首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aspergillus nidulans possessed an alpha-glucosidase with strong transglycosylation activity. The enzyme, designated alpha-glucosidase B (AgdB), was purified and characterized. AgdB was a heterodimeric protein comprising 74- and 55-kDa subunits and catalyzed hydrolysis of maltose along with formation of isomaltose and panose. Approximately 50% of maltose was converted to isomaltose, panose, and other minor transglycosylation products by AgdB, even at low maltose concentrations. The agdB gene was cloned and sequenced. The gene comprised 3,055 bp, interrupted by three short introns, and encoded a polypeptide of 955 amino acids. The deduced amino acid sequence contained the chemically determined N-terminal and internal amino acid sequences of the 74- and 55-kDa subunits. This implies that AgdB is synthesized as a single polypeptide precursor. AgdB showed low but overall sequence homology to alpha-glucosidases of glycosyl hydrolase family 31. However, AgdB was phylogenetically distinct from any other alpha-glucosidases. We propose here that AgdB is a novel alpha-glucosidase with unusually strong transglycosylation activity.  相似文献   

2.
The aglB and aglA genes from the starch/maltodextrin utilization gene cluster of Thermotoga neapolitana were subcloned into pQE vectors for expression in Escherichia coli. The recombinant proteins AglB and AglA were purified to homogeneity and characterized. Both enzymes are hyperthermostable, the highest activity was observed at 85 degrees C. AglB is an oligomer of identical 55-kDa subunits capable of aggregation. This protein hydrolyses cyclodextrins and linear maltodextrins to glucose and maltose by liberating glucose from the reducing end of the molecules, and it is a cyclodextrinase with alpha-glucosidase activity. The pseudo-tetrasaccharide acarbose, a potent alpha-amylase and alpha-glucosidase inhibitor, does not inhibit AglB but, on the contrary, acarbose is degraded quantitatively by AglB. Recombinant AglB is activated in the presence of CaCl2, KCl, and EDTA, as well as after heating of the enzyme. AglA is a dimer of two identical 54-kDa subunits, and it hydrolyses the alpha-glycoside bonds of disaccharides and short maltooligosaccharides, acting on the substrate from the non-reducing end of the chain. It is a cofactor-dependent alpha-glucosidase with a wide action range, hydrolysing both oligoglucosides and galactosides with alpha-link. Thereby, the enzyme is not specific with respect to the configuration at the C4 position of its substrate. For the enzyme to be active, the presence of NAD+, DTT, and Mn2+ is required. Enzymes AglB and AglA supplement one another in substrate specificity and ensure complete hydrolysis to glucose for the intermediate products of starch degradation.  相似文献   

3.
The nucleotide sequence of a 4.39-kb DNA fragment encoding the alpha-glucosidase gene of Candida tsukubaensis is reported. The cloned gene contains a major open reading frame (ORF 1) which encodes the alpha-glucosidase as a single precursor polypeptide of 1070 amino acids with a predicted molecular mass of 119 kDa. N-terminal amino acid sequence analysis of the individual subunits of the purified enzyme, expressed in the recombinant host Saccharomyces cerevisiae, confirmed that the alpha-glucosidase precursor is proteolytically processed by removal of an N-terminal signal peptide to yield the two peptide subunits 1 and 2, of molecular masses 63-65 kDa and 50-52 kDa, respectively. Both subunits are secreted by the heterologous host S. cerevisiae in a glycosylated form. Coincident with its efficient expression in the heterologous host, the C. tsukubaensis alpha-glucosidase gene contains many of the canonical features of highly expressed S. cerevisiae genes. There is considerable sequence similarity between C. tsukubaensis alpha-glucosidase, the rabbit sucrase-isomaltase complex (proSI) and human lysosomal acid alpha-glucosidase. The cloned DNA fragment from C. tsukubaensis contains a second open reading frame (ORF 2) which has the capacity to encode a polypeptide of 170 amino acids. The function and identity of the polypeptide encoded by ORF 2 is not known.  相似文献   

4.
Processing alpha-glucosidase I, which is encoded by CWH41, regulates one of the key steps in asparagine-linked glycoprotein biosynthesis by cleaving the terminal alpha-1,2-linked glucose from Glc(3)Man(9)GlcNAc(2), the common oligosaccharide precursor. This cleavage is essential for further processing of the oligosaccharide to the complex, hybrid, and high mannose type carbohydrate structures found in eukaryotes. A method is described for the purification of the soluble form of the alpha-glucosidase I, from recombinant Saccharomyces cerevisiae overexpressing CWH41. A homogeneous enzyme preparation was obtained in higher yield than previously reported. Cultivation of recombinant S. cerevisiae in a fermenter increased the biomass 1.7 times per liter and enzyme production 2 times per liter compared to cultivation in shake flasks. Ammonium sulfate precipitation with three chromatography steps, including chromatography on an N-(5'-carboxypentyl)-1-deoxynojirimycin column, resulted in highly purified enzyme with no detectable contamination by other alpha- and beta-aryl-glycosidases. The purification procedure reproducibly yielded 40 microg of pure enzyme per gram wet biomass. Enzyme that was purified using an alternative procedure contained minor impurities and was hydrolyzed by an endogenous proteolytic activity to peptides that retained full catalytic activity. Controlled trypsin hydrolysis of the highly purified enzyme released polypeptide(s) containing the alpha-glucosidase I catalytic domain, with no loss of catalytic activity. This suggests that the catalytic domain of yeast alpha-glucosidase I is resistant to trypsin hydrolysis and remains fully functional after cleavage.  相似文献   

5.
ABSTRACT. The subunit composition and intracellular location of the two forms of cAMP-dependent protein kinase of Paramecium cilia were determined using antibodies against the 40-kDa catalytic (C) and 44-kDa regulatory (R44) subunits of the 70-kDa cAMP-dependent protein kinase purified from deciliated cell bodies. Both C and R44 were present in soluble and particulate fractions of cilia and deciliated cells. Crude cilia and a soluble ciliary extract contained a 48-kDa protein (R48) weakly recognized by one of several monoclonal antibodies against R44, but not recognized by an anti-R44 polyclonal serum. Gel-filtration chromatography of a soluble ciliary extract resolved a 220-kDa form containing C and R48 and a 70-kDa form containing C and R44. In the large enzyme, R48 was the only protein to be autophosphorylated under conditions that allow autophosphorylation of R44 The subunits of the large enzyme subsequently were purified to homogeneity by cAMP-agarose chromatography. Both C and R48 were retained by the column and eluted with 1 M NaCl; no other proteins were purified in this step. These results confirm that the ciliary cAMP-dependent protein kinases have indistinguishable C subunits, but different R subunits. The small ciliary enzyme, like the cell-body enzyme, contains R44, whereas R48 is the R subunit of the large enzyme.  相似文献   

6.
Three fragments of the cDNA encoding human 3-hydroxy-3-methylglutaryl-CoA reductase, all incorporating the majority of the catalytic domain of the protein, were subcloned into Escherichia coli expression vectors containing the pL promoter. The two larger expressed fragments (58 and 52 kDa) were soluble and had enzymatic activity, while the smallest (48 kDa) was insoluble. The two active fragments were purified by a combination of conventional techniques and affinity chromatography. A number of properties of the two enzymes were compared including specific activity, kinetic parameters, relative solubility, and cold lability. The 52-kDa enzyme was observed to change from a dimeric to monomeric form and to lose activity at 4 degrees C. In contrast, the 58-kDa enzyme was found to be much less cold labile, and was dimeric at both 20 and 4 degrees C. In order to resolve the number of subunits required to form an active site, the number of inhibitor binding sites for a known inhibitor was determined to be one per subunit in the 58-kDa enzyme.  相似文献   

7.
The glycogen phosphorylase-2 (GP2) activity that appears during the cell differentiation of Dictyostelium was purified to homogeneity. The molecular weight of the nondenatured enzyme was 200,000 as determined by Sephacryl S-300 gel filtration and was 107,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, suggesting that the native enzyme consists of two similar subunits. The intact protein was digested with trypsin and protease V8, and the resulting peptides were purified by microbore high pressure liquid chromatography. The peptides were sequenced, and oligonucleotides were constructed for polymerase chain reaction amplification of the GP2 gene from Dictyostelium genomic DNA template. The resulting polymerase chain reaction products were sequenced directly and were confirmed to encode portions of the GP2 gene. These fragments were used to probe a partial EcoRI genomic library for the remainder of the GP2 gene. The nucleotide sequence of the GP2-selected clones revealed an open reading frame of 2975 base pairs that was interrupted by two introns of 109 and 105 base pairs, respectively. The open reading frame encoded a protein of 992 amino acids with a calculated molecular mass of 112,500 Da and an isoelectric point of 6.4. An unusual sequence within the second exon of GP2, in which the triplet CAA was repeated 11 times, resulted in 11 in-frame glutamine residues of a possible 15 amino acids coded for by this region. The CAA repeat was transcribed, as shown by the sequence of cDNA. Comparison of the amino acid sequence of Dictyostelium GP2 to the phosphorylases from other organisms revealed that the Dictyostelium protein was 50 and 44% identical to yeast and rabbit muscle phosphorylases, respectively. Northern blot analysis showed that GP2 mRNA was absent in amebas and the early stages of development, reached a maximum level of expression at the slug stage, and then decreased in the terminal stages of development. Comparison of the mRNA expression with the appearance of GP2 enzyme protein and enzyme activity revealed that gp2 mRNA and a 113-kDa GP2 enzyme peptide were expressed concurrently at 10 h of development. However, enzyme activity did not appear until 18 h, coincident with a decrease in the level of the 113-kDa peptide and a corresponding increase in the amount of a 106-kDa GP2 peptide. Addition of cAMP to aggregation-competent cells in liquid culture resulted in the induction of GP2 mRNA, GP2 protein, and GP2 enzyme activity.  相似文献   

8.
1. Monospecific antiserum was raised in rabbits to homogeneous cytosolic pyruvate kinase isolated from 5-day-old germinating endosperm of the castor oil plant, Ricinus communis. An earlier study demonstrated that the purified enzyme is putatively heterotetrameric, composed of two subunits which migrate as 57-kDa and 56-kDa proteins upon sodium dodecyl sulfate/polyacrylamide gel electrophoresis [Plaxton, W. C. (1988) Plant Physiol. (Bethesda) 86, 1065-1069]. Both proteins were detected on Western blots of extracts prepared under denaturing conditions from 4-8-day-old, but not 0-3-day-old, germinating-endosperm tissue. This suggests that both subunits exist in vivo, and that the large increase in pyruvate kinase activity which occurs around the fourth day of germination is due to an increase in pyruvate kinase concentration. 2. The cytosolic and plastidic pyruvate kinase isozymes (termed PKc and PKp, respectively) from castor-oil-plant developing endosperm and expanding leaf tissue were separated by anion-exchange chromatography on Q-Sepharose. The antigenic reaction of the partially purified enzyme preparations to rabbit polyclonal antibodies raised against homogeneous germinating-castor-bean PKc was tested by immunoprecipitation and Western blotting. Although developing-endosperm and leaf PKc appeared to be antigenically very similar to germinating-endosperm PKc, they differed from the heterotetrameric germinating-endosperm enzyme by being composed of a single type of subunit with a molecular mass of about 56 kDa. No cross-reactivity of the PKc antibodies was observed with either developing-endosperm or leaf PKp, nor with rabbit muscle or Bacillus stearothermophilus pyruvate kinase. Conversely, none of the castor-oil-plant pyruvate kinase preparations showed significant cross-reactivity with antibodies raised against purified yeast or rabbit muscle pyruvate kinases. 3. To investigate the structural relationship between the two germinating-endosperm-PKc subunits, each polypeptide was characterized by amino acid composition analysis and peptide mapping by CNBr fragmentation. The amino acid compositions and CNBr cleavage patterns of the two subunits were similar, but not identical, suggesting that these polypeptides are related, but distinct, proteins. Mild tryptic attack of native enzyme led to an approximate 6-kDa reduction in the apparent molecular mass of both subunits, further indicating sequence similarity between the two polypeptides. 4. Native molecular masses of the various castor-oil-plant pyruvate kinases were estimated by Superose-6 gel-filtration chromatography.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
AIMS: To purify and characterize an extracellular alpha-glucosidase from Trichoderma viride capable of inactivating a host-specific phytotoxin, designated RS toxin, produced by the rice sheath blight pathogen, Rhizoctonia solani Kühn. METHODS AND RESULTS: The host-specific RS toxin was purified from both culture filtrates (culture filtrate toxin, CFTox) and R. solani-inoculated rice sheaths (sheath blight toxin, SBTox). Sodium dodecyl sulphate-polyacrylamide gel electrophoresis analyses of extracellular proteins, purified from a biocontrol fungus T. viride (TvMNT7) grown on SBTox and CFTox separately, were carried out. The antifungal activity of the purified high molecular weight protein (110 kDa) was studied against RS toxin as well as on the sclerotial germination and mycelial growth of R. solani. Enzyme assay and Western blot analysis with the antirabbit TvMNT7 110-kDa protein indicated that the protein was an alpha-glucosidase. The 110-kDa protein was highly specific to RS toxin and its Michaelis-Menten constant value was 0.40 mmol l-1 when p-nitrophenyl alpha-D-glucopyranoside was used as the substrate. The isoelectric point of the protein was 5.2. N-terminal sequencing of the alpha-glucosidase protein showed that its amino acid sequence showed no homology with other known alpha-glucosidases. CONCLUSION: This appears to be the first report of the purification and characterization of an alpha-glucosidase capable of inactivating a host-specific toxin of fungal origin. The alpha-glucosidase is specific to RS toxin and is different from the known alpha-glucosidases. SIGNIFICANCE AND IMPACT OF THE STUDY: As RS toxin could be inactivated by the microbial alpha-glucosidase enzyme, isolation of the gene that codes for the enzyme from T. viride and transfer of the gene to rice plants would lead to enhanced resistance against sheath blight pathogen by inactivation of RS toxin.  相似文献   

10.
NADPH is an intermediate in the oxidation of organic compounds coupled to Fe(III) reduction in Geobacter species, but Fe(III) reduction with NADPH as the electron donor has not been studied in these organisms. Crude extracts of Geobacter sulfurreducens catalyzed the NADPH-dependent reduction of Fe(III)-nitrilotriacetic acid (NTA). The responsible enzyme, which was recovered in the soluble protein fraction, was purified to apparent homogeneity in a four-step procedure. Its specific activity for Fe(III) reduction was 65 micromol. min(-1). mg(-1). The soluble Fe(III) reductase was specific for NADPH and did not utilize NADH as an electron donor. Although the enzyme reduced several forms of Fe(III), Fe(III)-NTA was the preferred electron acceptor. The protein possessed methyl viologen:NADP(+) oxidoreductase activity and catalyzed the reduction of NADP(+) with reduced methyl viologen as electron donor at a rate of 385 U/mg. The enzyme consisted of two subunits with molecular masses of 87 and 78 kDa and had a native molecular mass of 320 kDa, as determined by gel filtration. The purified enzyme contained 28.9 mol of Fe, 17.4 mol of acid-labile sulfur, and 0.7 mol of flavin adenine dinucleotide per mol of protein. The genes encoding the two subunits were identified in the complete sequence of the G. sulfurreducens genome from the N-terminal amino acid sequences derived from the subunits of the purified protein. The sequences of the two subunits had about 30% amino acid identity to the respective subunits of the formate dehydrogenase from Moorella thermoacetica, but the soluble Fe(III) reductase did not possess formate dehydrogenase activity. This soluble Fe(III) reductase differs significantly from previously characterized dissimilatory and assimilatory Fe(III) reductases in its molecular composition and cofactor content.  相似文献   

11.
Faridmoayer A  Scaman CH 《Glycobiology》2005,15(12):1341-1348
Alpha-glucosidase I initiates the trimming of newly assembled N-linked glycoproteins in the lumen of the endoplasmic reticulum (ER). Site-specific chemical modification of the soluble alpha-glucosidase I from yeast using diethylpyrocarbonate (DEPC) and tetranitromethane (TNM) revealed that histidine and tyrosine are involved in the catalytic activity of the enzyme, as these residues could be protected from modification using the inhibitor deoxynojirimycin. Deoxynojirimycin could not prevent inactivation of enzyme treated with N-bromosuccinimide (NBS) used to modify tryptophan residues. Therefore, the binding mechanism of yeast enzyme contains different amino acid residues compared to its mammalian counterpart. Catalytically active polypeptides were isolated from endogenous proteolysis and controlled trypsin hydrolysis of the enzyme. A 37-kDa nonglycosylated polypeptide was isolated as the smallest active fragment from both digests, using affinity chromatography with inhibitor-based resins (N-methyl-N-59-carboxypentyl- and N-59-carboxypentyl-deoxynojirimycin). N-terminal sequencing confirmed that the catalytic domain of the enzyme is located at the C-terminus. The hydrolysis sites were between Arg(521) and Thr(522) for endogenous proteolysis and residues Lys(524) and Phe(525) for the trypsin-generated peptide. This 37-kDa polypeptide is 1.9 times more active than the 98-kDa protein when assayed with the synthetic trisaccharide, alpha-D-Glc1,2alpha-D-Glc1,3alpha-D-Glc-O(CH2)(8)COOCH(3), and is not glycosylated. Identification of this relatively small fragment with catalytic activity will allow mechanistic studies to focus on this critical region and raises interesting questions about the relationship between the catalytic region and the remaining polypeptide.  相似文献   

12.
The fungal strain Mortierella alliacea YN-15 is an arachidonic acid producer that assimilates soluble starch despite having undetectable alpha-amylase activity. Here, a alpha-glucosidase responsible for the starch hydrolysis was purified from the culture broth through four-step column chromatography. Maltose and other oligosaccharides were less preferentially hydrolyzed and were used as a glucosyl donor for transglucosylation by the enzyme, demonstrating distinct substrate specificity as a fungal alpha-glucosidase. The purified enzyme consisted of two heterosubunits of 61 and 31 kDa that were not linked by a covalent bond but stably aggregated to each other even at a high salt concentration (0.5 M), and behaved like a single 92-kDa component in gel-filtration chromatography. The hydrolytic activity on maltose reached a maximum at 55 degrees C and in a pH range of 5.0-6.0, and in the presence of ethanol, the transglucosylation reaction to form ethyl-alpha-D-glucoside was optimal at pH 5.0 and a temperature range of 45-50 degrees C.  相似文献   

13.
Plasmid vectors capable of expressing the large and small subunits of the vaccinia virus mRNA capping enzyme were constructed and used to transform Escherichia coli. Conditions for the induction of the dimeric enzyme or the individual subunits in a soluble form were identified, and the capping enzyme was purified to near homogeneity. Proteolysis of the capping enzyme in bacteria yields a 60-kDa product shown previously to possess the mRNA triphosphatase and guanyltransferase activities (Shuman, S. (1990) J. Biol. Chem. 265, 11960-11966) was isolated and shown by amino acid sequence analysis to be derived from the NH2 terminus of D1R. The individual subunits lacked methyltransferase activity when assayed alone. However, mixing the D1R and D12L subunits permitted reconstitution of the methyltransferase activity, and this appearance in activity accompanied the association of the subunits. In contrast, mixing the D12L subunit with the D1R-60K proteolytic fragment failed to yield methyltransferase activity or result in a physical association of the two proteins. These results demonstrate that the methyltransferase active site requires the presence of the D12L subunit with the carboxyl-terminal portion of the D1R subunit. Furthermore, since the mRNA triphosphatase and guanyltransferase active sites reside in the NH2-terminal domain of the D1R subunit, and the methyltransferase activity is found in the carboxyl-terminal portion of this subunit and D12L, there must be at least two separate active sites in this enzyme.  相似文献   

14.
A novel enzyme, L-sorbosone dehydrogenase 1 (SNDH1), which directly converts L-sorbosone to L-ascorbic acid (L-AA), was isolated from Ketogulonicigenium vulgare DSM 4025 and characterized. This enzyme was a homooligomer of 75-kDa subunits containing pyrroloquinoline quinone (PQQ) and heme c as the prosthetic groups. Two isozymes of SNDH, SNDH2 consisting of 75-kDa and 55-kDa subunits and SNDH3 consisting of 55-kDa subunits, were also purified from the bacterium. All of the SNDHs produced L-AA, as well as 2-keto-L-gulonic acid (2KGA), from L-sorbosone, suggesting that tautomerization of L-sorbosone causes the dual conversion by SNDHs. The sndH gene coding for SNDH1 was isolated and analyzed. The N-terminal four-fifths of the SNDH amino acid sequence exhibited 40% identity to the sequence of a soluble quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus. The C-terminal one-fifth of the sequence exhibited similarity to a c-type cytochrome with a heme-binding motif. A lysate of Escherichia coli cells expressing sndH exhibited SNDH activity in the presence of PQQ and CaCl2. Gene disruption analysis of K. vulgare indicated that all of the SNDH proteins are encoded by the sndH gene. The 55-kDa subunit was derived from the 75-kDa subunit, as indicated by cleavage of the C-terminal domain in the bacterial cells.  相似文献   

15.
Resting barley (Hordeum vulgare L.) grains contain acid-proteinase activity. The corresponding enzyme was purified from grain extracts by affinity chromatography on a pepstatin-Sepharose column. The pH optimum of the affinity-purified enzyme was between 3.5 and 3.9 as measured by hemoglobin hydrolysis and the enzymatic activity was completely inhibited by pepstatin a specific inhibitor of aspartic proteinases (EC 3.4.23). Further purification on a Mono S column followed by activity measurements and sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the affinity-purified enzyme preparation contained two active heterodimeric aspartic proteinases: a larger 48k Da enzyme, consisting of 32-kDa and 16-kDa subunits and a smaller one of 40 kDa, consisting of 29-kDa and 11-kDa subunits. Separation and partial amino acid sequence analysis of each subunit indicate that the 40-kDa enzyme is formed by proteolytic processing of the 48k Da form. Amino-acid sequence alignment and inhibition studies showed that the barley aspartic proteinase resembles mammalian lysosomal cathepsin D (EC 3.4.23.5).  相似文献   

16.
17.
Complementary DNA clones corresponding to the 70- and 82-kDa subunits of soluble guanylate cyclase of rat lung have been isolated. Blot hybridization of total poly(A)+ RNA from rat tissues detected mRNA of about 3.4 kilobases for the 70-kDa subunit and about 5.5 kilobases for the 82-kDa subunit. Messenger RNA levels of both subunits were abundant in lung and cerebrum, moderate in cerebellum, heart, and kidney, and low in liver and muscle, consistent with previously described enzyme activities in these tissues. Southern blot analysis of high molecular weight genomic DNA from rat liver indicated that the genes for the 70- and 82-kDa subunits are different. The carboxyl-terminal region of the 70- and 82-kDa subunits showed a high degree of homology and also had a partial homology with the putative catalytic domain of particulate guanylate cyclase and adenylate cyclase, indicating that both the 70- and 82-kDa subunits have catalytic domains. The cDNAs were subcloned to an expression vector and transfected to L cells. The cells transfected with cDNA of the 70-kDa subunit or the 82-kDa subunit showed no guanylate cyclase activity, whereas the cells transfected with both the 70- and 82-kDa subunit cDNAs showed significant guanylate cyclase activity that was activated markedly by sodium nitroprusside. These data suggest that both subunits are required for both the basal catalytic and regulatory activity of soluble guanylate cyclase. Presumably both catalytic subunits must be present and interactive to permit synthesis of cyclic GMP and nitrovasodilator activation.  相似文献   

18.
A multifunctional masquerade-like protein has been isolated, purified, and characterized from hemocytes of the freshwater crayfish, Pacifastacus leniusculus. It was isolated by its Escherichia coli binding property, and it binds to formaldehyde-treated Gram-negative bacteria as well as to yeast, Saccharomyces cerevisiae, whereas it does not bind to formaldehyde-fixed Gram-positive bacteria. The intact masquerade (mas)-like protein is present in crayfish hemocytes as a heterodimer composed of two subunits with molecular masses of 134 and 129 kDa. Under reducing conditions the molecular masses of the intact proteins are not changed. After binding to bacteria or yeast cell walls, the mas-like protein is processed by a proteolytic enzyme. The 134 kDa of the processed protein yields four subunits of 65, 47, 33, and 29 kDa, and the 129-kDa protein results in four subunits of 63, 47, 33, and 29 kDa in 10% SDS-PAGE under reducing conditions. The 33-kDa protein could be purified by immunoaffinity chromatography using an Ab to the C-terminal part of the mas-like protein. This subunit of the mas-like protein has cell adhesion activity, whereas the two intact proteins, 134 and 129 kDa, have binding activity to LPSs, glucans, Gram-negative bacteria, and yeast. E. coli coated with the mas-like protein were more rapidly cleared in crayfish than only E. coli, suggesting this protein is an opsonin. Therefore, the cell adhesion and opsonic activities of the mas-like protein suggest that it plays a role as an innate immune protein.  相似文献   

19.
Oligosaccharyltransferase has been purified from canine microsomal membranes as a protein complex with three nonidentical subunits of 66, 63/64, and 48 kDa. The 66- and 63/64-kDa subunits were found to be identical to ribophorins I and II, respectively. The ribophorins are integral membrane glycoproteins that were previously shown to be localized exclusively to the rough endoplasmic reticulum. The 48-kDa subunit (OST48) of the oligosaccharyltransferase complex is not a glycoprotein and is not recognized by antibodies to either ribophorin. Here, we describe the characterization of a cDNA clone that encodes OST48. Like ribophorins I and II, OST48 was found to be an integral membrane protein, with the majority of the polypeptide located within the lumen of the endoplasmic reticulum. OST48 does not show significant amino acid sequence homology to either ribophorin I or II. A 45-kDa integral membrane protein, designated WBP1, from the yeast Saccharomyces cerevisiae was found to be 25% identical in sequence to OST48. Recently, WBP1 was shown to be essential for in vivo and in vitro expression of oligosaccharyltransferase activity in yeast. We conclude that OST48 and WBP1 are homologous gene products.  相似文献   

20.
Aspartyl aminopeptidase (EC 3.4.11.21) cleaves only unblocked N-terminal acidic amino-acid residues. To date, it has been found only in mammals. We report here that aspartyl aminopeptidase activity is present in yeast. Yeast aminopeptidase is encoded by an uncharacterized gene in chromosome VIII (YHR113W, Saccharomyces Genome Database). Yeast aspartyl aminopeptidase preferentially cleaved the unblocked N-terminal acidic amino-acid residue of peptides; the optimum pH for this activity was within the neutral range. The metalloproteases inhibitors EDTA and 1.10-phenanthroline both inhibited the activity of the enzyme, whereas bestatin, an inhibitor of most aminopeptidases, did not affect enzyme activity. Gel filtration chromatography revealed that the molecular mass of the native form of yeast aspartyl aminopeptidase is approximately 680,000. SDS/PAGE of purified yeast aspartyl aminopeptidase produced a single 56-kDa band, indicating that this enzyme comprises 12 identical subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号