首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the synthesis of fatty acids and their utilization in plastids, fatty acyl moieties are linked to acyl carrier protein (ACP). In contrast to previously cloned organ-specific ACP isoforms, we have now isolated a cDNA clone for a potentially constitutive ACP isoform from a spinach root library. Identity between the amino acid sequence encoded by this cDNA and N-terminal sequence data for ACP-II protein from spinach leaf indicates that the root cDNA encodes ACP-II. The deduced amino acid sequence for ACP-II shows 62% identity with spinach leaf ACP-I. Southern analysis suggests that multiple ACP genes or pseudogenes occur in the spinach genome. High-stringency northern blot analysis and RNase protection studies confirm that, within the region encoding the mature ACP-II, the cloned ACP sequence is expressed in leaves and seeds as well as in roots. Quantitative RNase protection data indicate that the ratio of ACP-I and ACP-II mRNA sequences in leaf is similar to the ratio of the two proteins.  相似文献   

2.
3.
Ricinus communis agglutinin dissociated to lower molecular weight forms when heated in sodium dodecyl sulfate in the absence of reducing agents, while ricin was little affected by such treatment. The data suggest that strong noncovalent bonds hold together two A-B heterodimers in the Ricinus communis agglutinin tetramer. Protease inhibitors such as diisopropylfluorophosphate, phenylmethansefulonyl fluoride, and EDTA, did not prevent the sodium dodecyl sulfate-heat induced dissociation; however, sulfhydryl specific reagents (N-ethylmaleimide, 5,5'-dithiobis (2-nitrobenzoic acid) and p-chloromercuribenzoate) were effective. Titration of the lectins in sodium dodecyl sulfate indicated that ricin contains one sulfhydryl and Ricinus communis agglutinin four sulfhydryl groups, none of which react in the presence of 8 M urea. The sulfhydryl groups that could be titrated in the intact proteins in sodium dodecyl sulfate were on the A chains.  相似文献   

4.
In order to examine potential regulatory steps in plant fatty acid biosynthesis, we have developed procedures for the analysis of the major acyl-acyl carrier protein (ACP) intermediates of this pathway. These techniques have been used to separate and identify acyl-ACPs with chain configurations ranging from 2:0 to 18:1 and to determine the relative in vivo concentrations of acyl-ACPs in spinach leaf and developing seed. In both leaf and seed as much as 60% of the total ACPs were nonesterified (free), with the remaining proportion consisting of acyl-ACP intermediates leading to the formation of palmitate, stearate, and oleate. In spinach leaf the proportions of the various acyl groups esterified to each ACP isoform were indistinguishable, indicating that these isoforms are utilized similarly in de novo fatty acid biosynthesis in vivo. However, the acyl group distribution pattern of seed ACP-II differed significantly from that of leaf ACP-II. The malonyl-ACP levels were less than the 4:0-ACP and 6:0-ACP levels in leaf, and in contrast, the malonyl-ACP-II levels in seed were approximately 3-fold higher than the 4:0-ACP-II and 6:0-ACP-II levels. In addition, the ratio of oleoyl-ACP-II (18:1) to stearoyl-ACP-II (18:0) was higher in seed than in leaf. These data suggest that the differences in acyl-ACP patterns reflect a tissue/organ-specific difference rather than an isoform-specific difference. In extracts prepared from leaf samples collected in the dark, the levels of acetyl-ACPs were approximately 5-fold higher compared to samples collected in the light. The levels of free ACPs showed an inverse response, increasing in the light and decreasing in the dark. Notably there was no concomitant increase in the malonyl-ACP levels. The most likely explanation for the major increase in acetyl-ACP levels in the dark is that light/dark control over the rate of fatty acid biosynthesis occurs at the reaction catalyzed by acetyl-CoA carboxylase.  相似文献   

5.
While studying the behavior of profilin from Phaseolus vulgaris seeds under native conditions, a high molecular weight species suggesting a complex of profilin and associated proteins was observed by Western immunoblotting. This putative complex was also observed when enzyme-linked secondary antibodies alone were used, and this apparently resulted from antibody association, through its glycosyl moieties, with the endogenous carbohydrate-binding activity from the seed extracts. This endogenous activity corresponded to that of purified phytohemagglutinin (PHA). In addition, the P. vulgaris lectin activity was very stable and was observed when the extracts were pretreated with varying concentrations of sodium dodecyl sulfate, Triton X-100, urea and β-mercaptoethanol, or when membrane blots were boiled in water before incubation with antibody. The activity was abolished only if the membrane was boiled in 1% sodium dodecyl sulfate. This finding could also be useful to implement assays for carbohydrate-binding activity from cell or tissue extracts using different visualizable reagents bearing particular glycosyl moieties.  相似文献   

6.
To investigate the role of acyl carrier protein (ACP) in determining the fate of the acyl moieties linked to it in the course of de-novo fatty acid biosynthesis in higher plants, we carried out in vitro experiments to reconstitute the fatty acid synthase (FAS) reaction in extracts of spinach (Spinaciaoleracea L.) leaves, rape (Brassicanapus L.) seeds and Cuphea lanceolata Ait. seeds. The action of two major C. lanceolata ACP isoforms (ACP 1 and ACP 2) compared to ACP from Escherichia coli was monitored by saponification of the corresponding FAS products with subsequent analysis of the liberated fatty acids by high-performance liquid chromatography. In a second approach the preference of the medium-chain acyl-ACP-specific thioesterase (EC 3.1.2.14) of C. lanceolata seeds for the hydrolysis of acyl-ACPs prepared from the three ACP types was investigated. Both ACP isoforms from C. lanceolata seeds supported the synthesis of medium-chain fatty acids in a reconstituted FAS reaction of spinach leaf extracts. Compared to the isoform ACP 1, ACP 2 was more effective in supporting the synthesis of such fatty acids in the FAS reaction of rape seed extracts and caused a higher accumulation of FAS products in all experiments. No preference of the medium-chain thioesterase for one specific ACP isoform was observed. The results indicate that the presence of ACP 2 is essential for the synthesis of decanoic acid in C. lanceolata seeds, and its expression in the phase of accumulation of high levels of this fatty acid provides an additional and highly efficient cofactor for stimulating the FAS reaction. Received: 23 June 1997 / Accepted: 23 October 1997  相似文献   

7.
The electrophoretic mobility of radioiodinated follitropin (FSH) alpha and beta subunits as well as the alpha beta dimer changed markedly depending on the concentration of reducing agents such as dithiothreitol. The changes were more dramatic in the beta subunit than in the alpha subunit. 125I-FSH, complexed to the receptor on porcine granulosa cells or in Triton X-100 extracts, was cross-linked with a cleavable (nondisulfide) homobifunctional reagent, solubilized in sodium dodecyl sulfate without reducing agents, and electrophoresed. The cross-linked sample revealed three bands of high molecular mass, in addition to the hormone subunit and dimer bands. The band of lightest mass, 110 kDa, was the major band and the other two of 76 and 62 kDa were barely noticeable. Upon reduction with dithiothreitol, the 110-kDa band decreased while the 76- and 62-kDa bands increased, indicating the existence of disulfides between components of the 110-kDa complex. Formation of the disulfide-linked complexes requires 125I-FSH, specifically bound to the hormone receptor and cross-linking, and can be prevented with an excess of native FSH but not human choriogonadotropin. Complex formation was independent of blocking free sulfhydryl groups with N-ethylmaleimide. When the cross-linked complexes were reduced in the gel matrix and analyzed on fresh gels, the 76- and 62-kDa complexes were generated from the 110-kDa band, indicating the loss of two components. The lost components were estimated to be at 14 and 34 kDa. The rate of formation and cleavage of the cross-linked complexes indicated a sequential and incremental addition of 22-, 14-, and 34-kDa components to the FSH alpha beta dimer. The results of reduction of the cross-linked complexes demonstrate the existence of disulfide linkage between the three components.  相似文献   

8.
Photocontrol of gibberellin metabolism in situ in maize   总被引:6,自引:1,他引:5       下载免费PDF全文
Two forms of spinach acyl carrier protein (ACP-I and ACP-II) have recently been characterized and found to be expressed in a tissue-specific manner (JB Ohlrogge, TM Kuo, 1985 J Biol Chem 260: 8032). To examine possible different functions for these ACP isoforms, we have tested purified preparations of spinach leaf ACP-I and ACP-II and Escherichia coli ACP in several in vitro reactions of fatty acid metabolism. Total de novo fatty acid synthesis and malonyl-CoA:ACP transacylase do not appear to discriminate between acyl carrier protein isoforms. In contrast, the Km of oleoyl-ACP thioesterase for oleoyl-ACP-II is 10-fold higher than for oleoyl-ACP-I, whereas the Km of acyl-ACP glycerol-3-phosphate acyl transferase is 5-fold higher for oleoyl-ACP-I than for oleoyl-ACP-II. A characterization of these reactions and a possible role for ACP isoforms in regulation of fatty acid metabolism in plants are described.  相似文献   

9.
Ubiquitous soybean urease, as opposed to the seed-specific urease, designates the seemingly identical ureolytic activities of suspension cultures and leaves. It also appears to be the basal urease in developing seeds of a variety, Itachi, which lacks the seed-specific urease (Polacco, Winkler 1984 Plant Physiol 74: 800-804). On native polyacrylamide gels the ureolytic activities in crude extracts of these three tissues comigrate as determined by assays of gel slices. At this level of resolution the ubiquitous urease also migrates with or close to the fast (trimeric) form of the seed-specific urease.

The ubiquitous urease was purified approximately 100-fold from suspension cultures of two cultivars (Itachi and Prize) as well as from developing seeds of Itachi. These partially purified preparations allowed visualization of native urease on polyacrylamide gels by activity staining and of urease subunits on denaturing lithium dodecyl sulfate gels by electrophoretic transfer to nitrocellulose and immunological detection (“Western Blot”). The ubiquitous urease holoenzyme migrates slightly less rapidly than the fast seed urease in native gels; its subunit migrates slightly less rapidly than the 93.5 kilodaltons subunit of either the fast or slow (hexameric) seed enzyme. The ubiquitous urease elutes from an agarose A-0.5 meter column with the fast form of the seed urease species suggesting that the ubiquitous urease, like the fast seed urease, exists as a trimeric holoenzyme. The soybean cultivar, Prize, produces the hexameric seed urease; yet its ubiquitous urease (from leaf and suspension culture) is trimeric.

The pH dependence of the ureolytic activity of seed coats of both seed urease-negative (Itachi) and seed urease-positive (Williams) cultivars suggests that this activity is exclusively the ubiquitous urease. Its relatively higher levels in seed coats than in embryos of Itachi suggests that the ubiquitous urease is involved in degradation of urea derived from ureides. Consistent with a ureide origin for urea is the observation that addition of a urease inhibitor, phenylphosphordiamidate, to extracts of developing Itachi seeds (seed coat plus embryo) results in accumulation of urea from allantoic acid.

  相似文献   

10.
Two major endopeptidases were present in cotyledons of germinating Vigna mungo seeds, as detected by the zymogram after polyacrylamide gel electrophoresis. They were not detectable in cotyledons of dry seeds, but their intensities on the zymogram increased during germination. During incubation of detached cotyledons, however, the activities showed only a slight increase for 5 days. These two endopeptidases could be separated by Sephacryl S-200 column chromatography. One of them was found to be a serine-endopeptidase as judged by phenylmethylsulfonylfluoride and diisopropyl fluorophosphate inhibition. The other was a sulfhydryl-endopeptidase because of its dependency on 2-mercaptoethanol and inhibition by leupeptin, chymostatin, and antipain. Analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis indicatd that the two endopeptidases digested the Vigna mungo seed globulin subunits at different rates. The serine enzyme digested the 56 kilodalton subunit at first, but the sulfhydryl enzyme digested the 54 kilodalton peptide more efficiently than the 56 kilodalton peptide. The pattern of digestion of globulin by the combination of the serine- and sulfhydryl-endopeptidases was similar to that using crude enzyme extracts.  相似文献   

11.
C P Moxham  C C Malbon 《Biochemistry》1985,24(22):6072-6077
Agents that react chemically with sulfhydryl groups of proteins modify the response of adenylate cyclase to stimulation by beta-adrenergic agonists. N-Ethylmaleimide, an agent that alkylates sulfhydryl groups, inactivates both the catalytic moiety of adenylate cyclase and the stimulatory, regulatory guanine nucleotide binding protein Ns of rat fat cells but fails to affect binding of antagonists to the beta-adrenergic receptor [Malbon, C. C., Graziano, M. P., & Johnson, G. L. (1984) J. Biol. Chem. 259, 3254-3260]. Treating membranes of rat fat cells with dithiothreitol or beta-mercaptoethanol, agents that reduce disulfide bridges of proteins, results in a loss of binding of beta-adrenergic radioligands to the receptor. The specific binding of radioligands to beta-adrenergic receptors that are solubilized in digitonin is affected similarly by treatment with disulfide bridge reducing agents. beta-Adrenergic receptor purified from rat fat cells and treated with beta-mercaptoethanol (10%) and then subjected to gel electrophoresis in the presence of sodium dodecyl sulfate migrates as a Mr 67 000 peptide [Cubero, A., & Malbon, C. C. (1984) J. Biol. Chem. 259, 1344-1350]. In the absence of disulfide bridge reducing agents, however, the purified receptor exhibits greater electrophoretic mobility, migrating as a peptide with Mr 54 000. Treating the native form of the purified receptor with beta-mercaptoethanol (0.1-10%) or dithiothreitol (0.1-10 mM) decreases the ability of the receptor to bind beta-adrenergic ligands, decreases the electrophoretic mobility of the receptor, and results in receptor peptides migrating with molecular weight ranging from 54 000 to 67 000 when subjected to gel electrophoresis in the presence of sodium dodecyl sulfate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Purification and properties of spinach leaf debranching enzyme   总被引:1,自引:1,他引:0       下载免费PDF全文
Starch debranching enzyme was purified from intact spinach (Spinacia oleracea L. cv Vital) chloroplasts and from a spinach leaf extract using affinity chromatography on Sepharose 6B-bound cycloheptaamylose (Schardinger β-dextrin). The enzyme from both sources was homogeneous upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Spinach leaf debranching enzyme appears to consist of a single polypeptide chain, since the molecular weight of the native protein (110,000 daltons) was not changed by treatment with sodium dodecyl sulfate. Only one spinach leaf debranching enzyme band could be detected after electrophoresis of a leaf extract on amylopectin-containing polyacrylamide gel, the retardation factor of which coincided with that of the single band seen with the chloroplast enzyme. The purified enzyme exhibited strong pullulanase activity, the specific activity being 69 units per milligram protein with pullulan and 22 units per milligram protein with amylopectin. Cycloheptaamylose is a potent competitive inhibitor of spinach leaf debranching enzyme. The pH optimum of the enzyme was found to be 5.5. The purified enzyme is rather unstable at both 20° and 0°C. Part of the activity lost under storage or at a suboptimal pH could immediately be restored by the addition of thiols. The reactivatable protein, being of the same molecular weight as the native enzyme, exhibited a somewhat altered electrophoretic mobility resulting in one or two minor bands on a zymogram.  相似文献   

13.
Glutathione reductase (EC 1.6.4.2) was purified from intact pea (Pisum sativum) chloroplasts by a method which includes affinity chromatography on ADP-agarose. Fractions from the affinity column which had glutathione reductase activity consisted of polypeptides of 60 and 32 kilodaltons. Separation of the proteins by electrophoresis on native gels showed that glutathione reductase activity was associated with 60 kilodalton polypeptides and not with the 32 kilodalton polypeptides. Antibodies to spinach whole leaf glutathione reductase (60 kilodaltons) cross-react with the chloroplast 60 kilodalton glutathione reductase but not the 32 kilodalton polypeptides. In the absence of dithiothreitol the 60 kilodalton polypeptides showed a shift in apparent molecular weight on sodium dodecyl sulfate gels to 72 kilodaltons. Dithiothreitol did not alter the activity of the chloroplast enzyme. Chloroplast glutathione reductase is relatively insensitive to NADPH.  相似文献   

14.
A number of lipoxygenase isoenzymes were identified in developing soybean (Glycine max L. Merrill cv Provar) seeds and two have been partially characterized. In a study of lipoxygenase level in developing soybean seeds, the enzyme content increased markedly during development. Comparisons of the lipoxygenases from mature soybean seeds and immature seeds by isoelectric focusing, chromatofocusing, sodium dodecyl sulfate polyacrylamide gel electrophoresis and peptide mapping identified two categories of isoenzyme. The isoenzymes from immature seeds were found by electron paramagnetic resonance spectroscopy to be isolated at least in part as the high spin iron(III) or active form of the enzyme in contrast to lipoxygenases from mature seeds which were isolated as electron paramagnetic resonance silent, high spin iron(II) species. The discovery of increased levels of lipoxygenases during seed development and their isolation in an active form suggests that the enzyme may play a physiological role during the maturation process. The incorporation of iron-59 from the nutrient medium into lipoxygenase during culture of immature seeds was indicative of de novo synthesis of the enzyme. The efficiency of the iron uptake was high, as indicated by the level of radioactivity found in the enzyme (one gram atom of iron per mole of lipoxygenase).  相似文献   

15.
Seed dormancy in wild Lolium rigidum Gaud (annual ryegrass) populations is highly variable and not well characterized at the biochemical level. To identify some of the determinants of dormancy level in these seeds, the proteomes of subpopulations selected for low and high levels of primary dormancy were compared by two-dimensional polyacrylamide gel electrophoresis of extracts from mature, dry seeds. High-dormancy seeds showed higher expression of small heat shock proteins, enolase, and glyoxalase I than the low-dormancy seeds. The functional relevance of these differences in protein expression was confirmed by the fact that high-dormancy seeds were more tolerant to high temperatures imposed at imbibition and had consistently higher glyoxalase I activity over 0-42 d dark stratification. Higher expression of a putative glutathione peroxidase in low-dormancy seeds was not accompanied by higher activity, but these seeds had a slightly more oxidized glutathione pool and higher total peroxidase activity. Overall, these biochemical and physiological differences suggest that L. rigidum seeds selected for low dormancy are more prepared for rapid germination via peroxidase-mediated cell wall weakening, whilst seeds selected for high dormancy are constitutively prepared to survive environmental stresses, even in the absence of stress during seed development.  相似文献   

16.
Posttranslational acylation of several chloroplast proteins with palmitic acid was recently demonstrated in Spirodela oligorrhiza (AK Mattoo, M Edelman [1987] Proc Natl Acad Sci USA 84: 1497-1501). We have now identified an in vivo acylated, soluble protein having an apparent Mr of 10 kilodaltons on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as an acylated form of acyl carrier protein (ACP). This 10-kilodalton protein is present in low abundance, and its acylation is light-stimulated. Turnover of the acyl moiety but not the apo-protein is rapid in the light. The acylated 10-kilodalton protein coelectrophoreses with in vitro synthesized palmitoyl-acyl carrier protein and is immunoprecipitated from soluble extracts with an antibody raised against spinach ACP. Cerulenin, an inhibitor of β-ketoacyl-ACP synthetase, inhibited in vivo acylation of Spirodela ACP. Cell-free extracts of Spirodela plants were able to catalyze the transfer of palmitate from palmitoyl-CoA to ACP, suggesting the existence in higher plants of a pathway for acylation of ACP that involves transacylation from acyl-CoA.  相似文献   

17.
A bean chloroplast coupling factor (CF1) with latent Ca2+-dependent ATPase activity was studied. Immunodiffusion of bean (Phaseolus vulgaris) chloroplast and etioplast coupling factors and spinach coupling factor against antiserum to spinach coupling factor showed partial identity of the bean coupling factor with that of spinach. An immunoelectrophoretic comparison, under dissociating conditions, of bean leaf extracts and spinach extracts containing CF1 subunits (as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis) gave identical results for both extracts. At least six distinct polypeptide species were found. The major species had molecular weights of 42 000, 59 000 and 63 000 daltons. Amino acid analysis of electrophoretically purified bean CF1 gave results similar to those published for spinach CF1.  相似文献   

18.
Rat caproyl esterase (E.C.3.1.1.1), extracted from testis with Tween 80, was purified by cation exchange and lectin affinity chromatography. The 104-fold purified enzyme had an activity of 840 μmol/hr per mg protein. The purified esterase did not contain any hyaluronidase or N-acetyl-glucosaminidase activity. Electrophoresis on sodium dodecyl sulfate polyacrylamide gels revealed a single band of approximately 60,000 molecular weight. The esterase had an isoelectric point of 5.1. Inhibition experiments showed high sensitivity of the enzyme to sulfhydryl agents and complete inactivation by sodium aurothiomalate. The purified caproyl esterase was shown to digest the cumulus matrix from mouse ova.  相似文献   

19.
The structure of acyl carrier protein (ACP) may determine the fate of the acyl moieties linked to it in the course of de-novo fatty acid synthesis in higher plants. To investigate a possible correlation between the structure of ACP and the synthesis of medium-chain fatty acids, we isolated and characterized ACP from the seeds of Cuphea lanceolata Ait. (subgenus Eucuphea/Section Heterodon), an annual crop that contains up to 90% decanoic (capric) acid in seed triacylglycerols. After a cell-free extract prepared from developing seeds was treated to 65% saturation with ammonium sulfate, two ACP-isoforms (ACP 1 and ACP 2) were identified in the supernatant that could be purified to homogeneity by anion-exchange chromatography and subsequent reversed-phase high-performance liquid chromatography. The molecular mass determined by matrix-assisted ultraviolet-laser desorption ionization mass spectrometry of ACP 1 was 9315 Da, whereas further heterogeneity was observed for ACP 2 with molecular masses of 8598 and 8703 Da. Aminoterminal sequencing was performed showing a high homology in the primary structures of ACP 1 and ACP 2. Both isoforms were present in the embryo, whereas in the chloroplast-containing seed coat ACP 2 was found in minute amounts, if at all. The expression of ACP 2 correlated with the production of capric acid during the phase of storage-lipid accumulation. These data indicate that ACP 2 is part of the machinery for the synthesis of medium-chain fatty acids, whereas ACP 1 appears to be a constitutive protein.Abbreviations ACP acyl carrier protein - clACP acyl carrier protein from Cuphea lanceolata - 2D-PAOE two-dimensional polyacrylamide gel electrophoresis - DTT dithiothreitol - ecACP acyl carrier protein from Escherichia coli - FPLC fast protein liquid chromatography - HPLC high-performance liquid chromatography - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine This work was supported by a grant from the German Ministry of Research and Technology (BMFT). The authors wish to thank Professor Röbbelen, University of Göttingen, FRG, for kindly providing the plant material and A. Ingendoh, Department of Medical Physics of the University of Münster, FRG, for carrying out the mass-spectrometric analysis. Portions of this paper are part of the doctoral thesis of Markus Robers.  相似文献   

20.
The circular dichroism spectra of two protein proteinase inhibitors were studied. The CD spectrum of the kidney bean inhibitor is similar to those of other low molecular weight inhibitors from legume seeds. The potato inhibitor in its native state is characterized by a low content of alpha-helices, which is increased in the presence of sodium dodecyl sulfate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号