首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Hypogeous fungi are a large yet unknown component of biodiversity in forests of south-eastern mainland Australia. To better define their diversity and habitat relationships, we identified and counted fruit-bodies at 136 study sites sampling the climatic, geological and topographic features of the region. In one year 7451 fruit-bodies representing 209 species were collected in an autumn and spring sampling period. Only 57 of these species were previously described. Within genera, the number of species ranged from 1 to 21. Sites sampled in autumn averaged higher diversity of species and greater number of fruit-bodies than the same sites sampled in spring. Most major taxa occurred at more sites in autumn than in spring, whereas a few occurred more frequently in spring than in autumn. These patterns are consistent with those identified in previous smaller studies and likely reflect seasonal changes in soil moisture and temperature levels. Subsequent papers will explore factors influencing the occurrence, relative abundance and numbers of species of hypogeous fungi at the study sites and their community structure and possible host–plant relationships.  相似文献   

2.
Across three tropical Australian sclerophyll forest types, site-specific environmental variables could explain the distribution of both quantity (abundance and biomass) and richness (genus and species) of hypogeous fungi sporocarps. Quantity was significantly higher in the Allocasuarina forest sites that had high soil nitrogen but low phosphorous. Three genera of hypogeous fungi were found exclusively in Allocasuarina forest sites including Gummiglobus, Labyrinthomyces and Octaviania, as were some species of Castoreum, Chondrogaster, Endogone, Hysterangium and Russula. However, the forest types did not all group according to site-scale variables and subsequently the taxonomic assemblages were not significantly different between the three forest types. At site scale, significant negative relationships were found between phosphorous concentration and the quantity of hypogeous fungi sporocarps. Using a multivariate information theoretic approach, there were other more plausible models to explain the patterns of sporocarp richness. Both the mean number of fungal genera and species increased with the number of Allocasuarina stems, at the same time decreasing with the number of Eucalyptus stems. The optimal conditions for promoting hypogeous fungi sporocarp quantity and sporocarp richness appear to be related to the presence and abundance of Allocasuarina (Casuarinaceae) host trees. Allocasuarina tree species may have a higher host receptivity for ectomycorrhizal hypogeous fungi species that provide an important food resource for Australian mycophagous animals.  相似文献   

3.
Mycorrhizal fungi that form hypogeous sporocarps are an important component of the temperate forest soil community. In many regions, such as the Nothofagus forest in the Patagonian Andes, this group of fungi has been poorly studied. Here we examined the spring and autumn community composition of "sequestrate fungi", based on sporocarp production in pure forests of Nothofagus dombeyi (evergreen) and N. pumilio (deciduous). We investigated the possible relationships between these communities and environmental factors over 2 y. The rarefaction curves and the minimal richness estimates converged at nearly the same level for each forest type, and the asymptotes suggested that the sampling effort was sufficient to capture most of the hypogeous sporocarp richness in these forest stands. In total 27 species were recovered. Basidiomycota, Ascomycota and Glomeromycota respectively accounted for nine, two and one genera. Species richness of hypogeous sporocarps varied in relation to forest type but not to season (fall and spring), whereas sporocarp biomass varied according to an interaction between season and forest type. Species richness and sporocarp biomass were positively correlated with rainfall and negatively correlated with altitude. In addition sporocarp species richness was positively related to number of trees per transect. We found that two different forest stands, each dominated by different species of Nothofagus, exhibited different hypogeous sporocarp communities.  相似文献   

4.
Abstract The Tasmanian bettong, Bettongia gaimardi, is a mycophagous marsupial that occurs in fire-prone dry sclerophyll forests. Previous studies have demonstrated that some of the hypogeous fungi on which it feeds become abundant soon after fire, and have suggested that it might depend on regular burning of its habitat. The longer-term effects of burning on B. gaimardi and its food supply were evaluated by comparing six sites, matched for soil, vegetation and climate, in southeastern Tasmania that had been left unburnt for periods ranging from 1 to 50 years. At each site, the density of B. gaimardi diggings was measured and sporocarps of hypogeous fungi were surveyed. Abundance of hypogeous sporo-carps was low at sites 2 years or less post-fire, but was high at sites 4 years and more post-fire. Species richness was similarly low at recently burnt sites, an effect that was due to the absence of many shallow-fruiting taxa. All species (with one exception) present at recently burnt sites were also present in long-unburnt sites. Densities of B. gaimardi diggings were highest at a very recently burnt (<1 year) site and at a site left unburnt for 10 years. These trends suggest that a high frequency of burning may be unfavourable to B. gaimardi in the forest type investigated in this study.  相似文献   

5.
Collecting and studying hypogeous sequestrate fungi and their particular fruiting biology has always been challenging and intriguing for scientists. However, knowledge of hypogeous taxa has for a long time been limited mainly to the Northern Hemisphere, and more recently, Australia. Nevertheless, cumulative information on sequestrate fungi for South America (SA) has increased considerably over the years, and constitutes by itself, the aim of this review. We have reviewed the available published literature, from 1880 until recent times, to extract information on records, ecology, and morphological characteristics of hypogeous sequestrate fungi from SA. Based on the 172 taxa cited in the available literature, a trend of increasing interest in the study of these fungi in the region is apparent, yet with an uneven distribution among countries, climate belts, and nature of forest habitats. Hypogeous truffle-like species in SA play a key role in regulating nutrient and carbon cycles and in all ecosystem multifunctionality. The symbiotic status is provided for most species listed, and mutualism, especially ectomycorrhizal, is predominant (82 %). The hypogeous sequestrate fungi in SA are an understudied group of fungi, with exceptional anatomical and biological features as well as in many cases intriguing phylogenetic relationships, requiring more attention and analysis from mycologists.  相似文献   

6.
Aim To detect regional patterns of plant species richness in temperate nature reserves and determine the unbiased effects of environmental variables by mutual correlation with operating factors. Location The Czech Republic. Methods Plant species richness in 302 nature reserves was studied by using 14 explanatory variables reflecting the reserve area, altitude, climate, habitat diversity and prevailing vegetation type. Backward elimination of explanatory variables was used to analyse the data, taking into account their interactive nature, until the model contained only significant terms. Results A minimal adequate model with reserve area, mean altitude, prevailing vegetation type and habitat diversity (expressed as the number of major habitat types in the reserve) accounted for 53.9% of the variance in species number. After removing the area effect, habitat diversity explained 15.6% of variance, while prevailing vegetation type explained 29.6%. After removing the effect of both area and vegetation type, the resulting model explained 10.3% of the variance, indicating that species richness further increased with habitat diversity, and most obviously towards warm districts. After removing the effects of area, habitat diversity and climatic district, the model still explained 9.4% of the variance, and showed that species richness (i) significantly decreased with increasing mean altitude and annual precipitation, and with decreasing January temperature in the region of the mountain flora, and (ii) increased with altitudinal range in regions of temperate and thermophilous flora. Main conclusions We described, in quantitative terms, the effects of the main factors that might be considered to be determining plant species richness in temperate nature reserves, and evaluated their relative importance. The direct habitat effect on species richness was roughly equal to the direct area effect, but the total direct and indirect effects of area slightly exceeded that of habitat. It was shown that the overall effect of composite variables such as altitude or climatic district can be separated into particular climatic variables, which influence the richness of flora in a context‐specific manner. The statistical explanation of richness variation at the level of families yielded similar results to that for species, indicating that the system of nature conservation provides similar degrees of protection at different taxonomic levels.  相似文献   

7.
Mechanisms explaining patterns of biodiversity along elevation gradients in tropical mountain systems remain controversial. We use a set of climatic, topographic, and soil variables encompassing regional, landscape, and local‐level spatial scales to explain the spatial variation of tree species diversity in the Sierra Madre of Chiapas, Mexico. We sampled 128 circular plots (0.1‐ha each) in four elevational bands along four elevation gradients or transects encompassing 100–2200 m. A total of 12,533 trees belonging to 444 species were recorded. Diversity patterns along the elevation gradient and the explanatory power of independent variables were dependent on spatial scale (regional vs transect) and functional group (total vs late‐successional or pioneer species). Diversity of all species and late‐successional species (1 – proportion of pioneer species) showed a constant pattern at the regional and transect scales, with low predictive power of climatic variables and/or elevation. A linear decrease in either number or proportion of pioneer species diversity was observed with increasing elevation, which was correlated with temperature, rainfall, and human disturbance trends. Total species diversity showed an increase with rainfall of the warmest quarter, indicating a regional‐level limiting effect of seasonality (drought duration). Yet the explanatory power of climatic and topographic variables was higher at the individual transect level than at the regional scale, suggesting the parallel but differential influence of evolutionary and geological history factors on diversification not so far studied to explain elevation patterns of species diversity in tropical mountain systems.  相似文献   

8.
Interactions between diverse groups of organisms influence the functioning and diversity of ecosystems. Salient examples of such relationships are those among hypogeous fungi, trees and mycophagous mammals. To investigate the role of small mammals in transporting fungal spores within and outside forests as well as the influence of seasons, habitats and species on small mammal mycophagy, we set up a study in the Pieniny Mts, Western Carpathians (Southern Poland). The droppings of small mammals were collected during live trapping in July and September 2016 and 2017, to analyze richness, composition and frequency of fungal spores present in faeces. The yellow-necked mouse Apodemus flavicollis, the bank vole Myodes glareolus and the common vole Microtus arvalis were the most frequently trapped. Spores of 27 fungal taxa from 16 genera were retrieved from nearly 70% of faecal samples of rodents and shrews, with up to 9 spore taxa recorded per sample. Spore diversity in samples was higher in September than in July, although seasonal variation was year and animal dependent. The highest mean number of fungal taxa per sample was recorded for the bank vole and the yellow-necked mouse, with the former species showing a higher degree of mycophagy. The two rodents differed in the average frequencies of consumed fungi in samples, which could result from some degree of specialization in the choice of particular fungal species, as shown by the laboratory-based experiment. Within particular animal species, differences in the fungal diet were found between seasons. The spores of hypogeous fungi were transported from forests to meadows mostly by the yellow-necked mouse and, to a lesser extent, by the common vole. However, both, the diversity and the number of transported spores diminished with distance from the forest edge.  相似文献   

9.
Aim Climate‐based models often explain most of the variation in species richness along broad‐scale geographical gradients. We aim to: (1) test predictions of woody plant species richness on a regional spatial extent deduced from macro‐scale models based on water–energy dynamics; (2) test if the length of the climate gradients will determine whether the relationship with woody species richness is monotonic or unimodal; and (3) evaluate the explanatory power of a previously proposed ‘water–energy’ model and regional models at two grain sizes. Location The Iberian Peninsula. Methods We estimated woody plant species richness on grid maps with c. 2500 and 22,500 km2 cell size, using geocoded data for the individual species. Generalized additive models were used to explore the relationships between richness and climatic, topographical and substrate variables. Ordinary least squares regression was used to compare regional and more general water–energy models in relation to grain size. Variation partitioning by partial regression was applied to find how much of the variation in richness was related to spatial variables, explanatory variables and the overlap between these two. Results Water–energy dynamics generate important underlying gradients that determine the woody species richness even over a short spatial extent. The relationships between richness and the energy variables were linear to curvilinear, whereas those with precipitation were nonlinear and non‐monotonic. Only a small fraction of the spatially structured variation in woody species richness cannot be accounted for by the fitted variables related to climate, substrate and topography. The regional models accounted for higher variation in species richness than the water–energy models, although the water–energy model including topography performed well at the larger grain size. Elevation range was the most important predictor at all scales, probably because it corrects for ‘climatic error’ due to the unrealistic assumption that mean climate values are evenly distributed in the large grid cells. Minimum monthly potential evapotranspiration was the best climatic predictor at the larger grain size, but actual evapotranspiration was best at the smaller grain size. Energy variables were more important than precipitation individually. Precipitation was not a significant variable at the larger grain size when examined on its own, but was highly significant when an interaction term between itself and substrate was included in the model. Main conclusions The significance of range in elevation is probably because it corresponds to several aspects that may influence species diversity, such as climatic variability within grid cells, enhanced surface area, and location for refugia. The relative explanatory power of energy and water variables was high, and was influenced by the length of the climate gradient, substrate and grain size of the analysis. Energy appeared to have more influence than precipitation, but water availability is also determined by energy, substrate and topographic relief.  相似文献   

10.
Fleshy hypogeous fungi produce scents that enable mycophagous mammals and invertebrates to locate them and disperse their spores. The European wild boar (Sus scrofa) was introduced in central Argentina in 1900s and later expanded into Patagonia. Here, we determined the diversity and abundance of fungal taxa, and the frequency of hypogeous fungal spores in wild boar feces in Patagonia. We collected fecal samples on Isla Victoria, Nahuel Huapi National Park, and identified fungi using microscope and DNA metabarcoding of ITS2 rDNA. Hypogeous fungal spores occurred in almost all fecal samples. The most abundant species belonged to the genera Hysterangium, Melanogaster, Radiigera and Gautieria. In addition to the symbiotrophic hypogeous taxa, we also identified numerous pathotrophic and saprotrophic taxa. Not only diverse native hypogeous fungi, but also introduced ones are part of the diet of the wild boar in forests of Patagonia. If viable, introduced fungi are being dispersed as far as 2.5 km from the nearest plantation, highlighting how the introduced wild boar might alter the local distribution and composition of fungal communities.  相似文献   

11.
Claridge  Andrew W. 《Plant and Soil》2002,244(1-2):291-305
The Australian continent is characterised by a harsh climate and highly weathered, nutrient-poor soils. Trees and shrubs in these stressful environmental conditions typically form ectomycorrhizae with a variety of fungi, many of which form hypogeous (underground) fruit-bodies. The total number of hypogeous fungi Australia-wide is unknown, although recent systematic studies in the far south-eastern corner of the country suggest that they may number well over a thousand. Similar surveys elswhere are urgently required to clarify the situation. The precise ecological role of many hypogeous fungi remains to be determined, although most presumably facilitate nutrient and water uptake on behalf of their mycorrhizal partners. Others may also protect their plant host from root pathogens. One key function of hypogeous fungi is the role their fruit-bodies play as a food resource for a large range of terrestrial mammals. For a few animals, hypogeous fungi form the single most important dietary item year-round, whereas for others they may only be of seasonal or supplementary value. The extent to which fungi form part of the diet of any mammal species is reflected in the various levels of adaptation toward acquiring, then processing and digesting these cryptic and nutritionally challenging foodstuffs.  相似文献   

12.
Aim To determine relative effects of habitat type, climate and spatial pattern on species richness and composition of native and alien plant assemblages in central European cities. Location Central Europe, Belgium and the Netherlands. Methods The diversity of native and alien flora was analysed in 32 cities. In each city, plant species were recorded in seven 1‐ha plots that represented seven urban habitat types with specific disturbance regimes. Plants were classified into native species, archaeophytes (introduced before ad 1500) and neophytes (introduced later). Two sets of explanatory variables were obtained for each city: climatic data and all‐scale spatial variables generated by analysis of principal coordinates of neighbour matrices. For each group of species, the effect of habitat type, climate and spatial variables on variation in species composition was determined by variation partitioning. Responses of individual plant species to climatic variables were tested using a set of binomial regression models. Effects of climatic variables on the proportion of alien species were determined by linear regression. Results In all cities, 562 native plant species, 188 archaeophytes and 386 neophytes were recorded. Proportions of alien species varied among urban habitats. The proportion of native species decreased with increasing range and mean annual temperature, and increased with increasing precipitation. In contrast, proportions of archaeophytes and neophytes increased with mean annual temperature. However, spatial pattern explained a larger proportion of variation in species composition of the urban flora than climate. Archaeophytes were more uniformly distributed across the studied cities than the native species and neophytes. Urban habitats rich in native species also tended to be rich in archaeophytes and neophytes. Main conclusions Species richness and composition of central European urban floras are significantly affected by urban habitat types, climate and spatial pattern. Native species, archaeophytes and neophytes differ in their response to these factors.  相似文献   

13.
We investigated the potential associations of habitat type richness patterns with a series of environmental variables in 61 protected aquatic ecosystems of the Greek Natura 2000 network. Habitat type classification followed the Natura 2000 classification scheme. Habitat type richness was measured as the number of different habitat types in an area. To overcome a potential area effect in quantifying habitat type richness, we applied the “moving window” technique. The environmental variables were selected to account for some of the major threats to biodiversity, such as fragmentation, habitat loss and climate change. We run GLMs to associate habitat type richness with different combinations of climatic, spatial and topographic variables. Habitat type richness seemed to significantly associate with climatic variables, more than spatial or topographic ones. In particular, for the climatic ones, the importance of precipitation surpassed that of temperature and especially the precipitation of the wettest and driest month had a limiting contribution to richness unlike average climate estimators. Moreover, the landscape’s latitude and longitude and fragmentation were significantly associated to richness. Our findings are in accordance to those observed in recent literature at lower (i.e. species) levels of ecological organization, fact showing that large-scale phenomena (such as climate change) can also be observed at the habitat type level, at least in our case. Thus, following the context of the Habitats Directive (92/43/EEC), that habitat types and not solely species of community interest should be protected and restored, this study serves as a first step towards investigating habitat type richness patterns.  相似文献   

14.
Association analyses by contingency tables and generalized linear modeling were compared to infer relationships among hypogeous (belowground-fruiting) ectomycorrhizal fungi and potential host tree species from 136 study plots in forested habitats in southeastern mainland Australia. Results from both types of statistical approaches were highly congruent. As with previous experimental studies, no exclusive fungus-host tree associations were identified. However, the likelihood of occurrence of some species of fungi increased significantly in the presence of particular host tree species, suggesting fungal host preference or shared habitat preferences. Similarly, while most associations among fungal species were nonsignificant, a few taxa were more likely to be found in the presence of certain others. These were termed positively associated and are thought to share common climatic and microhabitat requirements or host preferences. In contrast, other combinations of fungal species were negatively associated with one another, perhaps indicating different habitat preferences. Furthermore, the finding that some fungi occurred more frequently in the presence of certain tree species provides a starting point for selection of compatible host-fungus combinations that could be used for forest nursery and restoration applications.  相似文献   

15.
While the environmental correlates of global patterns in standing species richness are well understood, it is poorly known which environmental factors promote diversification (speciation minus extinction) in clades. We tested several hypotheses for how geographic and climatic variables should affect diversification using a large dataset of bird sister genera endemic to the New World. We found support for the area, evolutionary speed, environmental predictability and climatic stability hypotheses, but productivity and topographic complexity were rejected as explanations. Genera that had accumulated more species tend to occupy wider niche space, manifested both as occurrence over wider areas and in more habitats. Genera with geographic ranges that have remained more stable in response to glacial‐interglacial changes in climate were also more species rich. Since many relevant explanatory variables vary latitudinally, it is crucial to control for latitude when testing alternative mechanistic explanations for geographic variation in diversification among clades.  相似文献   

16.
Aims This study aimed to develop radial growth models and to predict the potential spatial distribution of Pinus densiflora (Japanese red pine) and Quercus spp. (Oaks) in South Korea, considering topographic and climatic factors.Methods We used a dataset of diameter at breast height and radial growth estimates of individual trees, topographic and climatic factors in systematic sample plots distributed over the whole of South Korea. On the basis that radial growth is attributed primarily to tree age, we developed a radial growth model employing tree age as an explanatory variable. We estimated standard growth (SG), defined as radial growth of the tree at age 30, to eliminate the influence of tree age on radial growth. In addition, SG estimates including the Topographic Wetness Index, temperature and precipitation were calculated by the Generalized Additive Model.Important findings As a result of variogram analysis of SG, we found spatial autocorrelation between SG, topographic and climatic factors. Incremental temperature had negative impacts on radial growth of P. densiflora and positive impacts on that of Quercus spp. Precipitation was associated with positive effects on both tree species. Based on the model, we found that radial growth of P. densiflora would be more vulnerable than that of Quercus spp. to climatic factors. Through simulation with the radial growth model, it was predicted that P. densiflora stands would be gradually replaced with Quercus spp. stands in eastern coastal and southern regions of South Korea in the future. The models developed in this study will be helpful for understanding the impact of climatic factors on tree growth and for predicting changes in distribution of P. densiflora and Quercus spp. due to climate change in South Korea.  相似文献   

17.
Quercus woodlands are key components of California's wild landscapes, yet little is known about ectomycorrhizal (EM) fungi in these ecosystems. We examined the EM community associated with Quercus douglasii using sporocarp surveys and by pooling EM roots and subjecting them to DNA extraction, polymerase chain reaction (PCR), cloning, restriction fragment length polymorphism (RFLP) screening and DNA sequencing. Ectomycorrhizal root symbionts were sampled four times in 2003-04. During this time, the below-ground community structure was relatively stable; we found no evidence of taxa adapted to winter or spring conditions and only one species varied widely in occurrence between years. The EM community from sporocarps and roots was diverse (161 species), rich in Ascomycota (46 species), and dominated by fungi with cryptic sporocarps. This included a large number of resupinate and hypogeous taxa, many of which were detected both above- and below-ground.  相似文献   

18.
Aim Still poorly understood, the main migratory pathways for most trans‐Saharan species pass through the Iberian Peninsula, which acts as a gateway to the European–African migratory system. Arrival patterns in this region for the common swift (Apus apus) and barn swallow (Hirundo rustica), of similar morphology and flight capabilities, were described, and the environmental and geographical factors best explaining them were examined, in a search for common ecological constraints on these two migratory species. Location Latitude ranged from 36.02 to 43.68°N, longitude from 9.05°W to 3.17°E, and altitude from 0 to 1595 m a.s.l. for 482 common swift and 812 barn swallow Spanish localities spread widely over the Iberian breeding grounds of the two species. Methods Our data set, covering the years 1960–1990, consisted of 3206 first‐arrival dates for common swifts and 6036 for barn swallows. Forty topographical, climatic, river basin, geographical and spatial variables were used as explanatory variables in general regression models (GRMs). GRMs included polynomial terms up to cubic functions in all variables when they were significant. A backward stepwise selection procedure was applied in all models until only significant terms remained. GRMs were applied in two steps. First, we searched for the best model in each one of the five types of variables (topographical, climatic, river basin, geographical and spatial). To cope with the unavoidable correlation between explanatory variables, the relative importance of each type of variable was assessed by hierarchical variance partitioning. Secondly, we searched for that model able to explain the maximum amount of the observed variability in arrival date. To obtain this model all significant explanatory variables were subjected jointly to a GRM. Spatial variables were then added to this model to take any remaining spatial structure in the data into account. Moran's I autocorrelation coefficient was used to check for spatial autocorrelation. Results Both species arrived earlier in the south‐western Iberian Peninsula, where summers are warmer and drier. From there, both species followed the main southern Iberian river basins towards the north‐east; however, several mountainous regions impede the colonization of eastern Iberia. The best models for each type of variable explained 19–47% of the variability in common swift arrival dates and 14–44% in barn swallow arrival dates. Variance partitioning indicated that climatic and geographical variables best explained variability. The best predictive models built with all variables accounted for 52% of the variability in common swift arrival dates and 50% for the barn swallow. Residuals from both models were not spatially autocorrelated, an indication that all major spatially structured variation had been accounted for. Main conclusions Spring arrival patterns are highly dependent on the geographical configuration of the Iberian Peninsula. This spatial constraint forces both species to converge very closely in their spring migration, because common swifts and barn swallows are subject to a trade‐off between optimum migratory pathways and territories ecologically suitable for breeding.  相似文献   

19.
Aim To predict French Scarabaeidae dung beetle species richness distribution, and to determine the possible underlying causal factors. Location The entire French territory has been studied by dividing it into 301 grid cells of 0.72 × 0.36 degrees. Method Species richness distribution was predicted using generalized linear models to relate the number of species with spatial, topographic and climate variables in grid squares previously identified as well sampled (n = 66). The predictive function includes the curvilinear relationship between variables, interaction terms and the significant third‐degree polynomial terms of latitude and longitude. The final model was validated by a jack‐knife procedure. The underlying causal factors were investigated by partial regression analysis, decomposing the variation in species richness among spatial, topographic and climate type variables. Results The final model accounts for 86.2% of total deviance, with a mean jack‐knife predictive error of 17.7%. The species richness map obtained highlights the Mediterranean as the region richest in species, and the less well‐explored south‐western region as also being species‐rich. The largest fraction of variability (38%) in the number of species is accounted for by the combined effect of the three groups of explanatory variables. The spatially structured climate component explains 21% of variation, while the pure climate and pure spatial components explain 14% and 11%, respectively. The effect of topography was negligible. Conclusions Delimiting the adequately inventoried areas and elaborating forecasting models using simple environmental variables can rapidly produce an estimate of the species richness distribution. Scarabaeidae species richness distribution seems to be mainly influenced by temperature. Minimum mean temperature is the most influential variable on a local scale, while maximum and mean temperature are the most important spatially structured variables. We suggest that species richness variation is mainly conditioned by the failure of many species to go beyond determined temperature range limits.  相似文献   

20.
Aim To identify the bioclimatic niche of the endangered Andean cat (Leopardus jacobita), one of the rarest and least known felids in the world, by developing a species distribution model. Location South America, High Andes and Patagonian steppe. Peru, Bolivia, Chile, Argentina. Methods We used 108 Andean cat records to build the models, and 27 to test them, applying the Maxent algorithm to sets of uncorrelated bioclimatic variables from global databases, including elevation. We based our biogeographical interpretations on the examination of the predicted geographic range, the modelled response curves and latitudinal variations in climatic variables associated with the locality data. Results Simple bioclimatic models for Andean cats were highly predictive with only 3–4 explanatory variables. The climatic niche of the species was defined by extreme diurnal variations in temperature, cold minimum and moderate maximum temperatures, and aridity, characteristic not only of the Andean highlands but also of the Patagonian steppe. Argentina had the highest representation of suitable climates, and Chile the lowest. The most favourable conditions were centrally located and spanned across international boundaries. Discontinuities in suitable climatic conditions coincided with three biogeographical barriers associated with climatic or topographic transitions. Main conclusions Simple bioclimatic models can produce useful predictions of suitable climatic conditions for rare species, including major biogeographical constraints. In our study case, these constraints are also known to affect the distribution of other Andean species and the genetic structure of Andean cat populations. We recommend surveys of areas with suitable climates and no Andean cat records, including the corridor connecting two core populations. The inclusion of landscape variables at finer scales, crucially the distribution of Andean cat prey, would contribute to refine our predictions for conservation applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号