首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T cell apoptosis by tryptophan catabolism   总被引:20,自引:0,他引:20  
Indoleamine 2,3-dioxygenase (IDO) is a tryptophan-catabolizing enzyme that, expressed by different cell types, has regulatory effects on T cells resulting from tryptophan depletion in specific local tissue microenvironments. Different mechanisms, however, might contribute to IDO-dependent immune regulation. We show here that tryptophan metabolites in the kynurenine pathway, such as 3-hydroxyanthranilic and quinolinic acids, will induce the selective apoptosis in vitro of murine thymocytes and of Th1 but not Th2 cells. T cell apoptosis was observed at relatively low concentrations of kynurenines, did not require Fas/Fas ligand interactions, and was associated with the activation of caspase-8 and the release of cytochrome c from mitochondria. When administered in vivo, the two kynurenines caused depletion of specific thymocyte subsets in a fashion qualitatively similar to dexamethasone. These data suggest that the selective deletion of T lymphocytes may be a major mechanism whereby tryptophan metabolism affects immunity under physiopathologic conditions.  相似文献   

2.
Cells communicate with each other through the production and secretion of cytokines, which are integral to the host response to infection. Once recognized by specific cytokine receptors expressed on the cell surface, these exogenous signals direct the biological function of a cell in order to adapt to their microenvironment. CD8+ T cells are critical immune cells that play an important role in the control and elimination of intracellular pathogens. Current findings have demonstrated that cytokines influence all aspects of the CD8+ T cell response to infection or immunization. The cytokine milieu induced at the time of activation impacts the overall magnitude and function of the effector CD8+ T cell response and the generation of functional memory CD8+ T cells. This review will focus on the impact of inflammatory cytokines on different aspects of CD8+ T cell biology.  相似文献   

3.
Dendritic cells (DCs) are the critical antigen-presenting cells involved in initiating CD8 T cell responses to microbial and viral pathogens. Hence the generation of memory T cells from naïve T cells is intricately intertwined with DCs at every level. This review broadly addresses DC-CD8 T cell interactions that result in the generation and maintenance of CD8 memory T cells.  相似文献   

4.
The influence of latent virus on CD8+ T cell memory is poorly understood. HSV type 1 specifically establishes latency in trigeminal ganglia (TG) after corneal infection of mice. In latently infected TG, IL-15 deprivation reduced the following: 1) accumulation of HSV-specific CD8+ effector T cells (HSV-CD8(eff)), 2) accumulation of CD127(+) putative HSV-CD8 memory precursors, and 3) the size and functionality of the memory (HSV-CD8(mem)) population. Although compromised in IL-15(-/-) mice, the HSV-CD8(mem) pool persisted in latently infected tissue, but not in noninfected tissue of the same mice. Anti-IL-2 treatment also dramatically reduced the size of the HSV-CD8(eff) population in the TG, but did not influence the concomitant generation of the CD127+ putative HSV-CD8(mem) precursor population or the size or functionality of the HSV-CD8(mem) pool. Thus, the size of the memory pool appears to be determined by the size of the CD127+ CD8(mem) precursor population and not by the size of the overall CD8(eff) pool. HSV-CD8(mem) showed a higher basal rate of proliferation in latently infected than noninfected tissue, which was associated with a reduced population of CD4+FoxP3+ regulatory T cells. Thus, the generation, maintenance, and function of memory CD8+ T cells is markedly influenced by latent virus.  相似文献   

5.
Viral FLIPs (vFLIPs) interfere with apoptosis signaling by death-domain-containing receptors in the TNFR superfamily (death receptors). In this study, we show that T cell-specific transgenic expression of MC159-vFLIP from the human Molluscum contagiosum virus blocks CD95-induced apoptosis in thymocytes and peripheral T cells, but also impairs postactivation survival of in vitro activated primary T cells despite normal early activation parameters. MC159 vFLIP impairs T cell development to a lesser extent than does Fas-associated death domain protein deficiency or another viral FLIP, E8. In the periphery, vFLIP expression leads to a specific deficit of functional memory CD8(+) T cells. After immunization with a protein Ag, Ag-specific CD8(+) T cells initially proliferate, but quickly disappear and fail to produce Ag-specific memory CD8(+) T cells. Viral FLIP transgenic mice exhibit impaired CD8(+) T cell responses to lymphocytic choriomeningitis virus and Trypanosoma cruzi infections, and a specific defect in CD8(+) T cell recall responses to influenza virus was seen. These results suggest that vFLIP expression in T cells blocks signals necessary for the sustained survival of CD8(+) T cells and the generation of CD8(+) T cell memory. Through this mechanism, vFLIP proteins expressed by T cell tropic viruses may impair the CD8(+) T cell immune responses directed against them.  相似文献   

6.
Infection with Listeria monocytogenes elicits expansion in numbers of Ag-specific CD8+ T cells, which then undergo programmed contraction. The remaining cells undergo further phenotypic and functional changes with time, eventually attaining the qualities of memory CD8+ T cells. In this study, we show that L. monocytogenes-specific CD8+ T cell populations primed in antibiotic-pretreated mice undergo brief effector phase, but rapidly develop phenotypic (CD127(high), CD43(low)) and functional (granzyme B(low), IL-2-producing) characteristics of memory CD8+ T cells. These early memory CD8+ T cells were capable of substantial secondary expansion in response to booster challenge at day 7 postinfection, resulting in significantly elevated numbers of secondary effector and memory CD8+ T cells and enhanced protective immunity compared with control-infected mice. Although early expansion in numbers is similar after L. monocytogenes infection of antibiotic-pretreated and control mice, the absence of sustained proliferation coupled with decreased killer cell lectin-like receptor G-1 up-regulation on responding CD8+ T cells may explain the rapid effector to memory CD8+ T cell transition. In addition, antibiotic treatment 2 days post-L. monocytogenes challenge accelerated the generation of CD8+ T cells with memory phenotype and function, and this accelerated memory generation was reversed in the presence of CpG-induced inflammation. Together, these data show that the rate at which Ag-specific CD8+ T cell populations acquire memory characteristics after infection is not fixed, but rather can be manipulated by limiting inflammation that will in turn modulate the timing and extent to which CD8+ T cells proliferate and up-regulate killer cell lectin-like receptor G-1 expression.  相似文献   

7.
Although the role of CD28-B7 interaction in the activation of naive T cells is well established, its importance in the generation and maintenance of T cell memory is not well understood. In this study, we examined the requirement for CD28-B7 interactions in primary T cell activation and immune memory. Ag-specific CD8 T cell responses were compared between wild-type (+/+) and CD28-deficient (CD28(-/-)) mice following an acute infection with lymphocytic choriomeningitis virus (LCMV). During the primary response, there was a substantial activation and expansion of LCMV-specific CD8 T cells in both +/+ and CD28(-/-) mice. However, the magnitude of the primary CD8 T cell response to both dominant and subdominant LCMV CTL epitopes was approximately 2- to 3-fold lower in CD28(-/-) mice compared with +/+ mice; the lack of CD28-mediated costimulation did not lead to preferential suppression of CD8 T cell responses to the weaker subdominant epitopes. As seen in CD28(-/-) mice, blockade of B7-mediated costimulation by CTLA4-Ig treatment of +/+ mice also resulted in a 2-fold reduction in the anti-LCMV CD8 T cell responses. Loss of CD28/B7 interactions did not significantly affect the generation and maintenance of CD8 T cell memory; the magnitude of CD8 T cell memory was approximately 2-fold lower in CD28(-/-) mice as compared with +/+ mice. Further, in CD28(-/-) mice, LCMV-specific memory CD8 T cells showed normal homeostatic proliferation in vivo and also conferred protective immunity. Therefore, CD28 signaling is not necessary for the proliferative renewal and maintenance of memory CD8 T cells.  相似文献   

8.
During infection with viruses that establish latency, the immune system needs to maintain lifelong control of the infectious agent in the presence of persistent Ag. By using a gamma-herpesvirus (gammaHV) infection model, we demonstrate that a small number of virus-specific central-memory CD8+ T cells develop early during infection, and that virus-specific CD8+T cells maintain functional and protective capacities during chronic infection despite low-level Ag persistence. During the primary immune response, we show generation of CD8+ memory T cell precursors expressing lymphoid homing molecules (CCR7, L-selectin) and homeostatic cytokine receptors (IL-7alpha, IL-2/IL-15beta). During long-term persistent infection, central-memory cells constitute 20-50% of the virus-specific CD8+ T cell population and maintain the expression of L-selectin, CCR7, and IL-7R molecules. Functional analyses demonstrate that during viral persistence: 1) CD8+ T cells maintain TCR affinity for peptide/MHC complexes, 2) the functional avidity of CD8+ T cells measured as the capacity to produce IFN-gamma is preserved intact, and 3) virus-specific CD8+ T cells have in vivo killing capacity. Next, we demonstrate that at 8 mo post-virus inoculation, long-term CD8+ T cells are capable of mediating a protective recall response against the establishment of gammaHV68 splenic latency. These observations provide evidence that functional CD8+ memory T cells can be generated and maintained during low-load gammaHV68 persistence.  相似文献   

9.
Generation of CD8 T cell memory is regulated by IL-12   总被引:2,自引:0,他引:2  
Various signals during infection influence CD8 T cell memory generation, but these factors have yet to be fully defined. IL-12 is a proinflammatory cytokine that has been shown to enhance IFN-gamma-producing T cell responses and has been widely tested as a vaccine adjuvant. In this study, we show that IL-12-deficient mice generate a weaker primary CD8 T cell response and are more susceptible to Listeria monocytogenes infection, but have substantially more memory CD8 T cells and greater protective immunity against reinfection. Kinetic analyses show that in the absence of IL-12 there is a reduced contraction of Ag-specific CD8 T cells and a gradual increase in memory CD8 T cells as a result of increased homeostatic renewal. By signaling directly through its receptor on CD8 T cells, IL-12 influences their differentiation to favor the generation of fully activated effectors, but hinders the formation of CD8 T cell memory precursors and differentiation of long-term CD8 T cell memory(.) These results have implications for understanding memory T cell development and enhancing vaccine efficacy, and offer new insight into the role of IL-12 in coordinating the innate and adaptive immune response.  相似文献   

10.
11.
In this study, we investigated whether B cells play a role in the induction and maintenance of CD8 T cell memory after immunization with an intracellular bacterium, Listeria monocytogenes. Our results show that B cells play a minimal role in the initial activation and Ag-driven expansion of CD8 T lymphocytes. However, absence of B cells results in increased death of activated CD8 T cells during the contraction phase, leading to a lower level of Ag-specific CD8 T cell memory. Once memory is established, B cells are no longer required for the long-term maintenance and rapid recall response of memory CD8 T cells. Increased contraction of Ag-specific CD8 T cells in B cell-deficient mice is not due to impaired CD4 T cell responses since priming of epitope-specific CD4 T cell responses is normal in B cell-deficient mice following L. monocytogenes infection. Furthermore, no exaggerated contraction of Ag-specific CD8 T cells is evident in CD4 knockout mice. Thus, B cells play a specific role in modulating the contraction of CD8 T cell responses following immunization. Elucidation of factors that regulate the death phase may allow us to manipulate this process to increase the level of immunological memory and thus, vaccine efficacy.  相似文献   

12.
The induction and maintenance of T cell memory is incompletely understood, especially in humans. We have studied the T cell response and the generation of memory during acute infection by the Puumala virus (PUUV), a hantavirus endemic to Europe. It causes a self-limiting infection with no viral persistence, manifesting as hemorrhagic fever with renal syndrome. HLA tetramer staining of PBMC showed that the CD8(+) T cell response peaked at the onset of the clinical disease and decreased within the next 3 wk. Expression of activation markers on the tetramer-positive T cells was also highest during the acute phase, suggesting that the peak population consisted largely of effector cells. Despite the presence of tetramer-positive T cells expressing cytoplasmic IFN-gamma, PUUV-specific cells producing IFN-gamma in vitro were rare during the acute phase. Their frequency, as well as the expression of IL-7R alpha mRNA and surface protein, increased during a follow-up period of 6 wk and probably reflected the induction of memory T cells. Simultaneously with the PUUV-specific response, we also noted in seven of nine patients an increase in EBV-specific T cells and the transient presence of EBV DNA in three patients, indicative of viral reactivation. Our results show that in a natural human infection CD8(+) memory T cells are rare during the peak response, gradually emerging during the first weeks of convalescence. They also suggest that the boosting of unrelated memory T cells may be a common occurrence in human viral infections, which may have significant implications for the homeostasis of the memory T cell compartment.  相似文献   

13.
Molecular and functional profiling of memory CD8 T cell differentiation   总被引:40,自引:0,他引:40  
Kaech SM  Hemby S  Kersh E  Ahmed R 《Cell》2002,111(6):837-851
How and when memory T cells form during an immune response are long-standing questions. To better understand memory CD8 T cell development, a time course of gene expression and functional changes in antigen-specific T cells during viral infection was evaluated. The expression of many genes continued to change after viral clearance in accordance with changes in CD8 T cell functional properties. Even though memory cell precursors were present at the peak of the immune response, these cells did not display hallmark functional traits of memory T cells. However, these cells gradually acquired the memory cell qualities of self-renewal and rapid recall to antigen suggesting the model that antigen-specific CD8 T cells progressively differentiate into memory cells following viral infection.  相似文献   

14.
Studies of memory T cell differentiation are hampered by a lack of quantitative models to test hypotheses in silico before in vivo experimentation. We created a stochastic computer model of CD4+ memory T cell generation that can simulate and track 10(1)-10(8) individual lymphocytes over time. Parameters for the model were derived from experimental data using naive human CD4+ T cells stimulated in vitro. Using discrete event computer simulation, we identified two key variables that heavily influence effector burst size and the persistent memory pool size: the cell cycle dependent probability of apoptosis, and the postactivation mitosis at which memory T cells emerge. Multiple simulations were performed and varying critical parameters permitted estimates of how sensitive the model was to changes in all of the model parameters. We then compared two hypotheses of CD4+ memory T cell generation: maturation from activated naive to effector to memory cells (model I) vs direct progression from activated naive to memory cells (model II). We find that direct progression of naive to memory T cells does not explain published measurements of the memory cell mass unless postactivation expansion of the memory cell cohort occurs. We conclude that current models suggesting direct progression of activated naive cells to the persistent memory phenotype (model II) do not account for the experimentally measured size of the postactivation CD4+, Ag-specific, memory T cell cohort.  相似文献   

15.
As memory CD8 T cells form during acute viral infection, several changes in gene expression and function occur, but little is known about the control of this process. It was reported previously that the homodimer CD8alphaalpha was involved in generating IL-7Ralphahigh memory CD8 T cell precursors, and consequently, protective memory CD8 T cells did not form in animals significantly impaired in CD8alphaalpha expression (E8(I)-/- mice). However, the precise contribution of CD8alphaalpha to sustained IL-7Ralpha expression and other memory CD8 T cell-associated changes has not been investigated. We found that IL-7Ralpha expression and generation of memory CD8 T cells that protect against secondary viral infection was considerably normal in E8(I)-/- animals. Interestingly, virus-specific CD4 T cell responses were elevated, and the relative surface levels of CD8alphabeta in activated T cells were reduced in E8(I)-/- mice compared with wild-type animals. Our results indicate that memory CD8 T cell development can occur independently of CD8alphaalpha.  相似文献   

16.
17.
Memory T cells are resistant to the conventional costimulatory blockade and therefore impede tolerance induction. However, their migratory, survival, and functional requirements for chemokines are not well understood. We herein examine the role for MCP-1 or CCL2 in the generation, migration, and function of memory CD8+ T cells. We found that overall generation of both central memory (TCM) and effector memory (TEM) CD8+ T cells was severely impaired in the absence of MCP-1. Importantly, the survival of TEM, but not TCM, CD8+ cells was reduced without MCP-1, whereas the homeostatic proliferation of TCM, but not TEM, CD8+ cells was weakened in MCP-1-/- mice. However, once they were generated in the absence of MCP-1, in vitro function of both subsets of memory cells remained intact as determined by their proliferation and IFN-gamma production. Interestingly, the migration of TCM, but not TEM, CD8+ cells to inflammatory sites was significantly delayed without MCP-1, whereas both subsets of memory cells underwent comparable expansion and apoptosis with or without MCP-1 during the effector phase. Moreover, the function to eliminate a graft of TCM, but not TEM, CD8+ cells was impaired without MCP-1. Thus, this study demonstrates that MCP-1 plays an important role in not only migration but also generation and survival of memory T cells. This finding provides new insight into the requirement of chemokines for the generation, survival, and function of differential subsets of memory T cells and may have clinic implications for tolerance induction.  相似文献   

18.
We have shown that alloreactive CD8 T cell activation may proceed via CD4-dependent and CD4-independent pathways, and that CD8 T cell activation in Ag-primed animals is independent of CD154 costimulation. In this report, we further analyzed the activation and function of alloreactive CD8 CTL effectors in CD4 knockout (KO) skin/cardiac allograft recipients. FACS analysis showed that alloreactive CD8 T cells were activated at a significantly reduced level in CD4 KO mice. Importantly, these helpless CD8 T cells failed to develop CD154 blockade resistance following reactivation by the same alloantigen, indicative of defective memory formation. Only transient CD4 help was required, as short-term CD4 blockade at the time of first skin graft challenge only delayed alloreactive CD8 activation, without affecting the CD8 T cell memory response to a second skin graft. Moreover, postoperative CD4 blockade had no effect on alloreactive CD8 activation. Alloreactive CD8 cells generated in the absence of CD4 help exhibited decreased effector responses. Interestingly, intragraft induction of T cell-targeted chemokines early after transplant was also dependent on CD4 help, as the induction kinetics of CXCL9 and CCL5 in CD4 KO recipients was significantly delayed, coupled with similarly delayed infiltration by CD3/CD8 cells. Remarkably, helpless CD8 cells ultimately entering the graft still displayed significantly diminished T cell effector molecules (IFN-gamma, granzyme B). Thus, CD4 help is critical for alloreactive CD8 activation, function, and memory formation.  相似文献   

19.
The evolutionary preservation of reactive oxygen species in innate immunity underscores the important roles these constituents play in immune cell activity and as signaling intermediates. In an effort to exploit these pathways to achieve control of aberrant immune activation we demonstrate that modulation of redox status suppresses cell proliferation and production of IL-2, IFN-gamma, TNF-alpha, and IL-17 in two robust CD8 T-cell-dependent in vitro mouse models: (1) response to alloantigen in an mixed leukocyte reaction and (2) CD8 T cell receptor transgenic OT-1 response to cognate peptide (SIINFEKL). To correlate these findings with cytotoxic lymphocyte (CTL) function we performed cytotoxicity assays and found that redox modulation diminishes the ability of alloantigen-specific and antigen-specific OT-1 CTLs to kill their corresponding antigen-expressing target cells. To further examine the mechanisms of redox-mediated repression of CTL target cell lysis, we analyzed the expression of the effector molecules IFN-gamma, perforin, and granzyme B and the degranulation marker CD107a (LAMP-1). In both models, redox modulation reduced the expression of these effector components by at least fivefold. These results demonstrate that redox modulation quells the CD8 T cell response to alloantigen and the T cell receptor transgenic CD8 T cell response to its cognate antigen by inhibiting proliferation, proinflammatory cytokine synthesis, and CTL effector mechanisms.  相似文献   

20.
After priming, naive T cells undergo a program of expansion, contraction, and memory formation. Numerous studies have indicated that only a brief period of antigenic stimulation is required to fully commit CD8+ T cells to this program. Nonetheless, the persistence of Ag may modulate the eventual fate of CD8+ T cells. Using DNA delivery, we showed previously that direct presentation primes high levels of effector CD8+ T cells as compared with cross-presentation. One explanation now revealed is that prolonged cross-presentation limits effector cell expansion and function. To analyze this, we used a drug-responsive system to regulate Ag expression after DNA injection. Reducing expression to a single burst expanded greater numbers of peptide-specific effector CD8+ T cells than sustained Ag. Consequences for memory development were assessed after boosting and showed that, although persistent Ag maintained higher numbers of tetramer-positive CD8+ T cells, these expanded less (approximately 4-fold) than those induced by transient Ag expression (approximately 35-fold). Transient expression at priming therefore led to a net higher secondary response. In terms of vaccine design, we propose that the most effective DNA-based CD8+ T cell vaccines will be those that deliver a short burst of Ag.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号