首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During initial exposure to 40 nanomolar propargylglycine (PAG), Lemna paucicostata colonies undergo abnormal fragmentation and a lag in frond emergence, most severe at 24 to 48 hours. Thereafter, frond emergence resumes and the frond/colony ratio rises. Such `adapted' plants withstand subculture into the same concentration of PAG without fragmentation or decreases in frond emergence, and display enhanced tolerance to higher concentrations. Adaptation is not dependent upon outgrowth of a few preexisting especially tolerant plants. Exogenous methionine prevents these events and overcomes the PAG-induced lag in frond emergence even after it is underway. These changes in frond emergence are not reflected in the rates of protein and wet weight accumulation which decrease by about 25% during the first 24 hours and continue unchanged thereafter. Cystathionine γ-synthase activity rapidly decreases to 9% of control during the first 12 hours of exposure to 40 nanomolar PAG but thereafter climbs to 12% of control. Studies of the uptake and internal concentration of PAG during these events are reported.

Exposure to a combination of 36 micromolar lysine plus 3 micromolar threonine is an alternative means to bring about sublethal methionine deprivation. Thus exposed, Lemna undergoes an analogous sequence of effects on morphology and growth which are preventable by exogenous methionine and which lead to an adapted state. Cystathionine γ-synthase specific activity in plants adapted to 36 micromolar lysine plus 3 micromolar threonine is 1.8 times control. However, addition of PAG showed that under these conditions enzyme activity can be decreased to as little as 54% of control without affecting the growth rate. Together these results suggest that adaptation is related to methionine limitation and that the plants adjust, in part, by increasing the steady-state concentrations of cystathionine γ-synthase and other enzymes in the methionine pathway.

  相似文献   

2.
Threonine synthase (TS) was purified approximately 40-fold from Lemna paucicostata, and some of its properties determined by use of a sensitive and specific assay. During the course of its purification, TS was separated from cystathionine γ-synthase, establishing the separate identity of these enzymes. Compared to cystathionine γ-synthase, TS is relatively insensitive to irreversible inhibition by propargylglycine (both in vitro and in vivo) and to gabaculine, vinylglycine, or cysteine in vitro. TS is highly specific for O-phospho-l-homoserine (OPH) and water (hydroxyl ion). Nucleophilic attack by hydroxyl ion is restricted to carbon-3 of OPH and proceeds sterospecifically to form threonine rather than allo-threonine. The Km for OPH, determined at saturating S-adenosylmethionine (AdoMet), is 2.2 to 6.9 micromolar, two orders of magnitude less than values reported for TS from other plant tissues. AdoMet markedly stimulates the enzyme in a reversible and cooperative manner, consistent with its proposed role in regulation of methionine biosynthesis. Cysteine (1 millimolar) caused a slight (26%) reversible inhibition of the enzyme. Activities of TS isolated from Lemna were inversely related to the methionine nutrition of the plants. Down-regulation of TS by methionine may help to limit the overproduction of threonine that could result from allosteric stimulation of the enzyme by AdoMet.  相似文献   

3.
A gene library of the Leptospira meyeri serovar semaranga strain Veldrat S.173 DNA has been constructed in a mobilizable cosmid with inserts of up to 40 kb. It was demonstrated that a Leptospira DNA fragment carrying metY complemented Escherichia coli strains carrying mutations in metB. The latter gene encodes cystathionine γ-synthase, an enzyme which catalyzes the second step of the methionine biosynthetic pathway. The metY gene is 1,304 bp long and encodes a 443-amino-acid protein with a molecular mass of 45 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The deduced amino acid sequence of the Leptospira metY product has a high degree of similarity to those of O-acetylhomoserine sulfhydrylases from Aspergillus nidulans and Saccharomyces cerevisiae. A lower degree of sequence similarity was also found with bacterial cystathionine γ-synthase. The L. meyeri metY gene was overexpressed under the control of the T7 promoter. MetY exhibits an O-acetylhomoserine sulfhydrylase activity. Genetic, enzymatic, and physiological studies reveal that the transsulfuration pathway via cystathionine does not exist in L. meyeri, in contrast to the situation found for fungi and some bacteria. Our results indicate, therefore, that the L. meyeri MetY enzyme is able to perform direct sulfhydrylation for methionine biosynthesis by using O-acetylhomoserine as a substrate.  相似文献   

4.
The intracellular localization of several aspartate pathway enzymes has been studied in pea (Pisum sativum cv Feltham First) and barley (Hordeum vulgare cv Julia) leaves. Protoplast lysates were fractionated by differential or sucrose density gradient centrifugation, in media optimized for each enzyme. The results show that aspartate kinase, homoserine kinase, threonine synthase, and cystathionine γ-synthase are confined to the chloroplast. Cystathionine β-lyase appears to be present in several fractions, though more than 50% of the total activity is associated with the chloroplasts. In contrast, neither methionine synthase nor methionine adenosyl-transferase were significantly associated with chloroplasts, and only a small proportion of the methionine synthase was associated with the mitochondrial fraction. Methionine adenosyltransferase, and hence S-adenosylmethionine synthesis, is not found in any organelle fraction. The conclusion is that whereas threonine, like lysine, is synthesized only in the chloroplast, the last step in methionine biosynthesis occurs largely in the cytoplasm.  相似文献   

5.
Organic sulfur compounds are present in all aquatic systems, but their use as sources of sulfur for bacteria is generally not considered important because of the high sulfate concentrations in natural waters. This study investigated whether dimethylsulfoniopropionate (DMSP), an algal osmolyte that is abundant and rapidly cycled in seawater, is used as a source of sulfur by bacterioplankton. Natural populations of bacterioplankton from subtropical and temperate marine waters rapidly incorporated 15 to 40% of the sulfur from tracer-level additions of [35S]DMSP into a macromolecule fraction. Tests with proteinase K and chloramphenicol showed that the sulfur from DMSP was incorporated into proteins, and analysis of protein hydrolysis products by high-pressure liquid chromatography showed that methionine was the major labeled amino acid produced from [35S]DMSP. Bacterial strains isolated from coastal seawater and belonging to the α-subdivision of the division Proteobacteria incorporated DMSP sulfur into protein only if they were capable of degrading DMSP to methanethiol (MeSH), whereas MeSH was rapidly incorporated into macromolecules by all tested strains and by natural bacterioplankton. These findings indicate that the demethylation/demethiolation pathway of DMSP degradation is important for sulfur assimilation and that MeSH is a key intermediate in the pathway leading to protein sulfur. Incorporation of sulfur from DMSP and MeSH by natural populations was inhibited by nanomolar levels of other reduced sulfur compounds including sulfide, methionine, homocysteine, cysteine, and cystathionine. In addition, propargylglycine and vinylglycine were potent inhibitors of incorporation of sulfur from DMSP and MeSH, suggesting involvement of the enzyme cystathionine γ-synthetase in sulfur assimilation by natural populations. Experiments with [methyl-3H]MeSH and [35S]MeSH showed that the entire methiol group of MeSH was efficiently incorporated into methionine, a reaction consistent with activity of cystathionine γ-synthetase. Field data from the Gulf of Mexico indicated that natural turnover of DMSP supplied a major fraction of the sulfur required for bacterial growth in surface waters. Our study highlights a remarkable adaptation by marine bacteria: they exploit nanomolar levels of reduced sulfur in apparent preference to sulfate, which is present at 106- to 107-fold higher concentrations.  相似文献   

6.
Inorganic phosphate (Pi) inhibits threonine synthase of Lemna, and cystathionine γ-synthase less strongly. AMP is an extremely potent and structurally specific inhibitor of threonine synthase. Each inhibition progressively decreases with increasing concentrations of O-phosphohomoserine (OPH). To study the in vivo effects of these inhibitions, Lemna was grown with a range of Pi concentrations. A 25,000-fold increase in Pi concentration in the culture medium caused an increase of only 6-fold in total phosphorus of the plants. This is explained by the fact that a high affinity Pi uptake system is selectively down-regulated during growth with high concentrations of Pi. Pi and AMP in plants grown with various Pi concentrations were determined, and concentrations estimated for chloroplasts, the organelle containing threonine synthase and cystathionine γ-synthase. Calculations indicated that for growth at standard external Pi (0.4 millimolar) or above, if total OPH were uniformly distributed within the plants, activities of the two enzymes in question would be severely inhibited, and each would fall two orders of magnitude below the amount required to provide threonine (plus isoleucine) or methionine adequate for growth. If OPH were restricted to chloroplasts, these inhibitions would be much less severe, resulting in enzyme activities approaching the required physiological amounts. Evidence is presented that even up to 50 millimolar external Pi, this ion does not limit production of threonine or methionine sufficiently to retard growth, consistent with the postulated localization of OPH within chloroplasts.  相似文献   

7.
Obesity is an underlying risk factor in the development of cardiovascular disease, dyslipidemia and non-alcoholic fatty liver disease (NAFLD). Increased hepatic lipid accumulation is a hallmark in the progression of NAFLD and impairments in liver phosphatidylcholine (PC) metabolism may be central to the pathogenesis. Hepatic PC biosynthesis, which is linked to the one-carbon (C1) metabolism by phosphatidylethanolamine N-methyltransferase, is known to be important for hepatic lipid export by VLDL particles. Here, we assessed the influence of a high-fat (HF) diet and NAFLD status in mice on hepatic methyl-group expenditure and C1-metabolism by analyzing changes in gene expression, protein levels, metabolite concentrations, and nuclear epigenetic processes. In livers from HF diet induced obese mice a significant downregulation of cystathionine β-synthase (CBS) and an increased betaine-homocysteine methyltransferase (BHMT) expression were observed. Experiments in vitro, using hepatoma cells stimulated with peroxisome proliferator activated receptor alpha (PPARα) agonist WY14,643, revealed a significantly reduced Cbs mRNA expression. Moreover, metabolite measurements identified decreased hepatic cystathionine and L-α-amino-n-butyrate concentrations as part of the transsulfuration pathway and reduced hepatic betaine concentrations, but no metabolite changes in the methionine cycle in HF diet fed mice compared to controls. Furthermore, we detected diminished hepatic gene expression of de novo DNA methyltransferase 3b but no effects on hepatic global genomic DNA methylation or hepatic DNA methylation in the Cbs promoter region upon HF diet. Our data suggest that HF diet induces a PPARα-mediated downregulation of key enzymes in the hepatic transsulfuration pathway and upregulates BHMT expression in mice to accommodate to enhanced dietary fat processing while preserving the essential amino acid methionine.  相似文献   

8.
Cysteine is considered a nonessential amino acid in mammals as it is synthesized from methionine via trans-sulfuration. However, premature infants or patients with hepatic failure may require dietary cysteine due to a lack of cystathionine γ-lyase (CTH), a key trans-sulfuration enzyme. Here, we generated CTH-deficient (Cth−/−) mice as an animal model of cystathioninemia/cystathioninuria. Cth−/− mice developed normally in general but displayed hypercystathioninemia/hyperhomocysteinemia though not hypermethioninemia. When fed a low cyst(e)ine diet, Cth−/− mice showed acute skeletal muscle atrophy (myopathy) accompanied by enhanced gene expression of asparagine synthetase and reduced contents of glutathione in livers and skeletal muscles, and intracellular accumulation of LC3 and p62 in skeletal myofibers; they finally died of severe paralysis of the extremities. Cth−/− hepatocytes required cystine in a culture medium and showed greater sensitivity to oxidative stress. Cth−/− mice exhibited systemic vulnerability to oxidative injury, which became more prominent when they were fed the low cyst(e)ine diet. These results reveal novel roles of trans-sulfuration previously unrecognized in mice lacking another trans-sulfuration enzyme cystathionine β-synthase (Cbs−/−). Because Cbs−/− mice display hyperhomocysteinemia and hypermethioninemia, our results raise questions against the homocysteine-based etiology of CBS deficiency and the current newborn screening for homocysteinemia using Guthrie''s method, which detects hypermethioninemia.  相似文献   

9.
Administration of methionine to growing Lemna had essentially no effect on accumulation of sulfate sulfur in protein cysteine, but decreased accumulation into cystathionine and its products (homocysteine, methionine, S-methylmethioninesulfonium salt, S-adenosylmethionine, and S-adenosylhomocysteine) to as low as 21% that of control plants, suggesting that methionine regulates its own de novo synthesis at cystathionine synthesis. Methionine caused only a slight reduction (to 80% that of control plants) in the accumulation of sucrose carbon into the 4-carbon moieties of cystathionine and products. This observation was puzzling since cystathionine synthesis proceeds by incorporation of equivalent amounts of sulfur (from cysteine) and 4-carbon moieties (from O-phosphohomoserine). The apparent inconsistency was resolved by the demonstration in Lemna (Giovanelli, Datko, Mudd, Thompson 1983 Plant Physiol 71: 319-326) that de novo synthesis of the methionine 4-carbon moiety occurs not only via the established transsulfuration route from O-phosphohomoserine, but also via the ribose moiety of 5′-methylthioadenosine. It is now clear that the more accurate assessment of the flux of sulfur (and 4-carbon moieties) through transsulfuration is provided by the amount of 35S from 35SO42− that accumulates in cystathionine and its products, rather than by the corresponding measurements with 14C. These studies therefore unequivocally demonstrate in higher plants that methionine does indeed feedback regulate it own de novo synthesis in vivo, and that cystathionine synthesis is a locus for this regulation.  相似文献   

10.
The cystine/glutamate transporter, designated as system xc, is important for maintaining intracellular glutathione levels and extracellular redox balance. The substrate-specific component of system xc, xCT, is strongly induced by various stimuli, including oxidative stress, whereas it is constitutively expressed only in specific brain regions and immune tissues, such as the thymus and spleen. Although cystine and glutamate are the well established substrates of system xc and the knockout of xCT leads to alterations of extracellular redox balance, nothing is known about other potential substrates. We thus performed a comparative metabolite analysis of tissues from xCT-deficient and wild-type mice using capillary electrophoresis time-of-flight mass spectrometry. Although most of the analyzed metabolites did not show significant alterations between xCT-deficient and wild-type mice, cystathionine emerged as being absent specifically in the thymus and spleen of xCT-deficient mice. No expression of either cystathionine β-synthase or cystathionine γ-lyase was observed in the thymus and spleen of mice. In embryonic fibroblasts derived from wild-type embryos, cystine uptake was significantly inhibited by cystathionine in a concentration-dependent manner. Wild-type cells showed an intracellular accumulation of cystathionine when incubated in cystathionine-containing buffer, which concomitantly stimulated an increased release of glutamate into the extracellular space. By contrast, none of these effects could be observed in xCT-deficient cells. Remarkably, unlike knock-out cells, wild-type cells could be rescued from cystine deprivation-induced cell death by cystathionine supplementation. We thus conclude that cystathionine is a novel physiological substrate of system xc and that the accumulation of cystathionine in immune tissues is exclusively mediated by system xc.  相似文献   

11.
The enzymatic degradation of amino acids in cheese is believed to generate aroma compounds and therefore to be essential for flavor development. Cystathionine β-lyase (CBL) can convert cystathionine to homocysteine but is also able to catalyze an α,γ elimination. With methionine as a substrate, it produces volatile sulfur compounds which are important for flavor formation in Gouda cheese. The metC gene, which encodes CBL, was cloned from the Lactococcus lactis model strain MG1363 and from strain B78, isolated from a cheese starter culture and known to have a high capacity to produce volatile compounds. The metC gene was found to be cotranscribed with a downstream cysK gene, which encodes a putative cysteine synthase. The MetC proteins of both strains were overproduced in strain MG1363 with the NICE (nisin-controlled expression) system, resulting in a >25-fold increase in cystathionine lyase activity. A disruption of the metC gene was achieved in strain MG1363. Determination of enzymatic activities in the overproducing and knockout strains revealed that MetC is essential for the degradation of cystathionine but that at least one lyase other than CBL contributes to methionine degradation via α,γ elimination to form volatile aroma compounds.  相似文献   

12.
Datko AH  Mudd SH 《Plant physiology》1982,69(5):1070-1076
A search was made for compounds that would inhibit methionine biosynthesis in Lemna paucicostata Hegelm. 6746. dl-Propargylglycine (0.15 micromolar) produced growth inhibition and morphological changes which were prevented by exogenous methionine. Also, dl-propargylglycine inhibits cystathionine gamma-synthase activity. l-Aminoethoxyvinylglycine (0.05 micromolar) produced growth inhibition and morphological changes partially preventable by exogenous methionine. l-Aminoethoxyvinylglycine impairs the cleavage of cystathionine to homocysteine. Lysine and threonine, at concentrations which individually had little effect on growth or morphology of Lemna, together produced growth inhibition and morphological changes preventable by exogenous methionine. The resulting metabolic block prevented conversion of cysteine to cystathionine, presumably secondary to depletion of the supply of O-phosphohomoserine.Inhibition of Lemna growth resulted when the molybdate:sulfate ratio in the medium was increased to 20:1 or more. Such inhibition was prevented by lowering this ratio to 0.3 or less. A non-steady-state experiment (molybdate:sulfate, 20:1) showed that molybdate inhibited sulfate uptake, but it provided no evidence of a further impairment in the organification of sulfate. Molybdate-induced growth inhibition of Lemna was prevented by cystine but not by cystathionine or methionine. Cystathionine is not converted by Lemna to cysteine rapidly enough to sustain growth.  相似文献   

13.
Methionine metabolism plays a central role in methylation reactions, production of glutathione and methylarginines, and modulating homocysteine levels. The mechanisms by which these are affected in NAFLD are not fully understood. The aim is to perform a metabolomic, molecular and epigenetic analyses of hepatic methionine metabolism in diet-induced NAFLD. Female 129S1/SvlmJ;C57Bl/6J mice were fed a chow (n = 6) or high-fat high-cholesterol (HFHC) diet (n = 8) for 52 weeks. Metabolomic study, enzymatic expression and DNA methylation analyses were performed. HFHC diet led to weight gain, marked steatosis and extensive fibrosis. In the methionine cycle, hepatic methionine was depleted (30%, p< 0.01) while s-adenosylmethionine (SAM)/methionine ratio (p< 0.05), s-adenosylhomocysteine (SAH) (35%, p< 0.01) and homocysteine (25%, p< 0.01) were increased significantly. SAH hydrolase protein levels decreased significantly (p <0.01). Serine, a substrate for both homocysteine remethylation and transsulfuration, was depleted (45%, p< 0.01). In the transsulfuration pathway, cystathionine and cysteine trended upward while glutathione decreased significantly (p< 0.05). In the transmethylation pathway, levels of glycine N-methyltransferase (GNMT), the most abundant methyltransferase in the liver, decreased. The phosphatidylcholine (PC)/ phosphatidylethanolamine (PE) ratio increased significantly (p< 0.01), indicative of increased phosphatidylethanolamine methyltransferase (PEMT) activity. The protein levels of protein arginine methytransferase 1 (PRMT1) increased significantly, but its products, monomethylarginine (MMA) and asymmetric dimethylarginine (ADMA), decreased significantly. Circulating ADMA increased and approached significance (p< 0.06). Protein expression of methionine adenosyltransferase 1A, cystathionine β-synthase, γ-glutamylcysteine synthetase, betaine-homocysteine methyltransferase, and methionine synthase remained unchanged. Although gene expression of the DNA methyltransferase Dnmt3a decreased, the global DNA methylation was unaltered. Among individual genes, only HMG-CoA reductase (Hmgcr) was hypermethylated, and no methylation changes were observed in fatty acid synthase (Fasn), nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (Nfκb1), c-Jun, B-cell lymphoma 2 (Bcl-2) and Caspase 3. NAFLD was associated with hepatic methionine deficiency and homocysteine elevation, resulting mainly from impaired homocysteine remethylation, and aberrancy in methyltransferase reactions. Despite increased PRMT1 expression, hepatic ADMA was depleted while circulating ADMA was increased, suggesting increased export to circulation.  相似文献   

14.
Lo SC  Hamer L  Hamer JE 《Eukaryotic cell》2002,1(2):311-314
CBS1 from Magnaporthe grisea is a structural and functional homolog of the cystathionine β-synthase (CBS) gene from Saccharomyces cerevisiae. Our studies indicated that M. grisea can utilize homocysteine and methionine through a CBS-independent pathway. The results also revealed responses of M. grisea to homocysteine that are reminiscent of human homocystinuria.  相似文献   

15.
In plants, the transfer of the sulfur atom between cysteine and homocysteine, the direct precursor of methionine, is ensured by two chloroplastic enzymes, cystathionine γ-synthase and cystathionine β-lyase. These proteins have been purified to homogeneity from spinach chloroplasts and their biochemical properties determined. Cystathionine γ-synthase and cystathionine β-lyase are tetramers and are typical pyridoxal 5′-phosphate-dependent proteins. These enzymes are targets for the potent inhibitors of methionine synthesis that are lethal for plants. An Arabidopsis thaliana cDNA encoding chloroplastic cystathionine β-lyase was isolated by functional complementation of a bacterial mutant and cloned in a pET expression vector in order to transform Escherichia coli cells. Preliminary observations of the active site of the purified recombinant enzyme have been performed by characterization of the interaction between i) pyridoxal 5′-phosphate and the polypeptide chain, and ii) the active site-directed inhibitor aminoethoxyvinylglycine and the bound cofactor. This study will be developed further by crystallographic analyses.  相似文献   

16.
To permit an assessment of the relative contributions of the transsulfuration and the direct sulfhydration pathways for homocysteine biosynthesis, the time course of incorporation of 35S from 35SO42− into various sulfur-containing compounds in Lemna paucicostata has been determined. Plants were grown with either low (4.5 micromolar) or ample (1,000 micromolar) sulfate in the medium. At the shortest labeling times, 35S-cystathionine was the predominant 35S-containing organic sulfur compound. The flux of sulfur into cystathionine was sufficient to sustain the known rate of methionine biosynthesis. It was calculated that transsulfuration accounted for at least 90 and 85% of the total homocysteine synthesis in low and ample sulfate-grown plants, respectively (and may have accounted for 100%). No marked rise in the 35S-soluble cysteine:35S-homocysteine ratio was observed even at the shortest labeling times, but it is argued that this may be due to (a) the observed compartmentation of soluble cysteine, and (b) the impracticality of using labeling times shorter than 17 seconds. Additional evidence supporting the importance of transsulfuration in Lemna is briefly described.  相似文献   

17.
1. Transport characteristics of l-methionine and l-proline in rat liver slices in vitro were studied. 2. Intracellular concentration gradients for methionine were obtained. 3. Methionine uptake was inhibited by iodoacetate, dinitrophenol, Na+-free media and also by glycine, lysine, cysteine and dithiothreitol but not by α-aminoisobutyrate. 4. The rate of methionine metabolism in the slice was slow. 5. Puromycin inhibited methionine incorporation into protein, but not methionine uptake. 6. Methionine inhibited the transport of α-aminoisobutyrate but not of cystine. 7. Efflux and exchange diffusion of methionine was studied. 8. Amino acid transport in rat liver slices was not affected by thyroidectomy. 9. Addition of insulin, glucagon, adrenaline or cortisol did not affect the transport of methionine. 10. Addition of 6-N,2′-O-dibutyryladenosine 3′:5′-cyclic monophosphate increased methionine transport after a 120min incubation period in some experiments. 11. Studies of l-proline transport were invalidated because of the rapid evolution of CO2 from the substrate.  相似文献   

18.
Cystathionine γ-lyase of Saccharomyces cerevisiae was immobilized to aminohexyl-Sepharose through the cofactor pyridoxal 5′-phosphate and was characterized with respect to its cystathionine γ-synthase activity. The immobilized product was so stable that it repeatedly catalyzed as many as five cycles of the reaction without losing activity.  相似文献   

19.
Plant cell suspension cultures from Catharanthus roseus were investigated for their capability to dissimilate methionine or its analogs in order to reutilize the sulphane group for cysteine biosynthesis. Three steps have been described as prerequisites of this process: (a) oxidative degradation by the amino-acid oxidase of methionine giving rise to methanethiol production; (b) demethylation by methyltransferases leading to homocysteine and S-methylmethionine (c) replacement of the homocysteine sulphane sulphur by alkylthiol yielding methionine and free hydrogen sulphide. A reversal of the cystathionine pathway as a source of cysteine was ruled out because the cells lack cystathionine γ-lyase. The absence of this enzyme is compensated by the S-alkyl exchange of homocysteine with methylmercaptan. Hydrogen sulphide thus liberated is used for de novo synthesis of cysteine. The complete pathway can be catalyzed by the constitutive set of enzymes present in the higher plant.  相似文献   

20.
Consistent with data in animal systems, experimental evidence highlights sulfide as a signaling molecule of equal importance to NO and H2O2 in plant systems. In mammals, two cytosolic enzymes, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), have been shown to be responsible for the endogenous production of sulfide. L-cysteine desulfhydrase 1 (DES1) has been recently established as the only enzyme that is involved in the generation of hydrogen sulfide in plant cytosol. Although plants have an available source of sulfide within chloroplasts, the basic stromal pH prevents sulfide release into the cytosol. Therefore, DES1 is essential for the production of sulfide for signaling purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号