulated by bacterial genes associated with phagosomal escape. Infection with mglA mutants of F. novicida elicited sustained activation of Akt in comparison to cells infected with wild-type F. novicida. Concomitantly, there was significantly higher proinflammatory cytokine production and lower IL-10 production in cells infected with the mglA mutant. Finally, transgenic animals expressing constitutively active Akt displayed a survival advantage over their wild-type littermates when challenged with lethal doses of F. novicida. Together, these observations indicate that Akt promotes proinflammatory cytokine production by F. novicida-infected macrophages through its influence on NF-kappaB, thereby contributing to immunity against F. novicida infection.  相似文献   

12.
Liu J  Zogaj X  Barker JR  Klose KE 《BioTechniques》2007,43(4):487-90, 492
Francisella tularensis is one of the most deadly bacterial agents, yet most of the genetic determinants of pathogenesis are still unknown. We have developed an efficient targeted mutagenesis strategy in the model organism F. tularensis subsp. novicida by utilizing universal priming of optimized antibiotic resistance cassettes and splicing by overlap extension (SOE). This process enables fast and efficient construction of targeted insertion mutations in F. tularensis subsp. novicida that have characteristics of nonpolar mutations; optimized targeted mutagenesis strategies will promote the study of this mysterious bacterium and facilitate vaccine development against tularemia. Moreover the general strategy of gene disruption by PCR-based antibiotic resistance cassette insertion is broadly applicable to many bacterial species.  相似文献   

13.
Francisella novicida (U112), a close relative of the highly virulent bacterium F. tularensis, was shown to produce a lipopolysaccharide in which the antigenic O-polysaccharide component was found by chemical, 1H and 13C NMR and MS analyses to be an unbranched neutral linear polymer of a repeating tetrasaccharide unit composed of 2-acetamido-2-deoxy-D-galacturonamide (D-GalNAcAN) and 2,4-diacetamido-2,4,6-trideoxy-D-glucose (D-Qui2NAc4NAc, di-N-acetylbacillosamine) residues (3:1) and had the structure: -->4)-alpha-D-GalNAcAN-(1-->4)-alpha-D-GalNAcAN-(1-->4)-alpha-D-GalNAcAN-(1-->3)-alpha-D-QuiNAc4NAc-(1-->. With polyclonal murine antibody, the F. novicida O-antigen did not show serological cross-reactivity with the O-antigen of F. tularensis despite the occurrence of a common -->4)-D-GalpNAcAN-(1-->4)-alpha-D-GalpNAcAN-(1--> disaccharide unit in their respective O-antigens. Thus, O-PS serology offers a practical way to distinguish between the two Francisella species.  相似文献   

14.
15.
Lipopolysaccharide (LPS) antigenic epitopes of natural virulent and isogenic avirulent Francisella tularensis strains and other species of the Francisella genus (F. novicida, F. novicida-like, and F. philomiragia) were studied by dot and immunoblotting. Polyclonal rabbit and human sera to virulent F. tularensis strains and monoclonal antibodies to F. tularensis LPS O-side chain were used for detecting species- and genus-specific LPS epitopes. Typical virulent F. tularensis strains produce two types of S-LPS with different antigenic specificity simultaneously. Antigenic determinants of two LPS types were located in LPS O-polysaccharide but not in the core oligosaccharide. The epitopes of the first LPS type were characterized by species specificity for F. tularensis in contrast to determinants of the second LPS type, which had epitopes common with F. novicida. Cross exhaustion of human and rabbit antitularemic sera by F. tularensis and F. novicida LPS showed that F. novicida LPS molecules contained at least two epitopes--highly specific for F. novicida and common with the second type of F. tularensis LPS. The immune response of rabbits and humans to F. tularensis LPS epitopes was different in principle. Sera from rabbits immunized with vaccine and virulent F. tularensis strains contained antibodies "recognizing" antigenic epitopes of two S-LPS forms of the bacterium: type 1 species-specific (in high titers) and type 2 epitopes common with F. novicida LPS (in low titers). In addition to these, sera from patients with tularemia contain immunoglobulins to species-specific epitopes of F. novicida LPS in high titers. Experiments on avirulent mutants showed that in some cases attenuation of F. tularensis can involve loss of species-specific LPS form, while S-LPS with epitopes common with F. novicida LPS will be retained. The difference in specificity of human and rabbit antitularemic antibodies is due to individual features in the host immune system.  相似文献   

16.
We have previously demonstrated the protective efficacy of intranasal vaccination with a defined Francisella tularensis subsp. novicida DeltaiglC mutant (KKF24) against pulmonary F. novicida U112 challenge. In this study, we further characterized the mechanisms of KKF24-induced immunity. Intranasally vaccinated KKF24 C57BL/6 major histocompatibility class (MHC) class II-/- mice produced minimal antigen-specific interferon (IFN)-gamma and serum antibodies and were highly susceptible (0% survival) to F. novicida challenge, compared to MHC class I-/- or wild-type mice (both 100% survival). Protective immunity could be transferred by immune serum into recipient wild type, but not IFN-gamma-/- mice. The protective effect of KKF24 vaccination against the respiratory F. novicida U112 challenge was not abrogated by anti-CD4 neutralizing antibody treatment and was not conferred by adoptive transfer of KKF24-specific CD4+ T cells. The protective effect of antibody was partially dependent upon Fc receptor-mediated clearance. Taken together, our data indicate that CD4+ T cells are required for priming, but not during the effector phase, of anti-KKF24 antibody-mediated IFN-gamma-dependent immunity against pulmonary F. novicida infection.  相似文献   

17.
Francisella tularensis and related intracellular pathogens synthesize lipid A molecules that differ from their Escherichia coli counterparts. Although a functional orthologue of lpxK, the gene encoding the lipid A 4'-kinase, is present in Francisella, no 4'-phosphate moiety is attached to Francisella lipid A. We now demonstrate that a membrane-bound phosphatase present in Francisella novicida U112 selectively removes the 4'-phosphate residue from tetra- and pentaacylated lipid A molecules. A clone that expresses the F. novicida 4'-phosphatase was identified by assaying lysates of E. coli colonies, harboring members of an F. novicida genomic DNA library, for 4'-phosphatase activity. Sequencing of a 2.5-kb F. novicida DNA insert from an active clone located the structural gene for the 4'-phosphatase, designated lpxF. It encodes a protein of 222 amino acid residues with six predicted membrane-spanning segments. Rhizobium leguminosarum and Rhizobium etli contain functional lpxF orthologues, consistent with their lipid A structures. When F. novicida LpxF is expressed in an E. coli LpxM mutant, a strain that synthesizes pentaacylated lipid A, over 90% of the lipid A molecules are dephosphorylated at the 4'-position. Expression of LpxF in wild-type E. coli has no effect, because wild-type hexaacylated lipid A is not a substrate. However, newly synthesized lipid A is not dephosphorylated in LpxM mutants by LpxF when the MsbA flippase is inactivated, indicating that LpxF faces the outer surface of the inner membrane. The availability of the lpxF gene will facilitate re-engineering lipid A structures in diverse bacteria.  相似文献   

18.
Wang X  Ribeiro AA  Guan Z  McGrath SC  Cotter RJ  Raetz CR 《Biochemistry》2006,45(48):14427-14440
Francisella tularensis subsp. novicida U112 phospholipids, extracted without hydrolysis, consist mainly of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, and two lipid A species, designated A1 and A2. These lipid A species, present in a ratio of 7:1, comprise 15% of the total phospholipids, as judged by 32Pi labeling. Although lipopolysaccharide is detectable in F. tularensis subsp. novicida U112, less than 5% of the total lipid A is covalently linked to it. A1 and A2 were analyzed by electrospray ionization and matrix-assisted laser desorption ionization mass spectrometry, gas chromatography/mass spectrometry, and NMR spectroscopy. Both compounds are disaccharides of glucosamine, acylated with primary 3-hydroxystearoyl chains at positions 2, 3, and 2' and a secondary palmitoyl residue at position 2'. Minor isobaric species and some lipid A molecules containing a 3-hydroxypalmitoyl chain in place of 3-hydroxystearate are also present. The 4'- and 3'-positions of A1 and A2 are not derivatized, and 3-deoxy-d-manno-octulosonic acid (Kdo) is not detectable. The 1-phosphate groups of both A1 and A2 are modified with an alpha-linked galactosamine residue, as shown by NMR spectroscopy and gas chromatography/mass spectrometry. An alpha-linked glucose moiety is attached to the 6'-position of A2. The lipid A released by mild acid hydrolysis of F. tularensis subsp. novicida lipopolysaccharide consists solely of component A1. F. tularensis subsp. novicida mutants lacking the arnT gene do not contain a galactosamine residue on their lipid A. Formation of free lipid A in F. tularensis subsp. novicida might be initiated by an unusual Kdo hydrolase present in the membranes of this organism.  相似文献   

19.
20.

Background

Autophagy has been shown recently to play an important role in the intracellular survival of several pathogenic bacteria. In this study, we investigated the effect of a novel small-molecule autophagy-inducing agent, AR-12, on the survival of Francisella tularensis, the causative bacterium of tularemia in humans and a potential bioterrorism agent, in macrophages.

Methods and results

Our results show that AR-12 induces autophagy in THP-1 macrophages, as indicated by increased autophagosome formation, and potently inhibits the intracellular survival of F. tularensis (type A strain, Schu S4) and F. novicida in macrophages in association with increased bacterial co-localization with autophagosomes. The effect of AR-12 on intracellular F. novicida was fully reversed in the presence of the autophagy inhibitor, 3-methyl adenine or the lysosome inhibitor, chloroquine. Intracellular F. novicida were not susceptible to the inhibitory activity of AR-12 added at 12 h post-infection in THP-1 macrophages, and this lack of susceptibility was independent of the intracellular location of bacteria.

Conclusion

Together, AR-12 represents a proof-of-principle that intracellular F. tularensis can be eradicated by small-molecule agents that target innate immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号