首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The immunocytochemical localization of cytokeratin and vimentin in rat eye tissues was investigated using a panel of 39 monoclonal antibodies specific for single or multiple of cytokeratin polypeptides and one polyclonal anti CK20 antiserum. The retinal and the ciliary body pigment epithelia only expressed cytokeratins 8 and 18, whereas the fetal retinal pigment epithelium and focally the adult epithelium, in the transition zone of retina and ciliary body, exhibited a reactivity for cytokeratin 19. In contrast, the non-pigmented ciliary epithelium was positive for vimentin only.In the rat conjunctiva distributed goblet cell clusters were selectively stained with cytokeratin 7, 8, 18 and 19 specific monoclonal antibodies. Among them a group of cytokeratin 8 and 18 specific monoclonal antibodies which stained the goblet cells as well as cytokeratin 8 and 18 positive internal controls did not react with either the cytokeratin 8 and 18 positive neuroectodermal cells of the rat eye nor the rat choroid plexus epithelium. This indicates differences in the phenotype e.g. conformational epitope changes, of neuroectodermal derived and other cytokeratins. The corneal and conjunctival epithelium showed a more complex distribution of squamous epithelium type cytokeratins. The limbal region as a transient zone connecting both epithelia exhibited a changing cytokeratin pattern. In general, the study emphasized the necessity to work with an enlarged antibody panel to avoid misleading results in the immunolocalization of cytokeratins.Dedicated to Prof. Dr. H.J. Scharf (Halle, FRG) on the occasion of his 70th birthday  相似文献   

2.
3.
Immunoreactivity for ezrin, a membrane-organizing phosphoprotein that tethers actin microfilaments to cell membrane proteins, was evaluated as a polarization marker in the intraocular neuroepithelial cells of vertebrates, especially in the retinal pigment epithelium (RPE). Six fetal human eyes representing the 14th-28th gestational weeks, 9 normal adult eyes, 12 eyes with intraocular tumors, and 26 eyes from 15 other vertebrate species were analyzed by immunohistochemistry using the avidin-biotinylated peroxidase complex (ABC) method and monoclonal antibody (mAb) 3C12 to ezrin. The apical cytoplasm and microvilli of the human RPE always reacted with mAb 3C12, but the basal cytoplasm was labeled in reactive RPE only. In autopsy eyes and if fixation was delayed, ezrin immunoreactivity in RPE was more diffuse. Developing RPE became gradually immunoreactive from the 14th week of gestation onward. The microvilli of the baboon, pig, raccoon dog, cow, and rat RPE cells were likewise labeled, and their basal cytoplasm was variably immunoreactive as well, but the microvilli of the avian RPE did not react with the antibody used. In all six mammals mentioned, both layers of the ciliary epithelium and the anterior iris epithelium reacted for ezrin, and the posterior epithelium was weakly labeled in pig, cow, and rat eyes. Normal peripheral and reactive human retina, and normal baboon, pig, raccoon dog, cow, rat, black grouse, and jay eyes, showed immunoreaction for ezrin in Müller cells, usually in their microvilli. Ezrin is widely found in RPE and anterior segment neuroepithelia of the mammalian eye, in which it may segregate membrane proteins to specific membrane surfaces, especially to the apical microvilli of the RPE, which intimately interact with outer segments of photoreceptor cells. The ezrin gene on human chromosome 6q25-26 is consequently a candidate gene for causing retinal degenerations.  相似文献   

4.
Patterns of cytokeratin and vimentin expression in the human eye   总被引:2,自引:0,他引:2  
We studied the expression of the various cytokeratin (CK) polypeptides and vimentin in tissues of the human eye by applying immunocytochemical procedures using a panel of monoclonal antibodies as well as by performing biochemical analyses of microdissected tissues. Adult corneal epithelium was found to contain significant amounts of the cornea-specific CKs nos. 3 and 12 as well as CK no. 5, and several additional minor CK components. Among these last CKs, no. 19 was found to exhibit an irregular mosaic-like staining pattern in the peripheral zone of the corneal epithelium, while having a predominantly basal distribution in the limbal epithelium. Both the fetal corneal epithelium and the conjunctival epithelium were uniformly positive for CK no. 19. In the ciliary epithelium, co-expression of CKs nos. 8 and 18 and vimentin was detected, whereas in the retinal pigment epithelium, CKs nos. 8 and 18 were dominant. The present data illustrate the remarkable diversity and complexity of CK-polypeptide expression in the human eye, whose significance with respect to histogenetic and functional aspects is, as yet, only partially clear. The unusual distribution of CK no. 19 in different zones of the corneal epithelium may be related to the specific topography of corneal stem cells. The occurrence of the expression of simple-epithelium CKs in the ciliary and pigment epithelium demonstrates that, despite their neuroectodermal derivation, these are true epithelia.  相似文献   

5.
The ontogeny of pigment cells in the eyes of rhesus monkeys was studied by electron microscopy and histochemistry.In 60- to 80-day-old fetuses, the pigment epithelium of the iris and retina has already differentiated whereas stromal melanocytes of the uveal tract differentiate much later. The morphological and histochemical difference between melanocytes of the iris stroma and the choroid suggests that during embryonic development melanocytes migrate from the iris toward the ciliary body and choroid.Similarly, melanosomes of pigmented epithelial cells may have their origin in the epithelium of the anterior layer of the iris, which is metabolically more active than both the posterior layer and the pigment epithelium of the ciliary body and retina.  相似文献   

6.
We applied immunohistochemical techniques and gel electrophoresis to examine the distribution of intermediate filaments in human fetal oral epithelium and the epithelia of the human enamel organ. Both methods demonstrated that human enamel epithelia contain cytokeratins 5, 14, and 17, which are typical of the basal cells of stratified epithelia, as well as smaller quantities of cytokeratins 7, 8, 19, and in trace amounts 18, which are characteristic components of simple epithelial cells. In the external enamel epithelium and stellate-reticulum cells, most of these components appeared to be simultaneously expressed. In contrast, the parental oral epithelium was negative for cytokeratin 7, thus indicating possible "neoexpression" during the course of tooth formation. Immunohistochemical procedures using various monoclonal antibodies against vimentin revealed the transient coexpression of vimentin and cytokeratins in the external enamel epithelium and in stellate-reticulum cells during enamel development. The significance of the coexpression of cytokeratins and vimentin is discussed in relation to previous findings obtained in other normal tissues and in the light of the functional processes characteristic of these epithelia.  相似文献   

7.
The mechanism and stimulation of the accommodative reflex in vertebrate eyes are reviewed. Except for lampreys, accommodation is brought about by intraocular muscles that mediate either a displacement or deformation of the lens, a change of the corneal radius of curvature or a combination of these mechanisms. Elasmobranchs have little accommodation and are emmetropic in water rather than hyperopic as commonly stated. Accommodation in teleosts and amphibians is well understood and achieved by lens displacement. The accommodative mechanism of amniotes is of considerable diversity and reflects different lifestyles rather than phylogenetical relationships. In all amniotes, the ciliary muscle never has a direct impact on the lens. It relaxes the tension applied to the lens by zonular fibers and/or ligaments. In birds and reptiles the ciliary muscle is usually split into two parts, of which the anterior portion changes the corneal radius of curvature. The deformation of the lens is generally achieved either by its own elasticity (humans, probably other mammals and sauropsids) or by the force of circular muscle fibers in the iris (reptiles, birds, aquatic mammals). In the second part of the paper, some of the current hypotheses about the accommodative stimulus are reviewed together with physiological response characteristics.  相似文献   

8.
The precise localization of aquaporin (AQP)1 and AQP4 was studied in iris and ciliary epithelial cells, in both mature and developing rats, to elucidate the molecular mechanisms underlying aqueous humor balance. Anterior segments of eyes dissected from embryonic day (E)13, E15, E18, and E20, postnatal day (P)0, P7, and P14, and postnatal week 8 rats were subjected to immunofluorescence analysis with AQP isoform-specific antibodies. In adult rat eye, AQP1 was localized to the apical and basolateral plasma membranes of iris epithelial cell layers and of anterior ciliary non-pigmented epithelial (NPE) cells. Conversely, AQP4 was localized to the basolateral plasma membrane of NPE cells in ciliary epithelium and the posterior iris. Developmentally, AQP1 was detected as early as E15 in immature iris and ciliary epithelial cells, and expression persisted throughout development up to adulthood. In contrast, AQP4 was first observed at P7 in the developing pars plicata, and the AQP4-positive area gradually spread to cover the entire pars plicata as development proceeded. These findings indicate that both AQP1 and AQP4 contribute to aqueous humor secretion in the rat eye, thereby maintaining proper intraocular pressure. Moreover, AQP appears to play a major role in aqueous humor secretion in early eye development. This study thus provides a basis for understanding the molecular mechanisms of aqueous humor secretion in pathological and physiological conditions.  相似文献   

9.
Summary The distribution of substance P (SP) immunofluorescence was investigated in the Gasserian ganglion, ophthalmic nerve and in the anterior segment of the rabbit eye. About one third of the nerve cell bodies in the Gasserian ganglion exhibited SP immunofluorescence, which was also observed in some nerve fibres of the ophthalmic nerve. In the cornea, some SP-positive iris contained numerous nerve fibres with SP immunofluorescence. In the sphincter area such fibres were circular, while the orientation of the SP fibres was radial in the dilator muscle. Both in the iris and in the ciliary body, the largest vessels were surrounded by nerves exhibiting SP immunofluorescence. A few nerve fibres also appeared in the stroma of the ciliary processes.  相似文献   

10.
Summary The distribution of adrenergic fibres to the eye and to the ciliary ganglion was studied in pigeons, chicken and ducks with the aid of the sensitive and highly specific fluorescence method of Falck and Hillarp. In some animals the intensity of the fluorescence was increased by treating the animals with Nialamide and 1-DOPA. The cornea contained no adrenergic fibres except at the limbus, where a plexus of adrenergic varicose fibres was seen, partly associated with vessels. In the chamber angle, adrenergic varicose fibres were common in the loose connective tissue covering the canal of Schlemm. The canal of Schlemm was supplied by only few adrenergic fibres, but such fibres appeared along the intrascleral aqueous drainage vessels. In the iris, adrenergic varicose fibres appeared immediately in front of the posterior layer of pigment cells, strongly indicating the presence of a dilator homologous with that seen in mammals. The frontal third of the stroma contained several adrenergic varicose fibres, many of which seemed to lack association with any vessel. Varicose adrenergic fibres were also sparsely seen in the striated muscle of the iris. The ciliary processes contained many adrenergic varicose fibres, at least part of which seemed to be associated with the ciliary epithelium. The striated muscles of the ciliary body contained adrenergic varicose fibres along the vessels only. The retina contained adrenergic varicose fibres in three layers in the inner plexiform layer. Adrenergic ganglion cells of two sizes were detected in the inner nuclear layer. The retinal vessels had no adrenergic nerve fibres. The pecten was also devoid of adrenergic nerve fibres, except along the vessels close to the papilla. The optic nerve contained adrenergic varicose nerve fibres along vessels only. In the ciliary ganglion, varicose adrenergic fibres appeared at the small ganglion cells, often forming baskets of synaptic character.Acknowledgements. The work has been supported by the United States Public Health Service (grant NB 06701-01), by the Swedish Medical Research Council (project B 67-12 X-712-02 A) and by the Faculty of Medicine, University of Lund, Sweden.  相似文献   

11.
We studied the distribution of intermediate-sized filaments in developing and adult kidneys and renal cell carcinoma (RCC) by indirect immunohistochemistry, using a pan-cytokeratin mouse monoclonal antibody (MAb), chain-specific anti-cytokeratin MAb, and anti-vimentin and anti-desmin MAb, to resolve controversy concerning intermediate-sized filament expression in the kidney. With the pan-cytokeratin MAb, cytokeratin expression was detectable in all stages of nephron development, starting with expression in the renal vesicles, the progenitors of the glomeruli, proximal tubules, Henle's loop, and part of the distal tubules. Using chain-specific anti-cytokeratin MAb, cytokeratin 8 and 18 expression was demonstrated in all developmental structures of the nephron, whereas cytokeratin 19 expression was more complex. None of the nephrogenic blastema cells from which the renal vesicles arise expressed cytokeratins. Transient expression of vimentin and cytokeratin 19 was observed in differentiating collecting ducts and proximal tubule cells at the S-shaped stage of nephron development, respectively. In RCC, cytokeratin expression closely resembled that of the mature proximal tubule, i.e., RCC cells expressed cytokeratins 8 and 18. However, in a subset of RCC additional cytokeratin 19 expression was noted. In addition, all except one RCC showed co-expression of cytokeratins and vimentin.  相似文献   

12.
Nine monoclonal antibodies (MAb) directed against cell surface antigens of canine keratinocytes define distinct keratinocyte subpopulations owing to the differential expression of these antigens during the process of differentiation and depending on the tissue location of the cells. There was distinct antigenic heterogeneity between the different layers of stratified squamous epithelium and between stratified squamous epithelial of different tissue origin. Two MAb reacted only with antigens expressed by esophageal mucosa. Three MAb bound to antigens on keratinocytes of the suprabasilar and granular layers of stratified squamous epithelia, and they crossreacted with the transitional epithelial cells of the urinary tract. Two MAb reacted with antigens only expressed on differentiated cells, superficially located in the stratified squamous epithelium. The use of these MAb as markers for keratinocytes in studies on the characterization and differentiation of keratinocytes, as well as in tumor diagnosis and allograft transplantation, is discussed.  相似文献   

13.

Purpose

The case reports presented here were compiled to demonstrate the potential for improved diagnosis and monitoring of disease progress of intraocular lesions using ultrahigh-field magnetic resonance microscopy (MRM) at 7.1 Tesla.

Methods

High-resolution ex vivo ocular magnetic resonance (MR) images were acquired on an ultrahigh-field MR system (7.1 Tesla, ClinScan, Bruker BioScan, Germany) using a 2-channel coil with 4 coil elements and T2-weighted turbo spin echo (TSE) sequences of human eyes enucleated because of different intraocular lesions. Imaging parameters were: 40×40 mm field of view, 512×512 matrix, and 700 µm slice thickness. The results were correlated with in vivo ultrasound and histology of the enucleated eyes.

Results

Imaging was performed in enucleated eyes with choroidal melanoma, malignant melanoma of iris and ciliary body with scleral perforation, ciliary body melanoma, intraocular metastasis of esophageal cancer, subretinal bleeding in the presence of perforated corneal ulcer, hemorrhagic choroidal detachment, and premature retinopathy with phthisis and ossification of bulbar structures. MR imaging allowed differentiation between solid and cystic tumor components. In case of hemorrhage, fluid-fluid levels were identified. Melanin and calcifications caused significant hypointensity. Microstructural features of eye lesions identified by MRM were confirmed by histology.

Conclusion

This study demonstrates the potential of MRM for the visualization and differential diagnosis of intraocular lesions. At present, the narrow bore of the magnet still limits the use of this technology in humans in vivo. Further advances in ultrahigh-field MR imaging will permit visualization of tumor extent and evaluation of nonclassified intraocular structures in the near future.  相似文献   

14.
Changing patterns of cytokeratins and vimentin in the early chick embryo   总被引:5,自引:0,他引:5  
The distribution of cytokeratins and vimentin intermediate filaments in the first 48 h of chick development has been determined using immunofluorescent labelling. During formation of the germ layers, cytokeratin expression is associated with the appearance of an integral epithelium (ectoderm), whereas vimentin expression is associated with cells that detach and migrate from this epithelium to form endoderm and mesoderm. Subsequently, vimentin persists in the endoderm and mesoderm and the tissues derived therefrom, such as the somites and developing heart, throughout the period of study. The appearance of cytokeratins at later stages of development occurs in some epithelia such as the ectoderm, endoderm, lateral plate and epimyocardium but not others including the neural plate, neural tube and somites. Expression of cytokeratins in endoderm and mesenchymal tissues occurs in tandem with vimentin. In conclusion, vimentin expression is related to its distribution in the epiblast before germ layer formation. Its initial appearance may be related to the motile behaviour of cells about to ingress through the primitive streak. The appearance of cytokeratin filaments, however, does not reflect germ layer derivation but rather the need for an epithelial sheet.  相似文献   

15.
The presence of vasopressin-like immunoreactivity (VP-IR) in the rabbit eye was demonstrated by radioimmunoassay. Trigeminal nerve denervation resulted in a significant and selective decrease in the levels of VP-IR in the iris sphincter muscle and the cornea. The isolated iris sphincter muscle contracted in response to low concentrations of [Arg8]vasopressin (AVP) and related peptides. The V1 vasopressin receptor antagonist, d(CH2)5Tyr(Me)AVP, potently inhibited the contractile responses to AVP. AVP was found to induce an increase in the accumulation of inositol phosphates in the iris sphincter muscle but not in the dilator/ciliary body preparation in vitro. The present investigation demonstrates the presence of VP-IR in the rabbit eye and that this substance may be another sensory nerve-derived mediator acting on specific target sites in the anterior uvea.  相似文献   

16.
In previous studies we have provided evidence that intracameral administration of neurotensin (NT), an endogenous tridecapeptide, produces strong miosis in the rabbit. The presence of NT immunoreactivity was investigated in rabbit iris whole mounts by light microscopic immunohistochemistry, and its distribution in the iris compared to that, of tyrosine hydroxylase (TH). A few scattered NT-positive cell bodies were localized in the dilator muscle. Both, the NT cell bodies and processes appeared parallel to the muscle cells. Extensive branching of NT-containing cell processes was observed in connection with the sphincter muscle. These NT-positive fibers formed a dense, randomly oriented network throughout the sphincter muscle cells. The distribution of TH immunoreactivity was similar to that of NT-positive cell processes, except that no TH-positive cell bodies were detected in any of the iris structures examined. Moderate branching of TH-positive fibers was observed in the dilator and sphincter iris muscles. These findings provide neuroanatomical support for an important role of NT in pupillary physiology. Its similar topographical distribution with TH suggests that NT and dopamine may be co-localized, as it has already been described in brain.  相似文献   

17.
A detailed topography of adrenergic innervation in invertebrates (lobster), low vertebrates (fish, amphibians, reptiles, birds), and nine species of mammals is presented. Flack and Hillarp's specific fluorescent histochemical method using freeze-dried material was used. Phylogenetically, adrenergic innervation appeared earlier under the ciliary epithelium and in the muscle than surrounding the vessels, and in all species many fibers were without any connection to the vessel walls. Adrenergic innervation was very rich in the dilator muscle extending toward the epithelium of the posterior chamber; a surprisingly rich network was found in the sphincter muscle and also in ciliary spaces of some species. Numerous fluorescent mast cells were visualized in the pecten of the bird eye and in the ciliary tissue of the sheep and cow.  相似文献   

18.
The embryonic ocular neuroepithilium generates a myriad of cell types, including the neuroretina, the pigmented epithelium, the ciliary and iris epithelia, and the iris smooth muscles. As in other regions of the developing nervous system, the generation of these various cell types requires a coordinated sequence of patterning, specification and differentiation events. We investigated the roles of microRNAs (miRNAs) in the development of optic cup (OC)-derived structures. We inactivated Dicer1, a key mediator of miRNA biosynthesis, within the OC in overlapping yet distinct spatiotemporal patterns. Ablation of Dicer1 in the inner layer of the OC resulted in patterning alteration, particularly at the most distal margins. Following loss of Dicer1, this region generated a cryptic population of cells with a mixed phenotype of neuronal and ciliary body (CB) progenitors. Notably, inactivation of Dicer1 in the retinal progenitors further resulted in abrogated neurogenesis, with prolongation of ganglion cell birth and arrested differentiation of other neuronal subtypes, including amacrine and photoreceptor cells. These alterations were accompanied by changes in the expression of Notch and Hedgehog signaling components, indicating the sensitivity of the pathways to miRNA activity. Moreover, this study revealed the requirement of miRNAs for morphogenesis of the iris and for the regulation of CB cell type proliferation and differentiation. Together, analysis of the three genetic models revealed novel, stage-dependent roles for miRNAs in the development of the ocular sub-organs, which are all essential for normal vision.  相似文献   

19.
Summary Substance P-immunoreactive nerve terminals were found in several locations in the anterior segment of the rabbit eye. In the iris they occurred in the sphincter muscle and were randomly distributed in the iris stroma with some fibres running close to the dilator muscle. In the ciliary body these immunoreactive elements were few and occurred within bundles of nerve fibres, while in the ciliary processes they were more numerous with a predominantly subepithelial location. Blood vessels in the anterior uvea were often surrounded by substance P-immunoreactive fibres. No substance P-fibres were found in the cornea, while the sclera contained very few such elements.Using conventional in vitro techniques it was found that the sphincter pupillae muscle of the iris responded to electrical stimulation with a contraction that was resistant to cholinergic and adrenergic blockade, but was inhibited by the neuronal blocker tetrodotoxin. This indicates the existence of a non-cholinergic, non-adrenergic neuronal mediator of the contractile response. Exogenously applied substance P produced a long-lasting contraction of the spincter muscle, an observation compatible with the view that substance P is the noncholinergic, non-adrenergic neurotransmitter involved.  相似文献   

20.
Summary The occurrence of cytokeratins, vimentin, and desmin in the dome epithelia and adjacent non-dome epithelia in four locations of gut-associated lymphoid tissues (GALT) of adult and newborn rabbits (Peyer's patches, sacculus rotundus, caecal lymphoid patches and appendix) was studied with monoclonal antibodies, using the indirect immunoperoxidase technique. In all locations investigated in adult animals, antibodies specific for vimentin labelled (1) M-cells, which engulf intraepithelial lymphocytes, (2) columnar epithelial cells at the base of the domes lacking an apparent contact with lymphocytes (immature M-cells), and (3) flat cells, which lie in the lamina propria under the dome epithelium, and which line the basal lamina with thin cytoplasmic processes. In newborn rabbits, columnar epithelial cells resembling the immature M-cells of adults were selectively stained with vimentin antibodies. In M-cells, the strongest immunoreactivity was present in the perinuclear region and close to the pocket membrane, whereas the most apical and most basal parts of the cytoplasm showed no vimentin-immunoreactivity. Enterocytes in the dome epithelium and in the non-dome epithelium were vimentin-negative. M-cells and enterocytes bound antibodies against cytokeratin peptides 18 and 19 in adults and newborn animals. Compared with enterocytes, M-cells showed less intense staining for cytokeratins. Dome epithelia and no-dome epithelia did not contain desmin-immunoreactive cells. The results suggest that vimentin is a sensitive marker for M-cells in rabbit GALT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号