首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Dry weight yields from mixed cultures ofProsthecochloris aestuarii orChlorobium limicola with the sulfur reducingDesulfuromonas acetoxidans were determined on different growth limiting amounts of acetate, ethanol or propanol. The obtained yields agreed well with values predicted from stoichiometric calculations. 2. From mixed cultures of twoChlorobium limicola strains withDesulfovibrio desulfuricans orD. gigas on ethanol as the growth limiting substrate, dry weight yields were obtained as calculated for the complete utilization of the ethanol by the mixed cultures. 3. Dry weight yield determinations for two pure cultures ofChlorobium limicola with different growth limiting amounts of sulfide in the absence and presence of excess acetate confirmed that acetate is incorporated byChlorobium in a fixed proportion to sulfide; compared to the yield in the absence of acetate the yield is increased two to threefold in the presence of acetate. 4. The lowest possible sulfide concentrations necessary for optimal growth of mixed cultures of eitherProsthecochloris orChlorobium withDesulfuromonas on acetate were 7–8 mg H2S per liter of medium. 5. Doubling times at the growth rate limiting light intensities of 5, 10, 20, 50, 100 and 200 lux were determined under optimal growth conditions for the following phototrophic bacteria:Prosthecochloris aestuarii, Chlorobium phaeovibriodes, Chromatium vinosum andRhodopseudomonas capsulata. Reasonably good growth was still obtained withProsthecochloris at 10 and 5 lux light intensity at which no growth of the purple bacteria could be observed.  相似文献   

2.
A symbiotic green sulfur bacterium, strain CaD, was isolated from an enrichment culture of the phototrophic consortium “Chlorochromatium aggregatum”. The capability of the epibiont to grow in pure culture indicates that it is not obligately symbiotic. Cells are Gram-negative, nonmotile, rod-shaped and contain chlorosomes. Strain CaD is obligately anaerobic and photolithoautotrophic, using sulfide as electron donor. Acetate and peptone are photoassimilated in the presence of sulfide and hydrogencarbonate. Photosynthetic pigments contain bacteriochlorophylls a and c, and γ-carotene and OH-γ-carotene glucoside laurate as the dominant carotenoids. In cells from pure cultures, chlorosomes are equally distributed along the inner face of the cytoplasmic membrane. In contrast, the distribution of the chlorosomes in symbiotic epibiont cells is uneven, with chlorosomes being entirely absent at the site of attachment to the central bacterium. The symbiotic epibiont cells display a conspicuous additional layered structure at the attachment site. The G + C content of genomic DNA of strain CaD is 46.7 mol%. On the basis of 16S rRNA sequence comparison, the strain is distantly related to Chlorobium species within the green sulfur bacteria phylum (≤94.6% sequence homology). The novel isolate is therefore described as a novel species within the genus Chlorobium, Chlorobium chlorochromatii.  相似文献   

3.
Novel dissimilatory perchlorate-reducing bacteria (DPRB) were isolated from enrichments conducted under conditions different from those of all previously described DPRB. Strain LT-1T was enriched using medium buffered at pH 6.6 with 2-(N-morpholino)ethanesulfonic acid (MES) and had only 95% 16S rRNA gene identity with its closest relative, Azonexus caeni. Strain MPT was enriched in the cathodic chamber of a perchlorate-reducing bioelectrical reactor (BER) and together with an additional strain, CR (99% 16S rRNA gene identity), had 97% 16S rRNA gene identity with Propionivibrio limicola. The use of perchlorate and other electron acceptors distinguished strains MPT and CR from P. limicola physiologically. Strain LT-1T had differences in electron donor utilization and optimum growth temperatures from A. caeni. Strains LT-1T and MPT are the first DPRB to be described in the Betaproteobacteria outside of the Dechloromonas and Azospira genera. On the basis of phylogenetic and physiological features, strain LT-1T represents a novel genus in the Rhodocyclaceae; strain MPT represents a novel species within the genus Propionivibrio. The names Dechlorobacter hydrogenophilus gen. nov., sp. nov and Propionivibrio militaris sp. nov. are proposed.  相似文献   

4.
Highly purified fractions of chlorosomes and cytoplasmic membranes were isolated from Chloroflexus aurantiacus Ok-70-fl and Chlorobium limicola 6230. These fractions were comparatively analyzed for their pigmentation, phospholipid, glycolipid, and cytochrome c content as well as for their specific activities of succinate dehydrogenase and NADH-oxidase. The data showed that there are some differences in pigmentation and phospholipid content between the isolated fractions of Chloroflexus and Chlorobium. Chlorosomes of Chloroflexus contained a specific BChl a-complex with a characteristic absorption maximum at about 790 nm. This BChl a-complex could not be detected in spectra of chlorosomes from Chlorobium. The near infrared region of the spectra of the isolated cytoplasmic membranes of both organisms revealed considerable differences: The BChl a-complexes of Chloroflexus membranes exhibited peaks at 806 and 868 nm whereas the membranes of Chlorobium had a single BChl a-peak at 710 nm. In contrast to the findings with Chlorobium the chlorosomes of Chloroflexus contained at least twice as much phospholipids as did the cytoplasmic membranes. In Chlorobium the phospholipid content of cytoplasmic membranes is three times that of their chlorosomes. The distribution of all other components (carotenoid composition, enzyme activities, cytochrome c content, and glycolipids) was about the same in both strains. From the data it was concluded that differences in the organization of the photosynthetic apparatus are mainly based on differences of the organization of the photosynthetic units in the cytoplasmic membrane and probably the kind of linkage of the light harvesting system in the chlorosomes with the reaction center in the cytoplasmic membranes.Abbreviations BChl c bacteriochlorophyll c - BChl a bacteriochlorophyll a - DSM Deutsche Sammlung von Mikrorganismen  相似文献   

5.
A new virus, Mycoplasmatales virus-modicum 1 (MV-M1), was recovered from spontaneous plaques in lawns ofAcholeplasma modicum. Strain “mod” produced plaques onA. modicum strains but not on strains ofAcholeplasma laidlawii. Only MV-L3 of the three knownA. laidlawii viruses (MV-L1, MV-L2, and MV-L3) produced plaques onA. modicum. The MV-M1 virus was serologically distinct from the threeA. laidlawii viruses; filterable at 0.1 μm; partially sensitive to heat and Nonidet P-40; and chloroform labile. Spherical particles ranging from 105 to 160 nm were observed in electron micrographs of negatively stained preparations.  相似文献   

6.
This paper reports the successful isolation and characterization of a new phenol-degrading bacterium, strain EDP3, from activated sludge. Strain EDP3 is a nonmotile, strictly aerobic, Gram-negative, and short-rod or coccobacillary bacterium, which occurs singly, in pairs, or in clusters. 16S rRNA gene sequence analysis revealed that strain EDP3 belonged to the gamma group of Proteobacteria, with a 97.0% identity to 16S rRNA gene sequences of Acinetobacter calcoaceticus. Strain EDP3 could aerobically grow on a number of aromatic compounds, such as phenol, sodium benzoate, p-hydroxybenzoate, phenylacetate, benzene, ethylbenzene, benzylalcohol, and so on. In particular, it could mineralize up to 1,000 mg l−1 phenol at room temperature (25°C). The growth kinetics of strain EDP3 on phenol as a sole carbon and energy source at 25°C can be described using the Haldane equation. It has a maximal specific growth rate (μmax) of 0.28 h−1, a half-saturation constant (K S) of 1,167.1 mg l−1, and a substrate inhibition constant (K i) of 58.5 mg l−1. Values of yield coefficient (Y X/S) are between 0.4 and 0.6 mg dry cell (mg phenol)−1. Strain EDP3 has high tolerance to the toxicity of phenol (up to 1,000 mg l−1). It therefore could be an excellent candidate for the biotreatment of high-strength phenol-containing industrial wastewaters and for the in situ bioremediation of phenol-contaminated soils.  相似文献   

7.
Chlorobium limicola UdG 6038, a green sulfur bacterium, was isolated from anoxic sediments. Cells were gram-negative, non-motile, ovoid shaped, and contained chlorobactene and bacteriochlorophyll c as the main photosynthetic pigments. The DNA G+C content was 56.4 mol%. Ultrastructural studies revealed the presence of abundant spinae (45–110 spinae per cell) attached to the cell wall. India-ink-stained cells observed under the optical microscope were surrounded by a large capsule (5–11 μm total diameter). The presence of this capsule was coincident with the presence of a large number of spinae (> 30 spinae per cell). The mucilaginous capsule was attached to the spinae without penetrating it. In batch culture, the synthesis of spinae in strain UdG 6038 was not affected by changes in temperature, pH, salt concentration, or illumination at physiological ranges and hence, the cells remained spined. The control of spinae production was experimentally confirmed using a semicontinuous batch culture refed by sulfide pulsing. The culture remained at a low spination level (> 30 spinae per cell) only when the duration of sulfide starvation between pulses was less than 5 h. After longer sulfide starvation periods, the cells remained spined (more than 38 ± 6.3 spinae per cell). This observation supports the idea that the duration of sulfide limitation in the culture plays a key role in controlling the spination process in strain C. limicola UdG 6038. Chlorobium spinae may play an eco-physiological role in buoyancy capacity and adhesion of sulfur globules to the cells in natural environments where sulfide concentrations are expected to be highly variable. Revision received: 13 November 1995 / Accepted: 19 January 1996  相似文献   

8.
The green sulfur bacterium Chlorobium limicola UdG6040 exhibited a significant change in the spectral properties of its antenna when transferred from batch culture to a sulfide-limited chemostat. In steady-state continuous cultures, the in vivo absorption maximum of the culture changed to shorter wavelengths according to the dilution rate. The maximum difference observed was of 15 nm when cells were growing at 0.087 h–1. HPLC analyses revealed that the observed spectral change was caused by a partial enrichment of the original BChl c-containing antenna with BChl d molecules together with a change in the homolog composition of both pigments. The relative amount of BChl d reached a maximum value of 50% when cells were growing at 0.087 h–1. The content of BChl d decreased to less than the 22% when the dilution rate was diminished to 0.015 h–1. An unbalance of pigment synthesis at high dilution rates is suspected to be responsible of the changes observed in the antenna composition. Chlorosomes isolated from Chl. limicola UdG6040 growing at 0.070 h–1 contain organised pools of BChl c and BChl d in equal amounts. Received: 2 December 1998 / Accepted: 25 February 1999  相似文献   

9.
Due to the extensive spread of antibiotic-resistant Klebsiella pneumoniae, the non-toxic immunomodulator, ammonium trichloro (dioxoethylene-o, o′) tellurate (AS101), was introduced for the first time in this study. Eleven strains of K. pneumoniae were tested: five were extended spectrum beta lactamase (ESBL)-producing strains and six were non-ESBL-producing strains. The MIC and MBC of ten strains were 9 μg/ml AS101 and 18 μg/ml for one strain. AS101 treatment inhibited bacterial growth in a dose-dependent manner on protein-rich media. No inhibition by AS101 was observed on poorer media. In combination with β-mercaptoethanol (2-ME) or cysteamine, AS101 inhibited bacterial growth in both types of media. Growth inhibition was also shown following AS101 treatment at both lag and log phases. Our data indicate that AS101 enters the bacterium through its porins, causing bacterial destruction. The mechanism of cell death was characterized using several techniques: (a) scanning electron microscopy showed that bacteria treated with AS101 or in combination with cysteamine exhibited evidence of cell-wall damage; (b) X-ray microanalysis demonstrated damage to Na/K pumps; and (c) transmission electron microscopy demonstrated cell lysis. These phenomena suggest that AS101 has antibacterial potential against K. pneumoniae infections. B. Sredni and Y. Nitzan were equal collaborators in this research.  相似文献   

10.
Indigenous strains isolated from rhizosphere may contain highly competent genotypes to enhance the plant growth and often perform better than the introduced isolates. The present study deals with the characterisation of plant growth-promoting (PGP) attributes and antagonistic activity of Azotobacter chroococcum AZO2 against Macrophomina phaseolina causing charcoal rot disease and their effect on the growth of sesame (Sesamum indicum L.). Eight strains of Azotobacter were isolated from sesame rhizosphere on nitrogen-free medium, which exhibited significant PGP parameters such as phosphate solubilisation, indole acetic acid and siderophore production. The strain A. chroococcum AZO2 (EU274299) was characterised by 16S rDNA gene sequencing. Amplification of 781 bp nif H gene confirms nitrogenase activity of all the strains. A. chroococcum AZO2 exhibited strong antagonistic activities against M. phaseolina causing 81% colony growth inhibition and resulted in hyphal perforations, empty cell (halo) formation, hyphal twisting, shrinking and lysis of fungal mycelia along with degeneration of sclerotia. A. chroococcum AZO2 produced chitinase that caused degradation and digestion of the cell wall component of M. phaseolina. Different vegetative and reproductive parameters of sesame were found to be enhanced significantly upon application of A. chroococcum AZO2 + half doses of chemical fertilisers. A. chroococcum AZO2 was also found to be an effective root coloniser, plant growth promoter and potential antagonistic bacterium. It can be concluded that A. chroococcum AZO2 strain bears the characteristics of technological applications for inoculant preparation and growth enhancement of sesame besides being utilised as a better PGP bacterium as well as an effective agent for biocontrol of M. phaseolina.  相似文献   

11.
Positive and negative bands in previously measured circular dichroism (CD) spectra of Chlorobium limicola chlorosomes appeared to be sign-reversed relative to those of Chloroflexus aurantiacus chlorosomes in the 740–750 nm spectral region where bacteriochlorophyll (BChl) c absorbs maximally. It was not clear, however, whether this difference was intrinsic to the chlorosomes or was due to differences in the procedures used to prepare them. We therefore repeated the CD measurements using chlorosomes isolated from both Cb. limicola f. thiosulfatophilum and Cf. aurantiacus using the method of Gerola and Olson (1986, Biochim. Biophys. Acta 848: 69–76). Contrary to the earlier results, both types of chlorosomes had very similar CD spectra, suggesting that both have similar arrangements of BChl c molecules. The previously reported difference between the CD spectra of Chlorobium and Chloroflexus chlorosomes is due to the instability of Chlorobium chlorosomes, which can undergo a hypsochromic shift in their near infrared absorption maximum accompanied by an apparent inversion in their near infrared CD spectrum during isolation. Treating isolated chlorosomes with the strong ionic detergent sodium dodecylsulfate, which removes BChl a, does not alter the arrangement of BChl c molecules in either Chloroflexus or Chlorobium chlorosomes, as indicated by the lack of an effect on their CD spectra.Abbreviations BChl bacteriochlorophyll - Cb. Chlorobium - CD circular dichroism - Cf. Chloroflexus - NIR near infrared  相似文献   

12.
The degradation of low concentrations of 1,3-dichloro-2-propanol (1,3-DCP) and related halohydrins by whole cells and cell-free extracts of soil bacteria has been investigated. Three bacteria (strains A1, A2, A4), isolated from the same soil sample, were distinguished on the basis of cell morphology, growth kinetics and haloalcohol dehalogenase profiles. Strain A1, probably an Agrobacterium sp., dehalogenated 1,3-DCP with the highest specific activity (0.33 U mg protein−1) and also had the highest affinity for 1,3-DCP (K m, 0.1 mM). Non-growing cells of this bacterium dehalogenated low concentrations of 1,3-DCP with a first-order rate constant (k 1) of 1.13 h−1 . The presence of a non-dehalogenating bacterium, strain G1 (tentatively identified as Pseudomonas mesophilius), did not enhance the dehalogenation rate of low 1,3-DCP concentrations. However, the mixed-species consortium of strains A1 and G1 had greater stability than the mono-species culture at DCP concentrations above 1.0 gl−1. Received: 30 April 1996 / Received revision: 30 July 1996 / Accepted: 5 August 1996  相似文献   

13.
We report the detection by gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry analyses of the secreted 2,5-diketopiperazines (DKPs) cyclo(-Ala-Pro), cyclo(-Gly-Pro), cyclo(-Val-Pro), cyclo(-Ile-Pro), cyclo(-Leu-Pro), cyclo(-Pro-Pro), cyclo(-HyP-Pro), cyclo(-Met-Pro), and cyclo(-Phe-Pro) produced by Bacillus pumilus. The study focuses on a marine isolate and a laboratory test strain of B. pumilus with capabilities to lyse pregrown living cell lawns of different bacterial species, among them Arthrobacter citreus. Chromatographic methods were used to analyze induced bioactive compounds. At least 13 different DKPs are produced by B. pumilus. Both strains respond with an increased production of the DKPs cyclo(-Gly-Pro), cyclo(-Ala-Pro), and cyclo(-Val-Pro) to the presence of pasteurized A. citreus cells after 4 h in a nutrient-poor liquid medium. In agar diffusion assays, these DKPs did not cause lysis zones in living cell lawns, but they did inhibit further growth of several pregrown test bacteria in microplates even at concentrations as low as 1 μg ml?1. Antibiotic substances produced by B. pumilus after 20 h of cultivation in a special lysis medium showed lytic activity in cell-free extracts of B. pumilus culture supernatants.  相似文献   

14.
A new halophilic anaerobe was isolated from the hypersaline surface sediments of El-Djerid Chott, Tunisia. The isolate, designated as strain 6SANG, grew at NaCl concentrations ranging from 14 to 30%, with an optimum at 20–22%. Strain 6SANG was a non-spore-forming, non-motile, rod-shaped bacterium, appearing singly, in pairs, or occasionally as long chains (0.7–1 × 4–13 μm) and showed a Gram-negative-like cell wall pattern. It grew optimally at pH values between 7.2 and 7.4, but had a very broad pH range for growth (5.9–8.4). Optimum temperature for growth was 42°C (range 30–50°C). Strain 6SANG required yeast extract for growth on sugars. Glucose, sucrose, galactose, mannose, maltose, cellobiose, pyruvate, and starch were fermented. The end products from glucose fermentation were acetate, butyrate, lactate, H2, and CO2. The G + C ratio of the DNA was 34.3 mol%. Strain 6SANG exhibited 16S rRNA gene sequence similarity values of 91–92% with members of the genus Halobacteroides, H. halobius being its closest phylogenetic relative. Based on phenotypic and phylogenetic characteristics, we propose that this bacterium be classified as a novel species of a novel genus, Halanaerobaculum tunisiense gen. nov., sp. nov. The type strain is 6SANGT (=DSM 19997T = JCM 15060T).  相似文献   

15.
1. Chlorobium limicola forma sp. thiosulfatophilum was cultivated at 22 and 22000 lux. 2. The content of bchl d on a protein basis in the low light intensity cultures was about twice that of the high light intensity cultures. 3. After growth at 22 lux the red bchl d peak was at c. 743 nm, while at the higher intensity this peak was at c. 732 nm. 4. Electron microscopy of thin sections of Chlorobium revealed that vesicle size was greater at the low light intensity than at the high. 5. This was confirmed by sucrose density gradient centrifugation of differentially 14C-labelled vesicles from cultures grown at the two intensities. 6. The optimum temperature for growth was about 35°C. Incubation at the optimum temperature was particularly beneficial at high light intensity.Abbreviation bchl bacteriochlorophyll  相似文献   

16.
Competition experiments between Chromatium vinosum and Chlorobium limicola in sulfide-limited continuous culture under photolithoautotrophic conditions resulted in the coexistence of both organisms. The ratio between the two bacteria was dilution-rate as well as pH dependent. The observed coexistence can be explained as a hitherto not reported form of dual substrate limitation. The two substrates involved are the electron donors sulfide (growth-limiting substrate in the reservoir vessel) and extracellular elemental sulfur (formed by Chlorobium as a result of sulfide oxidation). It is argued that, although Chlorobium may have the better affinity for both substrates involved, Chromatium can compete successfully on the basis of its intracellular storage of sulfur. Ecological implication of the observed coexistence with respect to natural blooms are discussed.  相似文献   

17.
Mango (Mangifera indica L.) is considered as one of the most popular fruits among millions of people in the tropical area and increasingly in the developed countries. Anthracnose, caused by the fungus Colletotrichum gloeosporioides, is the most important pre- and post-harvest disease of mango. The objective of this research was to evaluate the prevalence of different promising antagonistic Trichoderma and Bacillus spp. on phyloplane of mango in Ethiopia and to evaluate their antagonistic potential against the pathogen. A total of 19 mango fields were surveyed and anthracnose affected all fields. Culture studies on potato dextrose agar for evaluation of antibiosis activity of Trichoderma spp. and Bacillus spp. revealed that they have inhibitory and lytic effect on C. gloeosporioides, which is an indication of their potential biocontrol agent for management of mango anthracnose as an alternative to chemical control. Significant differences (p?<?0.05) were observed among Bacillus isolates in causing lysis of pathogen mycelium, when inoculated on actively growing colony of C. gloeosporioides. Maximum reduction in growth rate of pathogen was observed with Bacillus spp. (B50), which restricted the growth to 2.7?mm compared to 8.3?mm in the control with 67.5% efficacies. There were similar effects (p?<?0.05) among Trichoderma spp. in formation of inhibition zones and lysis by varying degrees up to 59.7% efficacies in reducing linear growth of the pathogen in dual culture.  相似文献   

18.
Cell-free extracts of the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum strains 1C and L have been shown to cleave citrate with the formation of oxaloacetate and acetyl-CoA. This capacity was found in autotrophically grown cells as well as in the cells grown on media with acetate or L-glutamate. Citrate lyase activity in cell-free extracts is only measurable in the presence of citrate, adenosine-5-triphosphate, coenzyme A and Mg2+ or Mn2+. It is concluded on the basis of the obtained data that C. limicola f. thiosulfatophilum contains adenosine-5-triphosphate-linked citrate lyase (E.C.4.1.3.8). In contrast to green bacteria in the purple bacteria Ectothiorhodospira shaposhnikovii, Rhodospirillum rubrum and Thiocapsa roseopersicina citrate lyase activity was not found.  相似文献   

19.
Strain GB isolated from the maize rhizosphere is a gram-negative, aerobic, non-spore-forming, nonpigmented, nonmotile, chemolithotrophic, facultatively methylotrophic bacterium. Cells are cocci or short rods. The strain does not require vitamins. Optimum growth in a medium with methanol occurs at 38–42°C at pH 8.0–9.2. The doubling time is 12 h. In addition to methanol, the bacterium can grow on methylamine, dimethylformamide, acetone, thiosulfate + NaHCO3, and in an atmosphere of H2 + CO2 + O2. Methanol and methylamine are oxidized by the respective dehydrogenases to CO2 via formaldehyde and formate, respectively. The CO2 produced is assimilated via the ribulose bisphosphate pathway. Fatty acids are dominated by cyclopropanoic (58–61%), palmitic (24–26%), and octadecanoic (8–9%) acids. The main phospholipids are phosphatidylglycerol, phosphatidylethanolamine, and phosphatidylcholine. The major ubiquinone is Q10. The bacterial genome contains genes controlling the synthesis and secretion of cytokinins. The culture liquid exhibits cytokinin activity. The G+C content of DNA is 62.5 mol %, as determined from the DNA thermal denaturation temperature Tm). Strain GB shows a moderate degree of DNA-DNA homology (<40%) with the type representatives of the genusParacoccus. Based on the data obtained, the bacterium was classified as a new species of this genus, namedP. kondratievae.  相似文献   

20.
A sulfate-reducing bacterium, designated strain ESC1, was isolated and found to be a new species. Strain ESC1 is a strictly anaerobic, gram-negative, non-sporeforming, motile, short, round-ended rod often occurring in pairs. Of 31 fermentative substrates tested, only pyruvate was utilized. Sulfate enhanced growth with pyruvate and allowed growth with ethanol, lactate, formate and hydrogen. Both sulfate and thiosulfate were reduced. Lactate was incompletely oxidized to acetate and CO2. The strain was desulfoviridin negative. The G+C content is 59.9%. These data suggested placement of strain ESC1 in the genus Desulfomicrobium. Comparative 16S rRNA analysis showed that strain ESC1 shares 98% rRNA sequence similarity with Desulfomicrobium baculatum and Desulfovibrio desulfuricans strain Norway 4. The latter two strains shared greater than 99% 16S rRNA sequence similarity. Strain ESC1 has been designated as the new species Desulfomicrobium escambium. We also recommend that D. desulfuricans strain Norway 4 be considered for reclassification as a Desulfomicrobium species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号