首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identification of a Novel Structural Protein of Arteriviruses   总被引:14,自引:0,他引:14       下载免费PDF全文
Arteriviruses are positive-stranded RNA viruses with an efficiently organized, polycistronic genome. A short region between the replicase gene and open reading frame (ORF) 2 of the equine arteritis virus (EAV) genome was previously assumed to be untranslated. However, here we report that this segment of the EAV genome contains the 5' part of a novel gene (ORF 2a) which is conserved in all arteriviruses. The 3' part of EAV ORF 2a overlaps with the 5' part of the former ORF 2 (now renamed ORF 2b), which encodes the GS glycoprotein. Both ORF 2a and ORF 2b appear to be expressed from mRNA 2, which thereby constitutes the first proven example of a bicistronic mRNA in arteriviruses. The 67-amino-acid protein encoded by EAV ORF 2a, which we have provisionally named the envelope (E) protein, is very hydrophobic and has a basic C terminus. An E protein-specific antiserum was raised and used to demonstrate the expression of the novel gene in EAV-infected cells. The EAV E protein proved to be very stable, did not form disulfide-linked oligomers, and was not N-glycosylated. Immunofluorescence and immunoelectron microscopy studies showed that the E protein associates with intracellular membranes both in EAV-infected cells and upon independent expression. An analysis of purified EAV particles revealed that the E protein is a structural protein. By using reverse genetics, we demonstrated that both the EAV E and GS proteins are essential for the production of infectious progeny virus.  相似文献   

2.
Four structural proteins of Lelystad virus (Arteriviridae) were recognized by monoclonal antibodies in a Western immunoblotting experiment with purified virus. In addition to the 18-kDa integral membrane protein M and the 15-kDa nucleocapsid protein N, two new structural proteins with molecular masses of 45 to 50 kDa and 31 to 35 kDa, respectively, were detected. Monoclonal antibodies that recognized proteins of 45 to 50 kDa and 31 to 35 kDa immunoprecipitated similar proteins expressed from open reading frames (ORFs) 3 and 4 in baculovirus recombinants, respectively. Therefore, the 45- to 50-kDa protein is encoded by ORF3 and the 31- to 35-kDa protein is encoded by ORF4. Peptide-N-glycosidase F digestion of purified virus reduced the 45- to 50-kDa and 31- to 35-kDa proteins to core proteins of 29 and 16 kDa, respectively, which indicates N glycosylation of these proteins in the virion. Monoclonal antibodies specific for the 31- to 35-kDa protein neutralized Lelystad virus, which indicates that at least part of this protein is exposed at the virion surface. We propose that the 45- to 50-kDa and 31- to 35-kDa structural proteins of Lelystad virus be named GP3 and GP4, to reflect their glycosylation and the ORFs from which they are expressed. Antibodies specific for GP3 and GP4 were detected by a Western immunoblotting assay in swine serum after an infection with Lelystad virus.  相似文献   

3.
The nucleotide sequence of the genome of equine arteritis virus (EAV) was determined from a set of overlapping cDNA clones and was found to contain eight open reading frames (ORFs). ORFs 2 through 7 are expressed from six 3'-coterminal subgenomic mRNAs, which are transcribed from the 3'-terminal quarter of the viral genome. A number of these ORFs are predicted to encode structural EAV proteins. The organization and expression of the 3' part of the EAV genome are remarkably similar to those of coronaviruses and toroviruses. The 5'-terminal three-quarters of the genome contain the putative EAV polymerase gene, which also shares a number of features with the corresponding gene of corona- and toroviruses. The gene contains two large ORFs, ORF1a and ORF1b, with an overlap region of 19 nucleotides. The presence of a "shifty" heptanucleotide sequence in this region and a downstream RNA pseudoknot structure indicate that ORF1b is probably expressed by ribosomal frameshifting. The frameshift-directing potential of the ORF1a/ORF1b overlap region was demonstrated by using a reporter gene. Moreover, the predicted ORF1b product was found to contain four domains which have been identified in the same relative positions in coronavirus and torovirus ORF1b products. The sequences of the EAV and coronavirus ORF1a proteins were found to be much more diverged. The EAV ORF1a product contains a putative trypsinlike serine protease motif. Our data indicate that EAV, presently considered a togavirus, is evolutionarily related to viruses from the coronaviruslike superfamily.  相似文献   

4.
5.
6.
Structural protein requirements in equine arteritis virus assembly   总被引:1,自引:0,他引:1       下载免费PDF全文
Equine arteritis virus (EAV) is an enveloped, positive-stranded RNA virus belonging to the family Arteriviridae of the order Nidovirales. EAV particles contain seven structural proteins: the nucleocapsid protein N, the unglycosylated envelope proteins M and E, and the N-glycosylated membrane proteins GP(2b) (previously named G(S)), GP(3), GP(4), and GP(5) (previously named G(L)). Proteins N, M, and GP(5) are major virion components, E occurs in virus particles in intermediate amounts, and GP(4), GP(3), and GP(2b) are minor structural proteins. The M and GP(5) proteins occur in virus particles as disulfide-linked heterodimers while the GP(4), GP(3), and GP(2b) proteins are incorporated into virions as a heterotrimeric complex. Here, we studied the effect on virus assembly of inactivating the structural protein genes one by one in the context of a (full-length) EAV cDNA clone. It appeared that the three major structural proteins are essential for particle formation, while the other four virion proteins are dispensable. When one of the GP(2b), GP(3), or GP(4) proteins was missing, the incorporation of the remaining two minor envelope glycoproteins was completely blocked while that of the E protein was greatly reduced. The absence of E entirely prevented the incorporation of the GP(2b), GP(3), and GP(4) proteins into viral particles. EAV particles lacking GP(2b), GP(3), GP(4), and E did not markedly differ from wild-type virions in buoyant density, major structural protein composition, electron microscopic appearance, and genomic RNA content. On the basis of these results, we propose a model for the EAV particle in which the GP(2b)/GP(3)/GP(4) heterotrimers are positioned, in association with a defined number of E molecules, above the vertices of the putatively icosahedral nucleocapsid.  相似文献   

7.
RNA replicon particles derived from a vaccine strain of Venezuelan equine encephalitis virus (VEE) were used as a vector for expression of the major envelope proteins (G(L) and M) of equine arteritis virus (EAV), both individually and in heterodimer form (G(L)/M). Open reading frame 5 (ORF5) encodes the G(L) protein, which expresses the known neutralizing determinants of EAV (U. B. R. Balasuriya, J. F. Patton, P. V. Rossitto, P. J. Timoney, W. H. McCollum, and N. J. MacLachlan, Virology 232:114-128, 1997). ORF5 and ORF6 (which encodes the M protein) of EAV were cloned into two different VEE replicon vectors that contained either one or two 26S subgenomic mRNA promoters. These replicon RNAs were packaged into VEE replicon particles by VEE capsid protein and glycoproteins supplied in trans in cells that were coelectroporated with replicon and helper RNAs. The immunogenicity of individual replicon particle preparations (pVR21-G(L), pVR21-M, and pVR100-G(L)/M) in BALB/c mice was determined. All mice developed antibodies against the recombinant proteins with which they were immunized, but only the mice inoculated with replicon particles expressing the G(L)/M heterodimer developed antibodies that neutralize EAV. The data further confirmed that authentic posttranslational modification and conformational maturation of the recombinant G(L) protein occur only in the presence of the M protein and that this interaction is necessary for induction of neutralizing antibodies.  相似文献   

8.
The replicase open reading frame lb (ORF1b) protein of equine arteritis virus (EAV) is expressed from the viral genome as an ORF1ab fusion protein (345 kDa) by ribosomal frameshifting. Processing of the ORF1b polyprotein was predicted to be mediated by the nsp4 serine protease, the main EAV protease. Several putative cleavage sites for this protease were detected in the ORF1b polyprotein. On the basis of this tentative processing scheme, peptides were selected to raise rabbit antisera that were used to study the processing of the EAV replicase ORF1b polyprotein (158 kDa). In immunoprecipitation and immunoblotting experiments, processing products of 80, 50, 26, and 12 kDa were detected. Of these, the 80-kDa and the 50-kDa proteins contain the putative viral polymerase and helicase domains, respectively. Together, the four cleavage products probably cover the entire ORF1b-encoded region of the EAV replicase, thereby representing the first complete processing scheme of a coronaviruslike ORF1b polyprotein. Pulse-chase analysis revealed that processing of the ORF1b polyprotein is slow and that several large precursor proteins containing both ORF1a- and ORF1b-encoded regions are generated. The localization of ORF1b-specific proteins in the infected cell was studied by immunofluorescence. A perinuclear staining was observed, which suggests association with a membranous compartment.  相似文献   

9.
10.
The persistently infected carrier stallion is the critical natural reservoir of equine arteritis virus (EAV), as venereal infection of mares frequently occurs after breeding to such stallions. Two Thoroughbred stallions that were infected during the 1984 outbreak of equine viral arteritis in central Kentucky subsequently became long-term EAV carriers. EAV genomes amplified from the semen of these two stallions were compared by sequence analysis of the six 3' open reading frames (ORFs 2 through 7), which encode the four known structural proteins and two uncharacterized glycoproteins. The major variants of the EAV population that sequentially arose within the reproductive tract of each carrier stallion varied by approximately 1% per year, and the heterogeneity of the viral quasispecies increased during the course of long-term persistent infection. The various ORFs of the dominant EAV variants evolved independently, and there was apparently strong selective pressure on the uncharacterized GP3 protein during persistent infection. Amino acid changes also occurred in the V1 variable region of the GL protein. This region has been previously identified as a crucial neutralization domain, and selective pressures exerted on the V1 region during persistent EAV infection led to the emergence of virus variants with distinct neutralization properties. Thus, evolution of the EAV quasispecies that occurs during persistent infection of the stallion clearly can influence viral phenotypic properties such as neutralization and perhaps virulence.  相似文献   

11.
To study the proteolytic processing of the equine arteritis virus (EAV) replicase open reading frame 1a (ORF1a) protein, specific antisera were raised in rabbits, with six synthetic peptides and a bacterial fusion protein as antigens. The processing of the EAV ORF1a product in infected cells was analyzed with Western blot (immunoblot) and immunoprecipitation techniques. Additional information was obtained from transient expression of ORF1a cDNA constructs. The 187-kDa ORF1a protein was found to be subject to at least five proteolytic cleavages. The processing scheme, which covers the entire ORF1a protein, results in cleavage products of approximately 29, 61, 22, 31, 41, and 3 kDa, which were named nonstructural proteins (nsps) 1 through 6, respectively. Pulse-chase experiments revealed that the cleavages at the nsp1/2 and nsp2/3 junctions are the most rapid processing steps. The remaining nsp3456 precursor is first cleaved at the nsp4/5 site. Final processing of the nsp34 and nsp56 intermediates is extremely slow. As predicted from previous in vitro translation experiments (E. J. Snijder, A. L. M. Wassenaar, and W. J. M. Spaan, J. Virol. 66:7040-7048, 1992), a cysteine protease domain in nsp1 was shown to be responsible for the nsp1/2 cleavage. The other processing steps are carried out by the putative EAV serine protease in nsp4 and by a third protease, which remains to be identified.  相似文献   

12.
《Gene》1997,185(2):181-186
Bovine adenovirus type 2 (BAV2) is a medium size double-stranded DNA virus which infects both bovine and ovine species, resulting in mild respiratory and gastrointestinal disorders. To better understand the virus and its growth characterisitics in Madin-Darby bovine kidney (MDBK) cells, we have cloned and sequenced the extreme right-end segment of the BAV2 genome (90.5–100 map units). Analysis of the nucleotide sequence revealed 40 potential open reading frames (ORFs) with coding capacity for polypeptides that are 25 or more amino acid (aa) residues long. Six of these ORFs encode polypeptides that show homology to well-characterized early region 4 (E4) proteins of human adenovirus type 2 (Ad2) and Ad12. ORF1 has the potential to encode a 114 aa long polypeptide that is 54% homologous to the E4 14 kDa protein of Ad2. ORF2 encodes a 78 aa long polypeptide that exhibits 40% homology to the E4 13 kDa protein of Ad2. ORFs 3–6 encode polypeptides that have homology to the E4 34 kDa protein encoded by ORF6 of Ad2 and Ad12. ORFs 3, 4 and 5 encode 128, 96 and 31 aa long polypeptides, respectively. The 128-aa polypeptide exhibits 59% homology, while the 96 and 31 aa long polypeptides exhibit 61% and 70% homology to the E4 34 kDa protein, respectively. ORF6 has the potential to encode a 57 aa long polypeptide that has 67% homology to the E4 34 kDa protein of Ad2 and 50% homology to the E4 34 kDa protein of Ad12.  相似文献   

13.
C Wirblich  H J Thiel    G Meyers 《Journal of virology》1996,70(11):7974-7983
The 7.5-kb plus-stranded genomic RNA of rabbit hemorrhagic disease virus contains two open reading frames of 7 kb (ORF1) and 351 nucleotides (ORF2) that cover nearly 99% of the genome. The aim of the present study was to identify the proteins encoded in these open reading frames. To this end, a panel of region-specific antisera was generated by immunization of rabbits with bacterially expressed fusion proteins that encompass in total 95% of the ORF1 polyprotein and almost the complete ORF2 polypeptide. The antisera were used to analyze the in vitro translation products of purified virion RNA of rabbit hemorrhagic disease virus. Our studies show that the N-terminal half of the ORF1 polyprotein is proteolytically cleaved to yield three nonstructural proteins of 16, 23, and 37 kDa (p16, p23, and p37, respectively). In addition, a cleavage product of 41 kDa which is composed of VPg and a putative nonstructural protein of approximately 30 kDa was identified. Together with the results of previous studies which identified a trypsin-like cysteine protease (TCP) of 15 kDa, a putative RNA polymerase (pol) of 58 kDa, and the major capsid protein VP60, our data establish the following gene order in ORF1: NH2-p16-p23-p37 (helicase)-p30-VPg-TCP-pol-VP60-COOH. Immunoblot analyses showed that a minor structural protein of 10 kDa is encoded in ORF2. The data provide the first complete genetic map of a calicivirus. The map reveals a remarkable similarity between caliciviruses and picornaviruses with regard to the number and order of the genes that encode the nonstructural proteins.  相似文献   

14.
Identification of gene products of the P1 operon of Mycoplasma pneumoniae   总被引:9,自引:1,他引:8  
Gene P1 of Mycoplasma pneumoniae, which codes for a major adhesin, is flanked by two sequences with open reading frames designated ORF4 and ORF6 (Inamine et al., 1988b). In order to identify proteins translated from those ORFs, gene fusions between the N-terminus of the RNA replicase of the Escherichia coli bacteriophage MS2 and selected regions of ORF4 and ORF6 were constructed. The corresponding fusion proteins synthesized in Escherichia coli were used to immunize mice. Antisera directed against ORF4-related sequences did not recognize M. pneumoniae antigens in Western blot analysis, but antisera directed against ORF-6-derived fusion proteins reacted with two M. pneumoniae proteins of 40 kDa and 90 kDa. In addition, some of the antisera also recognized proteins that formed in a sodium dodecyl sulphate/polyacrylamide gel a protein ladder between 115 and 145 kDa.  相似文献   

15.
In bacteriophage T4, there is a strong tendency for genes that encode interacting proteins to be clustered on the chromosome. There is 1.6 kb of DNA between the DNA helicase (gene 41) and the DNA primase (gene 61) genes of this virus. The DNA sequence of this region suggests that it contains five genes, designated as open reading frames (ORFs) 61.1 to 61.5, predicted to encode proteins ranging in size from 5.94 to 22.88 kDa. Are these ORFs actually genes? As one test, we compared the DNA sequence of this region in bacteriophages T2, T4, and T6 and found that ORFs 61.1, 61.3, 61.4, and 61.5 are highly conserved among the three closely related viruses. In contrast, ORF 61.2 is conserved between phages T4 and T6 yet is absent from phage T2, where it is replaced by another ORF, T2 ORF 61.2, which is not found in the T4 and T6 genomes. As a second, independent test for coding sequences, we calculated the codon base position preferences for all ORFs in this region that could encode proteins that contain at least 30 amino acids. Both the T4/T6 and T2 versions of ORF 61.2, as well as the other ORFs, have codon base position preferences that are indistinguishable from those of known T4 genes (coefficients of 0.81 to 0.94); the six other possible ORFs of at least 90 bp in this region are ruled out as genes by this test (coefficients less than zero). Thus, both evolutionary conservation and codon usage patterns lead us to conclude that ORFs 61.1 to 61.5 represent important protein-coding sequences for this family of bacteriophages. Because they are located between the genes that encode the two interacting proteins of the T4 primosome (DNA helicase plus DNA primase), one or more may function in DNA replication by modulating primosome function.  相似文献   

16.
The open reading frame (ORF) 1b-encoded part of the equine arteritis virus (EAV) replicase is expressed by ribosomal frameshifting during genome translation, which results in the production of an ORF1ab fusion protein (345 kDa). Four ORF1b-encoded processing products, nsp9 (p80), nsp10 (p50), nsp11 (p26), and nsp12 (p12), have previously been identified in EAV-infected cells (L. C. van Dinten, A. L. M. Wassenaar, A. E. Gorbalenya, W. J. M. Spaan, and E. J. Snijder, J. Virol. 70:6625–6633, 1996). In the present study, the generation of these four nonstructural proteins was shown to be mediated by the nsp4 serine protease, which is the main viral protease (E. J. Snijder, A. L. M. Wassenaar, L. C. van Dinten, W. J. M. Spaan, and A. E. Gorbalenya, J. Biol. Chem. 271:4864–4871, 1996). Mutagenesis of candidate cleavage sites revealed that Glu-2370/Ser, Gln-2837/Ser, and Glu-3056/Gly are the probable nsp9/10, nsp10/11, and nsp11/12 junctions, respectively. Mutations which abolished ORF1b protein processing were introduced into a recently developed infectious cDNA clone (L. C. van Dinten, J. A. den Boon, A. L. M. Wassenaar, W. J. M. Spaan, and E. J. Snijder, Proc. Natl. Acad. Sci. USA 94:991–997, 1997). An analysis of these mutants showed that the selective blockage of ORF1b processing affected different stages of EAV reproduction. In particular, the mutant with the nsp10/11 cleavage site mutation Gln-2837→Pro displayed an unusual phenotype, since it was still capable of RNA synthesis but was incapable of producing infectious virus.  相似文献   

17.
Complete sequence and genomic analysis of murine gammaherpesvirus 68.   总被引:19,自引:13,他引:19       下载免费PDF全文
Murine gammaherpesvirus 68 (gammaHV68) infects mice, thus providing a tractable small-animal model for analysis of the acute and chronic pathogenesis of gammaherpesviruses. To facilitate molecular analysis of gammaHV68 pathogenesis, we have sequenced the gammaHV68 genome. The genome contains 118,237 bp of unique sequence flanked by multiple copies of a 1,213-bp terminal repeat. The GC content of the unique portion of the genome is 46%, while the GC content of the terminal repeat is 78%. The unique portion of the genome is estimated to encode at least 80 genes and is largely colinear with the genomes of Kaposi's sarcoma herpesvirus (KSHV; also known as human herpesvirus 8), herpesvirus saimiri (HVS), and Epstein-Barr virus (EBV). We detected 63 open reading frames (ORFs) homologous to HVS and KSHV ORFs and used the HVS/KSHV numbering system to designate these ORFs. gammaHV68 shares with HVS and KSHV ORFs homologous to a complement regulatory protein (ORF 4), a D-type cyclin (ORF 72), and a G-protein-coupled receptor with close homology to the interleukin-8 receptor (ORF 74). One ORF (K3) was identified in gammaHV68 as homologous to both ORFs K3 and K5 of KSHV and contains a domain found in a bovine herpesvirus 4 major immediate-early protein. We also detected 16 methionine-initiated ORFs predicted to encode proteins at least 100 amino acids in length that are unique to gammaHV68 (ORFs M1 to 14). ORF M1 has striking homology to poxvirus serpins, while ORF M11 encodes a potential homolog of Bcl-2-like molecules encoded by other gammaherpesviruses (gene 16 of HVS and KSHV and the BHRF1 gene of EBV). In addition, clustered at the left end of the unique region are eight sequences with significant homology to bacterial tRNAs. The unique region of the genome contains two internal repeats: a 40-bp repeat located between bp 26778 and 28191 in the genome and a 100-bp repeat located between bp 98981 and 101170. Analysis of the gammaHV68, HVS, EBV, and KSHV genomes demonstrated that each of these viruses have large colinear gene blocks interspersed by regions containing virus-specific ORFs. Interestingly, genes associated with EBV cell tropism, latency, and transformation are all contained within these regions encoding virus-specific genes. This finding suggests that pathogenesis-associated genes of gammaherpesviruses, including gammaHV68, may be contained in similarly positioned genome regions. The availability of the gammaHV68 genomic sequence will facilitate analysis of critical issues in gammaherpesvirus biology via integration of molecular and pathogenetic studies in a small-animal model.  相似文献   

18.
Tan YJ  Teng E  Shen S  Tan TH  Goh PY  Fielding BC  Ooi EE  Tan HC  Lim SG  Hong W 《Journal of virology》2004,78(13):6723-6734
The severe acute respiratory syndrome coronavirus (SARS-CoV) genome contains open reading frames (ORFs) that encode for several genes that are homologous to proteins found in all known coronaviruses. These are the replicase gene 1a/1b and the four structural proteins, nucleocapsid (N), spike (S), membrane (M), and envelope (E), and these proteins are expected to be essential for the replication of the virus. In addition, this genome also contains nine other potential ORFs varying in length from 39 to 274 amino acids. The largest among these is the first ORF of the second longest subgenomic RNA, and this protein (termed U274 in the present study) consists of 274 amino acids and contains three putative transmembrane domains. Using antibody specific for the C terminus of U274, we show U274 to be expressed in SARS-CoV-infected Vero E6 cells and, in addition to the full-length protein, two other processed forms were also detected. By indirect immunofluorescence, U274 was localized to the perinuclear region, as well as to the plasma membrane, in both transfected and infected cells. Using an N terminus myc-tagged U274, the topology of U274 and its expression on the cell surface were confirmed. Deletion of a cytoplasmic domain of U274, which contains Yxxphi and diacidic motifs, abolished its transport to the cell surface. In addition, U274 expressed on the cell surface can internalize antibodies from the culture medium into the cells. Coimmunoprecipitation experiments also showed that U274 could interact specifically with the M, E, and S structural proteins, as well as with U122, another protein that is unique to SARS-CoV.  相似文献   

19.
Equine arteritis virus (EAV) is an enveloped, positive-strand RNA virus belonging to the family Arteriviridae of the order NIDOVIRALES: EAV virions contain six different envelope proteins. The glycoprotein GP(5) (previously named G(L)) and the unglycosylated membrane protein M are the major envelope proteins, while the glycoproteins GP(2b) (previously named G(S)), GP(3), and GP(4) are minor structural proteins. The unglycosylated small hydrophobic envelope protein E is present in virus particles in intermediate molar amounts compared to the other transmembrane proteins. The GP(5) and M proteins are both essential for particle assembly. They occur as covalently linked heterodimers that constitute the basic protein matrix of the envelope. The GP(2b), GP(3), and GP(4) proteins occur as a heterotrimeric complex in which disulfide bonds play an important role. The function of this complex has not been established yet, but the available data suggest it to be involved in the viral entry process. Here we investigated the role of the four cysteine residues of the mature GP(2b) protein in the assembly of the GP(2b)/GP(3)/GP(4) complex. Open reading frames encoding cysteine-to-serine mutants of the GP(2b) protein were expressed independently or from a full-length infectious EAV cDNA clone. The results of these experiments support a model in which the cysteine residue at position 102 of GP(2b) forms an intermolecular cystine bridge with one of the cysteines of the GP(4) protein, while the cysteine residues at positions 48 and 137 of GP(2b) are linked by an intrachain disulfide bond. In this model, another cysteine residue in the GP(4) protein is responsible for the covalent association of GP(3) with the disulfide-linked GP(2b)/GP(4) heterodimer. In addition, our data highlight the importance of the correct association of the minor EAV envelope glycoproteins for their efficient incorporation into viral particles and for virus infectivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号