首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Transforming growth factor-βs (TGF-βs) are multi functional growth modulators implicated in several physiological processes which include embryogenesis, inflammation, immune-suppression, wound healing, carcinogenesis and cellular differentiation. For clinical use, recombinant expression of TGF-βs is the only practical source because of very low yields from natural sources. Here, we report the recombinant expression of human TGF-βl and TGF-β2 in a mammalian expression system using a high expression eukaryotic vector driven by a cytomegalovirus promoter. Expression levels are as high as 0.97 μg/ml of TGF-βl and 0.24 μg/ml of TGF-β2 in conditioned media, sufficient for purification without the need for amplification of the gene using methotrexate.  相似文献   

2.
Summary A new cell line (Hep 3B-TR), which is resistant to growth-inhibition by transforming growth factor beta 1 (TGF-β1) up to 10 ng/ml (400 pM), was isolated from parental Hep 3B human hepatoma cells, which are sensitive to growth-inhibition by TGF-β1. In the presence of TGF-β1 (1 to 10 ng/ml), the growth of the parental cell line (Hep 3B-TS) was inhibited by more than 95%. Under the same conditions, the growth rate of the resistant clone (Hep 3B-TR) however, was identical in the presence or absence of TGF-β1 and was almost the same as that of the Hep 3B-TS cells in the absence of TGF-β1. Affinity crosslinking with 5 pM 125I-labeled TGF-β1 showed that the TGF-β1 receptors type I (TGF-βRI) and type II (TGF-βRII) were not present on the cell surface of the Hep 3B-TR cells, whereas they were present on the sensitive HEP 3B-TS cells. Hep 3B-TS cells had detectable TGF-βRII mRNA, which was not found in Hep 3B-TR cells. RNA analysis showed different effects on the expression of TGF-β1, c-fos, c-myc, and protein disulfide isomerase (PDI) genes in the two cell lines in response to TGF-β1 protein. Addition of TGF-β1 (1 ng/ml) strongly increased the expression of TGF-β1 mRNA in Hep 3B-TS cells, but not in Hep 3B-TR cells. In Hep 3B-TS cells, c-fos mRNA was not detected either in the presence or absence of TGF-β1 protein. However, abundant c-fos mRNA was detected in Hep 3B-TR cells, which was not altered by TGF-β1 protein. TGF-β1 protein inhibited the expression of c-myc and PDI mRNAs in Hep 3B-TS cells, whereas although the c-myc and PDI mRNAs were much more abundant in Hep 3B-TR cells, their expression was not affected by TGF-β1 protein. These results suggest that the mechanisms of escape from growth-inhibition by TGF-β1 in Hep 3B-TR hepatoma cells probably involve loss of binding by TGF-β1 to its cell surface receptors.  相似文献   

3.
We have isolated a bacterium (TP-6) from the Indonesian fermented soybean, Tempeh, which produces a strong fibrinolytic protease and was identified as Bacillus subtilis. The protease (TPase) was purified to homogeneity by ammonium sulfate fractionation and octyl sepharose and SP sepharose chromatography. The N-terminal amino acid sequence of the 27.5 kDa enzyme was determined, and the encoding gene was cloned and sequenced. The result demonstrates that TPase is a serine protease of the subtilisin family consisting of 275 amino acid residues in its mature form. Its apparent K m and V max for the synthetic substrate N-succinyl-Ala-Ala-Pro-Phe-pNA were 259 μM and 145 μmol mg−1 min−1, respectively. The fibrinogen degradation pattern generated by TPase as a function of time was similar to that obtained with plasmin. In addition, N-terminal amino acid sequence analysis of the fibrinogen degradation products demonstrated that TPase cleaves Glu (or Asp) near hydrophobic acids as a P1 site in the α- and β-chains of fibrinogen to generate fragments D′, E′, and D′ similar to those generated by plasmin. On plasminogen-rich fibrin plates, TPase did not seem to activate fibrin clot lysis. Moreover, the enzyme converted the active plasminogen activator inhibitor-1 to the latent form.Seong-Bo Kim and Dong-Woo Lee contributed equally to the work.  相似文献   

4.
Summary This study deals with the role of the mechanical properties of matrices in in vitro angiogenesis. The ability of rigid fibrinogen matrices with fibrin gels to promote capillarylike structures was compared. The role of the mechanical properties of the fibrin gels was assessed by varying concentration of the fibrin gels. When the concentration of fibrin gels was decreased from 2 mg/ml to 0.5 mg/ml, the capillarylike network increased. On rigid fibrinogen matrices, capillarylike structures were not formed. The extent of the capillarylike network formed on fibrin gels having the lowest concentration depended on the number of cells seeded. The dynamic analysis of capillarylike network formation permitted a direct visualization of a progressive stretching of the 0.5 mg/ml fibrin gels. This stretching was not observed when fibrin concentration increases. This analysis shows that 10 h after seeding, a prearrangement of cells into ringlike structures was observed. These ringlike structures grew in size. Between 16 and 24 h after seeding, the capillarylike structures were formed at the junction of two ringlike structures. Analysis of the αvβ3 integrin localization demonstrates that cell adhesion to fibrinogen is mediated through the αvβ3 integrin localized into adhesion plaques. Conversely, cell adhesion to fibrin shows a diffuse and dot-contact distribution. We suggest that the balance of the stresses between the tractions exerted by the cells and the resistance of the fibrin gels triggers an angiogenic signal into the intracellular compartment. This signal could be associated with modification in the αvβ3 integrin distribution.  相似文献   

5.
Summary The latent form of transforming growth factor-beta (TGF-β) is a component of the extracellular matrix of bone. The active form, when locally injected in vivo, stimulates both inflammation and ectopic bone formation. The present study was undertaken to determine if TGF-β also stimulated mineralization by isolated rat calvarial osteoblasts cultured in collagen gels. Gels were used because they should mimic in vivo conditions better than classical monolayer culture. Compared to cells in monolayers, osteoblasts cultured in collagen gels exhibited slower growth, but higher alkaline phosphatase activity and mineral deposition. Cultured cells also synthesized the osteoblast-specific marker, osteocalcin. The increase in osteocalcin in cell layers was parallel to the increase in mineral deposition. In the presence of TGF-β, neither cell growth nor alkaline phosphatase activity increased. Instead, a small decrease occurred in both parameters when compared to untreated cultures. Accumulation of collagen, the major component of the extracellular matrix where mineralization occurs, was similar in untreated and TGF-β1-treated cultures. However, 8 pM TGF-β1 dramatically suppressed mineral deposition in both types of cultures. Despite TGF-β1 stimulating a fourfold increase in lactic acid, the consequent increase in culture medium acidity did not account for the inhibitory effects of TGF-β1 on mineralization. These results demonstrate that collagen gel culture is an improved technique over conventional monolayer culture for demonstrating differentiated osteoblast function and sensitivity to TGF-β1. TGF-β1, at a concentration that has little effect on cell growth, alkaline phosphatase activity, or collagen accumulation, is a potent inhibitor of mineralization. The mechanism by which TGF-β1 inhibits mineralization remains to be determined.  相似文献   

6.
A novel fibrinolytic enzyme (AJ) was purified from Staphylococcus sp. strain AJ screened from Korean salt-fermented Anchovy-jeot. Relative molecular weight of AJ was determined as 26 kDa by using SDS-PAGE and fibrin zymography. Based on a 2D gel, AJ was found to consist of three active isoforms (pI 5.5–6.0) with the same N-terminal amino acid sequence. AJ exhibited optimum pH and temperature at 2.5–3.0 and 85°C, respectively. AJ kept 85% of the initial activity after heating at 100°C for 20 min on the zymogram gel. The Michaelis constant (K m) and K cat values of AJ towards α-casein were 0.38 mM and 19.73 s−1, respectively. AJ cleaved the Aα-chain of fibrinogen but did not affect the Bβ- and γ-chains, indicating that it is an α-fibrinogenase. The fibrinolytic activity was inhibited by diisopropyl fluorophosphate, indicating AJ is a serine protease. Interestingly, AJ was very stable at acidic condition, SDS, and heat (100°C), whereas it was easily degraded at neutral and alkaline conditions. In particular, AJ formed an active homo-dimer in the pH range from 7.0 to 8.0. To our knowledge, a similar combination of acid and heat stability has not yet been reported for other fibrinolytic enzymes.  相似文献   

7.
A fibrinolytic enzyme was found in a Gram-negative bacterium, Aeromonas sp. JH1. SDS-PAGE and fibrinzymography showed that it was a 36 kDa, monomeric protein. Of note, the enzyme was highly specific for fibrinogen molecules and the hydrolysis rate of fibrinogen subunits was highest for α, β, and γ chains in that order. The first 15 amino acids of N-terminal sequence were X-D-A-T-G-P-G-G-N-V-X-T-G-K-Y, which was distinguishable from other fibrinolytic enzymes. The optimum pH and temperature of the enzyme were approximately 8.0 and 40°C, respectively. Therefore, these results provide a fibrinolytic enzyme with potent thrombolytic activity from the Aeromonas genus.  相似文献   

8.
Summary Transforming growth factor-β (TGF-β) has varying effects on cell proliferation, stimulating some cell types while inhibiting others. Its effect on proliferation has mostly been assessed in cell cultures without consideration for the influence of a tissue matrix. In the present investigation we studied the effect of TGF-β on fibroblast cell proliferation in intact connective tissue in vitro using the membranous part of the rat mesentery. Mesenteric membranes were spread over the hole of a cytocentrifuge paper, incubated in vitro, and exposed to various concentrations of TGF-β with or without serum added. At designated times after incubation, the specimens were fixed, spread out on microscope slides, and stained by the Feulgen reaction. Cell proliferation was estimated by counting mitoses in fibroblasts and mesothelial cells and by DNA cytometry of fibroblast nuclei using computer assisted image analyses. Higher concentrations of TGF-β significantly increased proliferation estimated as either the percentage of cells in the S+G2 phase of the cell cycle or the mitotic index when serum was added. In medium without serum, TGF-β did slightly, but not significantly, increase proliferation. The results show that TGF-β stimulates connective tissue cell proliferation dose-dependently in intact connective tissue in vitro and that addition of serum to the medium is a prerequisite for optimal stimulation.  相似文献   

9.
A fibrinolytic enzyme from Bacillus subtilis strain Al was purified by chromatographic methods, including DEAE Sephadex A-50 column chromatography and Sephadex G-50 column gel filtration. The purified enzyme consisted of a monomeric subunit and was estimated to be approximately 28 kDa in size by SDS-PAGE. The specific activity of the fibrinolytic enzyme was 1632-fold higher than that of the crude enzyme extract. The fibrinolytic activity of the purified enzyme was approximately 0.62 and 1.33 U/ml in plasminogen-free and plasminogen-rich fibrin plates, respectively. Protease inhibitors PMSF, DIFP, chymostatin, and TPCK reduced the fibrinolytic activity of the enzyme to 13.7, 35.7, 15.7, and 23.3%, respectively. This result suggests that the enzyme purified from B. subtilis strain Al was a chymotrypsin-like serine protease. In addition, the optimum temperature and pH range of the fibrinolytic enzyme were 50°C and 6.0–10.0, respectively. The N-terminal amino acid sequence of the purified enzyme was identified as Q-T-G-G-S-I-I-D-P-I-N-G-Y-N, which was highly distinguished from other known fibrinolytic enzymes. Thus, these results suggest a fibrinolytic enzyme as a novel thrombolytic agent from B. subtilis strain Al.  相似文献   

10.
Bacillus subtilis DC33 producing a novel fibrinolytic enzyme was isolated from Ba-bao Douchi, a traditional soybean-fermented food in China. The strong fibrin-specific enzyme subtilisin FS33 was purified to electrophoretic homogeneity using the combination of various chromatographic steps. The optimum temperature, pH value, and pI of subtilisin FS33 were 55°C, 8.0, and 8.7, respectively. The molecular weight was 30 kDa measured by SDS–PAGE under both reducing and non-reducing conditions. The enzyme showed a level of fibrinolytic activity that was about six times higher than that of subtilisin Carlsberg. The first 15 amino acid residues of N-terminal sequence of the enzyme were A-Q-S-V-P-Y-G-I-P-Q-I-K-A-P-A, which are different from that of other known fibrinolytic enzymes. The amidolytic activities of subtilisin FS33 were inhibited completely by 5 mM phenylmethanesulfonyl fluoride (PMSF) and 1 mM soybean trypsin inhibitor (SBTI), but 1,4-dithiothreitol (DTT), β-mercaptoethanol, and p-hydroxymercuribenzoate (PHMB) did not affect the enzyme activity; serine and tryptophan are thus essential in the active site of the enzyme. The highest affinity of subtilisin FS33 was towards N-Succ-Ala-Ala-Pro-Phe-pNA. Therefore, the enzyme was considered to be a subtilisin-like serine protease. The fibrinolytic enzyme had a high degrading activity for the Bβ-chains and Aα-chain of fibrin(ogen), and also acted on thrombotic and fibrinolytic factors of blood, such as plasminogen, urokinase, thrombin, and kallikrein. So subtilisin FS33 was able to degrade fibrin clots in two ways, i.e., (a) by forming active plasmin from plasminogen and (b) by direct fibrinolysis.  相似文献   

11.
The transforming growth factor (TGF)-β superfamily is a group of important growth factors involved in multiple processes such as differentiation, cell proliferation, apoptosis and cellular growth. In the Pacific oyster Crassostrea gigas, the oyster gonadal (og) TGF-β gene was recently characterized through genome-wide expression profiling of oyster lines selected to be resistant or susceptible to summer mortality. Og TGF-β appeared specifically expressed in the gonad to reach a maximum when gonads are fully mature, which singularly contrasts with the pleiotropic roles commonly ascribed to most TGF-β family members. The function of og TGF-β protein in oysters is unknown, and defining its role remains challenging. In this study, we develop a rapid bacterial production system to obtain recombinant og TGF-β protein, and we demonstrate that og TGF-β is processed by furin to a mature form of the protein. This mature form can be detected in vivo in the gonad. Functional inhibition of mature og TGF-β in the gonad was conducted by inactivation of the protein using injection of antibodies. We show that inhibition of og TGF-β function tends to reduce gonadic area. We conclude that mature og TGF-β probably functions as an activator of germ cells development in oyster.  相似文献   

12.
A novel fibrinolytic enzyme subtilisin FS33 was purified from Bacillus subtilis DC33, isolated from a traditional flavour-rich food in China. The purified subtilisin FS33 was a single chain protein with a molecular mass of 30 kDa measured by SDS-PAGE. After activated SDS-PAGE, the enzyme band exhibited strong fibrinolytic activity on the fibrin plate. Subtilisin FS33 was temperature-stable below 60°C over the pH range 5–12, with a maximum activity at pH 8.0, but the activity completely disappeared after 10 min above 65°C. The NH2-terminal amino acid sequence of the enzyme was different from that of other known fibrinolytic enzymes, such as NK, CK, SMCE, KA38, subtilisin E, subtilisin DFE and Katsuwokinase. The amidolytic activities of subtilisin FS33 were inhibited completely by phenylmethanesulfonyl fluoride (PMSF) and soybean trypsin inhibitor (SBTI). EDTA did not affect the enzyme activity, and none of the ions tested activated the activity. Therefore, the enzyme was thought to be a subtilisin-like serine protease. The enzyme degraded the Bβ-chains of fibrin(ogen) very rapidly and then degraded the Aα-chain and at least five fragments from fibrin(ogen) were obtained after hydrolysis. Subtilisin FS33 was also able to cleave blood clots in the absence of endogenous fibrinolytic factors.  相似文献   

13.
Bacillus licheniformis (B. licheniformis) CH3-17, an isolate from cheonggukjang, a traditional Korean fermented soyfood, secretes several fibrinolytic enzymes into the culture medium, showing strong fibrinolytic activity. A gene homologous to aprE of Bacillus subtilis (B. subtilis), aprE3-17, was cloned by PCR. DNA sequencing showed that aprE3-17 encodes a prepro-type serine protease consisting of 382 amino acids. The mature enzyme was 27 kDa in size. The aprE3-17 gene was overexpressed in B. subtilis WB600 using pHY300PLK, an Escherichia coli (E. coli)-Bacillus shuttle vector, and the 27 kDa enzyme was purified from the culture supernatant. The optimum pH for activity was 6.0. Purified enzyme quickly degraded the Aα and Bβ chains of fibrinogen but could not degrade the γ-chain.  相似文献   

14.
Xylarinase is a bi-functional fibrinolytic metalloprotease isolated from the culture filtrate of endophytic fungus Xylaria curta which is monomeric with a molecular mass of ~33.76?kDa. The enzyme displayed both plasmin and tissue plasminogen activator like activity under in vitro conditions. It hydrolyses Aα and Bβ chains of the fibrinogen. Optimal fibrinolytic activity of xylarinase is observed at 35?°C, pH 8. Ca2+ stimulated the fibrinolytic activity of xylarinase while Fe2+ and Zn2+ inhibited suggesting it to be a metalloprotease. The Km and Vmax values of xylarinase were 240.9?μM and 1.10?U/ml for fibrinogen and 246?μM and 1.22?U/ml for fibrin, respectively. Xylarinase was found to prolong the activated partial thromboplastin time and prothrombin time. The N-terminal sequence of xylarinase (SNGPLPGGVVWAG) did not show any homology with previously known fibrinolytic enzymes. Thus xylarinase is a novel fibrinolytic metalloprotease which could be possibly used as a new clot busting enzyme.  相似文献   

15.
A fibrinolytic metalloprotease with in vitro fibrinolytic effects was purified from the edible mushroom Pleurotus ferulae using several chromatography steps including anion and ion exchange, gel filtration, and fast protein liquid chromatography columns. The molecular mass of the enzyme was estimated to be 20.0?kDa, as determined using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fibrin zymography. The protease was active at 50°C, and pH 4.0, 5.0, and 8.0. The fibrinolytic activity of the enzyme was inhibited by ethyleneglycol-bis-(2-aminoethyl)-N,N,N′,N′ tetraacetic acid and strongly inhibited by two metal ions, Cu and Mg. In vitro assays evaluating fibrinolytic activity on a fibrin plate, fibrin turbidity, and thrombolytic activity on fibrin clots using human fibrinogen and human thrombin revealed that the enzyme could hydrolyze fibrin polymers directly and inhibit the formation of fibrin clots. In activated partial thromboplastin time (APTT) and prothrombin time assays, the enzyme strongly prolonged the APTT, which detects an activity of intrinsic and common pathways. The enzyme showed strong in vivo protective effect against mortality/paralysis from epinephrine plus collagen-induced acute thromboembolism in in vivo model. Our findings suggest that the enzyme may have a potential for treatment and prevention of thrombosis-relative diseases.  相似文献   

16.
 The bla gene of the cephamycin cluster of Nocardia lactamdurans has been subcloned in the shuttle plasmids pULVK2 and pULVK2A and amplified in N. lactamdurans LC411. The transformants showed two- to threefold higher β-lactamase activity. Formation of β-lactamase preceded the onset of cephamycin biosynthesis. The β-lactamase of N. lactamdurans inactivated penicillins and, to a lesser extent, cephalosporin C but did not hydrolyse cephamycin C. This β-lactamase was highly sensitive to clavulanic acid (50% inhibition was observed at 0.48 μg/ml clavulanic acid). The N. lactamdurans bla gene was disrupted in vivo by inertion of the kanamycin-resistance gene. Three bla-disrupted mutants, BD4, BD8 and BD12, were selected that lacked β-lactamase activity. Overexpresion of the bla gene resulted in N. lactamdurans transformants that were resistant to penicillin whereas mutants in which the bla gene was disrupted were supersensitive to this antibiotic. The three N. lactamdurans mutants with the bla gene disrupted showed a significant increase of cephamycin biosynthesis in solid medium, whereas transformants with the amplified bla gene produced reduced levels of cephamycin. The cephamycin-overproducing Merck strain N. lactamdurans MA4213 showed no detectable levels of β-lactamase activity. The β-lactamase plays a negative role in cephamycin biosynthesis in solid medium, but not in liquid medium. Received: 26 July 1995/Received revision: 18 December 1995/Accepted: 8 January 1996  相似文献   

17.
Betulin and oleanolic acids (pentacyclic triterpenoid secondary metabolites) have broad pharmacological activities and can be potentially used for the development of anti-cancer and anti-AIDS drugs. In this study, we detected the accumulation and the distribution characteristics of betulin and oleanolic acid in various organs of white birch at different ages. We also determined the expression of 4 OSC genes (LUS, β-AS, CAS1 and CAS2) involved in the triterpenoid synthesis pathways by real time RT-PCR. The result showed that the 1-year old birch can synthesize betulin and oleanolic acid. In addition, betulin and oleanolic acids were mainly distributed in the bark, while the content in the root skin and leaf was very low. The content of betulin and oleanolic acid in birch varied in different seasons. The content of betulin and oleanolic acid and their corresponding LUS and β-AS gene expression were very low in 1-year old birch. With increasing age of birch, betulin content was increased, while oleanolic acid was decreased. Similar changes were also observed for their corresponding synthesis genes LUS and β-AS. In the leaf of 1-year old plant, the highest expression of CAS1 and CAS2 occurred at end of September, while expression of LUS and the β-AS was low from June to October. In the stem skin,high expression of β-AS and the LUS genes occurred from the end of July to September. In the root, high expression of the β-AS gene was observed at the end of October. These results indicated that triterpenoid gene expression was similar to the triterpene accumulation. Expression of LUS gene and β-AS gene in birch with different ages were corresponding to the betulinic and oleanolic acid accumulation. Expression of CAS1 and CAS2 genes were elevated with increasing age of birch. This study provides molecular mechanisms of triterpenes synthesis in birch plants.  相似文献   

18.
Transforming growth factors 1 and2 (TGF-1 and2), tested in a clonogenic assay against primary cells from human tumors, suppress proliferation to different extents. In nineteen of twenty-six cell cultures, proliferation was < 50% of control with factor at 0.04 or 0.4 nM. Of these, TGF- 2 was more active than TGF-1 in fourteen; and TGF-1 was more active than TGF-2 in five. In seven of the nineteen, proliferation was 0% with one or the other factor. In contrast, cisplatin was much less effective in inhibiting proliferation of some of the same cells even at 1,000 or more times the molar concentration of the factors. Surprisingly, when TGF- 1 and TGF-2 were combined at equal concentrations, the antiproliferative effect of one was cancelled or markedly inhibited by the other.  相似文献   

19.
20.
Demineralized bone implants have been used for many types of craniomaxillofacial, orthopedic, periodontal, and hand reconstruction procedures. In previous studies, we showed that demineralized bone powder (DBP) induces chondrogenesis of human dermal fibroblasts in a DBP/collagen sponge system that optimized interactions between particles of DBP and target cells in cell culture. In this study, we test the hypothesis that DBP promotes chondrogenesis or osteogenesis of human marrow stromal cells (hMSCs) in 3-D collagen sponge culture, depending upon the culture conditions. We first confirmed that hMSCs have chondrogenic potential when treated with TGF-, either in 2-D monolayer cultures or in 3-D porous collagen sponges. Second, we found that DBP markedly enhanced chondrogenesis in hMSCs in 3-D sponges, as assessed by metachromasia and expression of chondrocyte-specific genes AGGRECAN, COL II, and COL X. Human dermal fibroblasts (hDFs) were used to define mechanisms of chondroinduction because unlike hMSCs they have no inherent chondrogenic potential. In situ hybridization revealed that hDFs vicinal to DBPs express chondrocyte-specific genes AGGRECAN or COL II. Macroarray analysis showed that DBP activates TGF-/BMP signaling pathway genes in hDFs. Finally, DBP induced hMSCs to express the osteoblast phenotype when cultured with osteogenic supplements. These studies show how culture conditions can influence the differentiation pathway that human marrow stromal cells follow when stimulated by DBP. These results support the potential to engineer cartilage or bone in vitro by using human bone marrow stromal cells and DBP/collagen scaffolds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号