首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrolysis and fermentation of insoluble cellulose (Avicel) by continuous cultures of Ruminococcus albus 7 was studied. An anaerobic continuous culture apparatus was designed which permitted gas collection, continuous feeding, and wasting at different retention times. The operation of the apparatus was controlled by a personal computer. Cellulose destruction ranged from ca. 30 to 70% for hydraulic retention times of 0.5 to 2.0 days. Carbon recovery in products was 92 to 97%, and the oxidation-reduction ratios ranged from 0.91 to 1.15. The total product yield (biomass not included) per gram of cellulose (expressed as glucose) was 0.83 g g−1, and the ethanol yield was 0.41 g g−1. The product yield was constant, indicating that product formation was growth linked.  相似文献   

2.
A continuous-culture device, adapted for use with solid substrates, was used to evaluate the effects of 3-phenylpropanoic acid (PPA) upon the ability of the South African strain Ruminococcus albus Ce63 to ferment cellulose. Steady states of fermentation were established with a dilution rate of 0.17 h−1, and the extent and volumetric rates of cellulose fermentation were determined over four consecutive days. When the growth medium contained no additions (control), 25 μM phenylacetate alone, 25 μM PPA alone, or 25 μM each of phenylacetate and PPA, the extent of cellulose hydrolysis was determined to be 41.1, 35.7, 90.2, and 86.9%, respectively, and the volumetric rate of cellulose hydrolysis was 103.0, 97.9, 215.5, and 230.4 mg liter−1 h−1, respectively. To evaluate the effect of PPA availability on affinity for cellulose, the values for dilution rate and extent of cellulose hydrolysis were used in combination with values for maximum specific growth rate determined from previous studies of growth rates and kinetics of cellulose hydrolysis. The findings support the contention that PPA maintains a competitive advantage for R. albus when grown in a dynamic, fiber-rich environment.  相似文献   

3.
The hydrolysis and fermentation of insoluble cellulose were investigated using continuous cultures of Clostridium cellulolyticum with increasing amounts of carbon substrate. At a dilution rate (D) of 0.048 h−1, biomass formation increased proportionately to the cellulose concentration provided by the feed reservoir, but at and above 7.6 g of cellulose liter−1 the cell density at steady state leveled off. The percentage of cellulose degradation declined from 32.3 to 8.3 with 1.9 and 27.0 g of cellulose liter−1, respectively, while cellodextrin accumulation rose and represented up to 4.0% of the original carbon consumed. The shift from cellulose-limited to cellulose-sufficient conditions was accompanied by an increase of both the acetate/ethanol ratio and lactate biosynthesis. A kinetics study of C. cellulolyticum metabolism in cellulose saturation was performed by varying D with 18.1 g of cellulose liter−1. Compared to cellulose limitation (M. Desvaux, E. Guedon, and H. Petitdemange, J. Bacteriol. 183:119–130, 2001), in cellulose-sufficient continuous culture (i) the ATP/ADP, NADH/NAD+, and qNADH produced/qNADH used ratios were higher and were related to a more active catabolism, (ii) the acetate/ethanol ratio increased while the lactate production decreased as D rose, and (iii) the maximum growth yield (Y) (40.6 g of biomass per mol of hexose equivalent) and the maximum energetic yield (Y) (19.4 g of biomass per mol of ATP) were lowered. C. cellulolyticum was then able to regulate and optimize carbon metabolism under cellulose-saturated conditions. However, the facts that some catabolized hexose and hence ATP were no longer associated with biomass production with a cellulose excess and that concomitantly lactate production and pyruvate leakage rose suggest the accumulation of an intracellular inhibitory compound(s), which could further explain the establishment of steady-state continuous cultures under conditions of excesses of all nutrients. The following differences were found between growth on cellulose in this study and growth under cellobiose-sufficient conditions (E. Guedon, S. Payot, M. Desvaux, and H. Petitdemange, Biotechnol. Bioeng. 67:327–335, 2000): (i) while with cellobiose, a carbon flow into the cell of as high as 5.14 mmol of hexose equivalent g of cells−1 h−1 could be reached, the maximum entering carbon flow obtained here on cellulose was 2.91 mmol of hexose equivalent g of cells−1 h−1; (ii) while the NADH/NAD+ ratio could reach 1.51 on cellobiose, it was always lower than 1 on cellulose; and (iii) while a high proportion of cellobiose was directed towards exopolysaccharide, extracellular protein, and free amino acid excretions, these overflows were more limited under cellulose-excess conditions. Such differences were related to the carbon consumption rate, which was higher on cellobiose than on cellulose.  相似文献   

4.
Aerobic Fermentation of D-Xylose to Ethanol by Clavispora sp   总被引:1,自引:0,他引:1       下载免费PDF全文
Eleven strains of an undescribed species of Clavispora fermented D-xylose directly to ethanol under aerobic conditions. Strain UWO(PS)83-877-1 was grown in a medium containing 2% D-xylose and 0.5% yeast extract, and the following results were obtained: ethanol yield coefficient (ethanol/D-xylose), 0.29 g g−1 (57.4% of theoretical); cell yield coefficient (dry biomass/D-xylose), 0.25 g g−1; maximum ethanol concentration, 5.9 g liter−1; maximum volumetric ethanol productivity, 0.11 g liter−1 h−1. With initial D-xylose concentrations of 40, 60, and 80 g liter−1, maximum ethanol concentrations of 8.8, 10.9, and 9.8 g liter−1 were obtained, respectively (57.2, 57.1, and 48.3% of theoretical). Ethanol was found to inhibit the fermentation of D-xylose (Kp = 0.58 g liter−1) more than the fermentation of glucose (Kp = 6.5 g liter−1). The performance of this yeast compared favorably with that reported for some other D-xylose-fermenting yeasts.  相似文献   

5.
Thermothrix thiopara did not appear to be stressed at high temperature (72°C). Both the actual and theoretical yields were higher than those of analogous mesophilic sulfur bacteria, and the specific growth rate (μmax) was more rapid than that of most autotrophs. The specific growth rate (0.58 h−1), specific maintenance rate (0.11 h−1), actual molar growth yield at μmax (Ymax = 16 g mol−1), and theoretical molar growth yield (YG = 24 g mol−1) were all higher for T. thiopara (72°C) than for mesophilic (25 to 30°C) Thiobacillus spp. The growth efficiencies for T. thiopara at 70 and 75°C (0.84 and 0.78) were significantly higher than at 65°C (0.47). Corresponding specific maintenance rates were highest at 65°C (0.41 h−1) and lowest at 70 and 75°C (0.11 and 0.15 h−1, respectively). Growth efficiencies of metabolically similar mesophiles were generally higher than for T. thiopara. However, the actual yields at μmax were higher for T. thiopara because its theoretical yield was higher. Thus, at 70°C, T. thiopara was capable of deriving more metabolically useful energy from thiosulfate than were mesophilic sulfur bacteria at 25 and 30°C. The low growth efficiency of T. thiopara reflected higher maintenance expenditures. T. thiopara had higher maintenance rates than Thiobacillus ferroxidans or Thiobacillus denitrificans, but also attained higher molar growth yields. It is concluded that sulfur metabolism may be more efficient overall at extremely high temperatures due to increased theoretical yields despite increased maintenance requirements.  相似文献   

6.
Using experimental data from continuous cultures of Clostridium acetobutylicum with and without biomass recycle, relationships between product formation, growth and energetic parameters were explored, developed and tested. For glucose-limited cultures the maintenance models for, the Y ATP and biomass yield on glucose, and were found valid, as well as the following relationships between the butanol (Y B/G) or butyrate (Y BE/G) yields and the ATP ratio (R ATP, an energetic parameter), Y B/G =0.82-1.35 R ATP, Y BE/G =0.54 + 1.90 R ATP. For non-glucose-limited cultures the following correlations were developed, Y B/G =0.57-1.07 , Y B/G =0.82-1.35 R ATPATP and similar equations for the ethanol yield. All these expressions are valid with and without biomass recycle, and independently of glucose feed or residual concentrations, biomass and product concentrations. The practical significance of these expressions is also discussed.List of Symbols D h–1 dilution rate - m e mol g–1 h–1 maintenance energy coefficient - m G mol g–1 h–1 maintenance energy coefficient - R biomass recycle ratio, (dimensionless) - R ATP ATP ratio (eqs.(5), (10) and (11)), (dimensionless) - X kg/m3 biomass concentration - Y ATP g biomass per mol ATP biomass yield on ATP - Y ATP max g biomass per mol ATP maximum Y ATP - Y A/G mol acetate produced per mol glucose consumed molar yield of acetate - y an/g mol acetone produced per mol glucose consumed molar yield of acetone - Y B/G mol butanol produced per mol glucose consumed molar yield of butanol - y be/g mol butyrate produced per mol glucose consumed molar yield of butyrate - Y E/G mol ethanol produced per mol glucose consumed molar yield of ethanol - Y X/G g biomass per mol glucose consumed biomass yield on glucose - Y ATP max g biomass per mol maximum Y X/G glucose consumed - h–1 specific growth rate  相似文献   

7.
Summary The kinetics ofBordetella pertussis growth was studied in a glutamate-limited continuous culture. Growth kinetics corresponded to Monod's model. The saturation constant and maximum specific growth rate were estimated as well as the energetic parameters, theoretical yield of cells and maintenance coefficient. Release of pertussis toxin (PT) and lipopolysaccharide (LPS) were growth-associated. In addition, they showed a linear relationship between them. Growth rate affected neither outer membrane proteins nor the cell-bound LPS pattern.Nomenclature X cell concentration (g L–1) - specific growth rate (h–1) - m maximum specific growth rate (h–1) - D dilution rate (h–1) - S concentration of growth rate-limiting nutrient (glutamate) (mmol L–1 or g L–1) - Ks substrate saturation constant (mol L–1) - ms maintenance coefficient (g g–1 h–1) - Yx/s theoretical yield of cells from glutamate (g g–1) - Yx/s yield of cells from glutamate (g g–1) - YPT/s yield of soluble PT from glutamate (mg g–1) - YKDO/s yield of cell-free KDO from glutamate (g g–1) - YPT/x specific yield of soluble PT (mg g–1) - YKDO/x specific yield of cell-free KDO (g g–1) - qPT specific soluble PT production rate (mg g–1 h–1) - qKDO specific cell-free KDO production rate (g g–1 h–1)  相似文献   

8.
A high yield of lactic acid per gram of glucose consumed and the absence of additional metabolites in the fermentation broth are two important goals of lactic acid production by microrganisms. Both purposes have been previously approached by using a Kluyveromyces lactis yeast strain lacking the single pyruvate decarboxylase gene (KlPDC1) and transformed with the heterologous lactate dehydrogenase gene (LDH). The LDH gene was placed under the control the KlPDC1 promoter, which has allowed very high levels of lactate dehydrogenase (LDH) activity, due to the absence of autoregulation by KlPdc1p. The maximal yield obtained was 0.58 g g−1, suggesting that a large fraction of the glucose consumed was not converted into pyruvate. In a different attempt to redirect pyruvate flux toward homolactic fermentation, we used K. lactis LDH transformant strains deleted of the pyruvate dehydrogenase (PDH) E1α subunit gene. A great process improvement was obtained by the use of producing strains lacking both PDH and pyruvate decarboxylase activities, which showed yield levels of as high as 0.85 g g−1 (maximum theoretical yield, 1 g g−1), and with high LDH activity.  相似文献   

9.
Redox potential was used to develop a stationary-phase fermentation of Candida tropicalis that resulted in non-growth conditions with a limited decline in cell viability, a xylitol yield of 0.87 g g–1 (95% of the theoretical value), and a high maximum specific production rate (0.67 g g–1 h–1). A redox potential of 100 mV was found to be optimum for xylitol production over the range 0–150 mV. A shift from ethanol to xylitol production occurred when the redox potential was reduced from 50 mV to 100 mV as cumulative ethanol (Yethanol) decreased from 0.34 g g–1 to 0.025 g g–1 and Yxylitol increased from 0.15 g g–1 to 0.87 g g–1 (=0.05). Reducing the redox potential to 150 mV did not improve the fermentation. Instead, the xylitol yield and productivity decreased to 0.63 g g–1 and 0.58 g g–1 h–1 respectively and cell viability declined. The viable, stationary-phase fermentation could be used to develop a continuous fermentation process, significantly increasing volumetric productivity and reducing downstream separation costs, potentially by the use of a membrane cell-recycle reactor.Electronic supplementary material is available if you access this article at . On that page (frame on the left side), a link takes you directly to the electronic supplementary materialAn erratum to this article can be found at  相似文献   

10.
Double labeling of resistance markers and report genes can be used to breed engineered Saccharomyces cerevisiae strains that can assimilate xylose and glucose as a mixed carbon source for ethanol fermentation and increased ethanol production. In this study Saccharomyces cerevisiae W5 and Candida shehatae 20335 were used as parent strains to conduct protoplast fusion and the resulting fusants were screened by double labeling. High performance liquid chromatography (HPLC) was used to assess the ethanol yield following the fermentation of xylose and glucose, as both single and mixed carbon sources, by the fusants. Interestingly, one fusant (ZLYRHZ7) was demonstrated to have an excellent fermentation performance, with an ethanol yield using the mixed carbon source of 0.424 g g−1, which compares with 0.240 g g−1 (W5) and 0.353 g g−1 (20335) for the parent strains. This indicates an improvement in the ethanol yield of 43.4% and 16.7%, respectively.  相似文献   

11.
A family of 10 competing, unstructured models has been developed to model cell growth, substrate consumption, and product formation of the pyruvate producing strain Escherichia coli YYC202 ldhA::Kan strain used in fed-batch processes. The strain is completely blocked in its ability to convert pyruvate into acetyl-CoA or acetate (using glucose as the carbon source) resulting in an acetate auxotrophy during growth in glucose minimal medium. Parameter estimation was carried out using data from fed-batch fermentation performed at constant glucose feed rates of qVG=10 mL h–1. Acetate was fed according to the previously developed feeding strategy. While the model identification was realized by least-square fit, the model discrimination was based on the model selection criterion (MSC). The validation of model parameters was performed applying data from two different fed-batch experiments with glucose feed rate qVG=20 and 30 mL h–1, respectively. Consequently, the most suitable model was identified that reflected the pyruvate and biomass curves adequately by considering a pyruvate inhibited growth (Jerusalimsky approach) and pyruvate inhibited product formation (described by modified Luedeking–Piret/Levenspiel term).List of symbols cA acetate concentration (g L–1) - cA,0 acetate concentration in the feed (g L–1) - cG glucose concentration (g L–1) - cG,0 glucose concentration in the feed (g L–1) - cP pyruvate concentration (g L–1) - cP,max critical pyruvate concentration above which reaction cannot proceed (g L–1) - cX biomass concentration (g L–1) - KI inhibition constant for pyruvate production (g L–1) - KIA inhibition constant for biomass growth on acetate (g L–1) - KP saturation constant for pyruvate production (g L–1) - KP inhibition constant of Jerusalimsky (g L–1) - KSA Monod growth constant for acetate (g L–1) - KSG Monod growth constant for glucose (g L–1) - mA maintenance coefficient for growth on acetate (g g–1 h–1) - mG maintenance coefficient for growth on glucose (g g–1 h–1) - n constant of extended Monod kinetics (Levenspiel) (–) - qV volumetric flow rate (L h–1) - qVA volumetric flow rate of acetate (L h–1) - qVG volumetric flow rate of glucose (L h–1) - rA specific rate of acetate consumption (g g–1 h–1) - rG specific rate of glucose consumption (g g–1 h–1) - rP specific rate of pyruvate production (g g–1 h–1) - rP,max maximum specific rate of pyruvate production (g g–1 h–1) - t time (h) - V reaction (broth) volume (L) - YP/G yield coefficient pyruvate from glucose (g g–1) - YX/A yield coefficient biomass from acetate (g g–1) - YX/A,max maximum yield coefficient biomass from acetate (g g–1) - YX/G yield coefficient biomass from glucose (g g–1) - YX/G,max maximum yield coefficient biomass from glucose (g g–1) - growth associated product formation coefficient (g g–1) - non-growth associated product formation coefficient (g g–1 h–1) - specific growth rate (h–1) - max maximum specific growth rate (h–1)  相似文献   

12.
Pozol is an acid beverage obtained from the natural fermentation of nixtamal (heat- and alkali-treated maize) dough. The concentration of mono- and disaccharides from maize is reduced during nixtamalization, so that starch is the main carbohydrate available for lactic acid fermentation. In order to provide some basis to understand the role of amylolytic lactic acid bacteria (ALAB) in this fermented food, their diversity and physiological characteristics were determined. Forty amylolytic strains were characterized by phenotypic and molecular taxonomic methods. Four different biotypes were distinguished via ribotyping; Streptococcus bovis strains were found to be predominant. Streptococcus macedonicus, Lactococcus lactis, and Enterococcus sulfureus strains were also identified. S. bovis strain 25124 showed extremely low amylase yield relative to biomass (139 U g [cell dry weight]−1) and specific rate of amylase production (130.7 U g [cell dry weight]−1 h−1). In contrast, it showed a high specific growth rate (0.94 h−1) and an efficient energy conversion yield to bacterial cell biomass (0.31 g of biomass g of substrate−1). These would confer on the strain a competitive advantage and are the possible reasons for its dominance. Transient accumulation of maltooligosaccharides during fermentation could presumably serve as energy sources for nonamylolytic species in pozol fermentation. This would explain the observed diversity and the dominance of nonamylolytic lactic acid bacteria at the end of fermentation. These results are the first step to understanding the importance of ALAB during pozol fermentation.  相似文献   

13.
The ruminal cellulolytic bacterium Fibrobacter succinogenes S85 was grown in cellulose-fed continuous culture at 22 different combinations of dilution rate (D, 0.014–0.076 h-1) and extracellular pH (6.11–6.84). Effects of pH and D on the fermentation were determined by subjecting data on cellulose consumption, cell yield, product yield (succinate, acetate, formate), and soluble sugar concentrationto response surface analysis. The extent of cellulose conversion decreased with increasing D. First-order rate constants at rapid growth rates were estimated as 0.07–0.11 h-1, and decreased with decreasing pH. Apparent decreases in the rate constant with increasing D was not due to inadequate mixing or preferential utilization of the more amorphous regions of the cellulose. Significant quantities of soluble sugars (0.04–0.18 g/l, primarily glucose) were detected in all cultures, suggesting that glucose uptake was rather inefficient. Cell yields (0.11–0.24 g cells/g cellulose consumed) increased with increasing D. Pirt plots of the predicted yield data were used to determined that maintenance coefficient (0.04–0.06 g cellulose/g cells · h) and true growth yield (0.23–0.25 g cells/g cellulose consumed) varied slightly with pH. Yields of succinate, the major fermentation endproduct, were as high as 1.15 mol/mol anhydroglucose fermented, and were slightly affected by dilution rate but were not affected by pH. Comparison of the fermentation data with that of other ruminal cellulolytic bacteria indicates that F. succinogenes S85 is capable of rapid hydrolysis of crystalline cellulose and efficient growth, despite a lower max on microcrystalline cellulose.  相似文献   

14.
D(–)-Lactic acid was produced from cellulose by simultaneous saccharification and fermentation (SSF) in media containing cellulolytic enzymes and Lactobacillus coryniformis subsp. torquens ATCC 25600 at 39 °C and pH 5.4, yielding 0.89 g D(–)-lactic acid g–1 cellulose at a mean volumetric productivity of 0.5 g l–1 h–1. No L(+)-lactic acid was found in the medium.  相似文献   

15.
3-(3′-Isocyanocyclopent-2-enylidene)propionic acid at a concentration of 2 to 5 μg ml−1 inhibited cellulose digestion by a mixed culture of rumen microorganisms and in other experiments inhibited the degradation of timothy hay (Phleum pratense) in a digestibility test. At isocyanide concentrations of 12 μg ml−1 the fermentation activity of rumen fluid, measured by its dehydrogenase activity, was inhibited but not abolished. All of these isocyanide effects were reversed by the incorporation of nickelous ion into the solutions of the systems under study. The activity of 1 mol of isocyanide is reversed by about 1 mol of Ni2+ and, in the case of the cellulose digestion test, by about 1 mol of Co2+. Of some 15 other ions tested only Pd2+ and possibly chromium reversed the effect of the isocyanide.  相似文献   

16.
A model of growth and substrate utilization for ferrous-iron-oxidizing bacteria attached to the disks of a rotating biological contactor was developed and tested. The model describes attached bacterial growth as a saturation function in which the rate of substrate utilization is determined by a maximum substrate oxidation rate constant (P), a half-saturation constant (Ks), and the concentration of substrate within the rotating biological contactor (S1). The maximum oxidation rate constant was proportional to flow rate, and the substrate concentration in the reactor varied with influent substrate concentration (S0). The model allowed the prediction of metabolic constants and included terms for both constant and growth-rate-dependent maintenance energies. Estimates for metabolic constants of the attached population of acidophilic, chemolithotrophic, iron-oxidizing bacteria limited by ferrous iron were: maximum specific growth rate (μmax), 1.14 h−1; half-saturation constant (Ks) for ferrous iron, 54.9 mg/liter; constant maintenance energy coefficient (m1), 0.154 h−1; growth-rate-dependent maintenance energy coefficient (m′), 0.07 h−1; maximum yield (Yg), 0.063 mg of organic nitrogen per mg of Fe(II) oxidized.  相似文献   

17.
KIF3AB is an N-terminal processive kinesin-2 family member best known for its role in intraflagellar transport. There has been significant interest in KIF3AB in defining the key principles that underlie the processivity of KIF3AB in comparison with homodimeric processive kinesins. To define the ATPase mechanism and coordination of KIF3A and KIF3B stepping, a presteady-state kinetic analysis was pursued. For these studies, a truncated murine KIF3AB was generated. The results presented show that microtubule association was fast at 5.7 μm−1 s−1, followed by rate-limiting ADP release at 12.8 s−1. ATP binding at 7.5 μm−1 s−1 was followed by an ATP-promoted isomerization at 84 s−1 to form the intermediate poised for ATP hydrolysis, which then occurred at 33 s−1. ATP hydrolysis was required for dissociation of the microtubule·KIF3AB complex, which was observed at 22 s−1. The dissociation step showed an apparent affinity for ATP that was very weak (K½,ATP at 133 μm). Moreover, the linear fit of the initial ATP concentration dependence of the dissociation kinetics revealed an apparent second-order rate constant at 0.09 μm−1 s−1, which is inconsistent with fast ATP binding at 7.5 μm−1 s−1 and a Kd,ATP at 6.1 μm. These results suggest that ATP binding per se cannot account for the apparent weak K½,ATP at 133 μm. The steady-state ATPase Km,ATP, as well as the dissociation kinetics, reveal an unusual property of KIF3AB that is not yet well understood and also suggests that the mechanochemistry of KIF3AB is tuned somewhat differently from homodimeric processive kinesins.  相似文献   

18.
Summary Fermentation yields of Lactobacillus plantarum were measured at controlled pH between 4.0 and 8.0 and initial lactate concentrations of 0–90 g/l. Optimal growth conditions at pH 6.0 without addition of lactate gave a growth rate of 0.57 h–1 and 20 g dry biomass/mol ATP formed (Y ATP). The pH variations resulted in a decrease in growth rate but the effect on Y ATPwas insignificant. The addition of lactate to the medium at 0 h resulted in linear decrease in the growth rate of the culture, and all the metabolic activities were completely inhibited at 110 g/l. The Y ATPand biomass/ substrate yield (Y X/S) remained fairly steady up to 33 g lactate/l, beyond which both yields decreased considerably. Offsprint requests to: M. Raimbault  相似文献   

19.
Cocultivation of cellulolytic and saccharolytic microbial populations is a promising strategy to improve bioethanol production from the fermentation of recalcitrant cellulosic materials. Earlier studies have demonstrated the effectiveness of cocultivation in enhancing ethanolic fermentation of cellulose in batch fermentation. To further enhance process efficiency, a semicontinuous cyclic fed-batch fermentor configuration was evaluated for its potential in enhancing the efficiency of cellulose fermentation using cocultivation. Cocultures of cellulolytic Clostridium thermocellum LQRI and saccharolytic Thermoanaerobacter pseudethanolicus strain X514 were tested in the semicontinuous fermentor as a model system. Initial cellulose concentration and pH were identified as the key process parameters controlling cellulose fermentation performance in the fixed-volume cyclic fed-batch coculture system. At an initial cellulose concentration of 40 g liter−1, the concentration of ethanol produced with pH control was 4.5-fold higher than that without pH control. It was also found that efficient cellulosic bioethanol production by cocultivation was sustained in the semicontinuous configuration, with bioethanol production reaching 474 mM in 96 h with an initial cellulose concentration of 80 g liter−1 and pH controlled at 6.5 to 6.8. These results suggested the advantages of the cyclic fed-batch process for cellulosic bioethanol fermentation by the cocultures.  相似文献   

20.
An alternative method for the conversion of cheese whey lactose into ethanol has been demonstrated. With the help of continuous-culture technology, a catabolite repression-resistant mutant of Saccharomyces cerevisiae completely fermented equimolar mixtures of glucose and galactose into ethanol. The first step in this process was a computer-controlled fed-batch operation based on the carbon dioxide evolution rate of the culture. In the absence of inhibitory ethanol concentrations, this step allowed us to obtain high biomass concentrations before continuous fermentation. The continuous anaerobic process successfully incorporated a cell-recycle system to optimize the fermentor productivity. Under conditions permitting a low residual sugar concentration (≤1%), maximum productivity (13.6 g liter−1 h−1) was gained from 15% substrate in the continuous feed at a dilution rate of 0.2 h−1. Complete fermentation of highly concentrated feed solutions (20%) was also demonstrated, but only with greatly diminished fermentor productivity (5.5 g liter−1 h−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号