首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Understanding how combinations of fishing effort and selectivity affect productivity is central to fisheries research. We investigate the roles of fishing regulation in comparison with ecosystem status for Baltic Sea cod stock productivity, growth performance, and population stability. This case study is interesting because three cod populations with different exploitation patterns and stock status are located in three adjacent but partially, ecologically different areas. In assessing stock status, growth, and productivity, we use survey information and rather basic stock parameters without relying on age readings. Because there is an urgent interest of better understanding of the current development of the Eastern Baltic cod stock, we argue that our approach represents partly a novel way of interpreting monitoring information together with catch data in a simplified yet more informative way. Our study reports how the Eastern and Western Baltic cod have gone toward more truncated size structures between 1991 and 2016, in particular for the Eastern Baltic cod, whereas the Öresund cod show no trend. We suggest that selective fishing may disrupt fish population dynamic stability and that lower natural productivity might amplify the effects of selective fishing. In support of earlier findings on a density‐dependent growth of Eastern Baltic cod, management is advised to acknowledge that sustainable exploitation levels for Eastern Baltic cod are much more limited than perceived in regular assessments. Of more general importance, our results emphasize the need to embrace a more realistic view on what ecosystems can produce regarding tractable fish biomass to facilitate a more ecosystem‐based fisheries management.  相似文献   

2.
The Baltic Sea is a large brackish semienclosed sea whose species-poor fish community supports important commercial and recreational fisheries. Both the fish species and the fisheries are strongly affected by climate variations. These climatic effects and the underlying mechanisms are briefly reviewed. We then use recent regional – scale climate – ocean modelling results to consider how climate change during this century will affect the fish community of the Baltic and fisheries management. Expected climate changes in northern Europe will likely affect both the temperature and salinity of the Baltic, causing it to become warmer and fresher. As an estuarine ecosystem with large horizontal and vertical salinity gradients, biodiversity will be particularly sensitive to changes in salinity which can be expected as a consequence of altered precipitation patterns. Marine-tolerant species will be disadvantaged and their distributions will partially contract from the Baltic Sea; habitats of freshwater species will likely expand. Although some new species can be expected to immigrate because of an expected increase in sea temperature, only a few of these species will be able to successfully colonize the Baltic because of its low salinity. Fishing fleets which presently target marine species (e.g. cod, herring, sprat, plaice, sole) in the Baltic will likely have to relocate to more marine areas or switch to other species which tolerate decreasing salinities. Fishery management thresholds that trigger reductions in fishing quotas or fishery closures to conserve local populations (e.g. cod, salmon) will have to be reassessed as the ecological basis on which existing thresholds have been established changes, and new thresholds will have to be developed for immigrant species. The Baltic situation illustrates some of the uncertainties and complexities associated with forecasting how fish populations, communities and industries dependent on an estuarine ecosystem might respond to future climate change.  相似文献   

3.
Changes in climate, in combination with intensive exploitation of marine resources, have caused large‐scale reorganizations in many of the world's marine ecosystems during the past decades. The Baltic Sea in Northern Europe is one of the systems most affected. In addition to being exposed to persistent eutrophication, intensive fishing, and one of the world's fastest rates of warming in the last two decades of the 20th century, accelerated climate change including atmospheric warming and changes in precipitation is projected for this region during the 21st century. Here, we used a new multimodel approach to project how the interaction of climate, nutrient loads, and cod fishing may affect the future of the open Central Baltic Sea food web. Regionally downscaled global climate scenarios were, in combination with three nutrient load scenarios, used to drive an ensemble of three regional biogeochemical models (BGMs). An Ecopath with Ecosim food web model was then forced with the BGM results from different nutrient‐climate scenarios in combination with two different cod fishing scenarios. The results showed that regional management is likely to play a major role in determining the future of the Baltic Sea ecosystem. By the end of the 21st century, for example, the combination of intensive cod fishing and high nutrient loads projected a strongly eutrophicated and sprat‐dominated ecosystem, whereas low cod fishing in combination with low nutrient loads resulted in a cod‐dominated ecosystem with eutrophication levels close to present. Also, nonlinearities were observed in the sensitivity of different trophic groups to nutrient loads or fishing depending on the combination of the two. Finally, many climate variables and species biomasses were projected to levels unseen in the past. Hence, the risk for ecological surprises needs to be addressed, particularly when the results are discussed in the ecosystem‐based management context.  相似文献   

4.
Good decision making for fisheries and marine ecosystems requires a capacity to anticipate the consequences of management under different scenarios of climate change. The necessary ecological forecasting calls for ecosystem-based models capable of integrating multiple drivers across trophic levels and properly including uncertainty. The methodology presented here assesses the combined impacts of climate and fishing on marine food-web dynamics and provides estimates of the confidence envelope of the forecasts. It is applied to cod (Gadus morhua) in the Baltic Sea, which is vulnerable to climate-related decline in salinity owing to both direct and indirect effects (i.e. through species interactions) on early-life survival. A stochastic food web-model driven by regional climate scenarios is used to produce quantitative forecasts of cod dynamics in the twenty-first century. The forecasts show how exploitation would have to be adjusted in order to achieve sustainable management under different climate scenarios.  相似文献   

5.
6.
Two cod stocks (western Baltic cod, WBC, and eastern Baltic cod, EBC) are managed in the Baltic Sea which is characterized by different main spawning areas and different main spawning periods. In this study we analyse the spatial and temporal occurrence of spawning individuals of both cod stocks in the main spawning grounds of the Baltic Sea based on eight microsatellite loci. Our results suggest that EBC (Gadus morhua callarias) has formed currently temporally stable, substantially homogeneous population not only in the Bornholm Sea (ICES SD: 25) but also in the Arkona Sea (ICES SD: 24). The presented analyses proved that EBC (G. m. callarias) can temporarily also spawn in the Belt Sea.  相似文献   

7.
In the distributional overlap volume of Baltic cod Gadus morhua and its prey, studied in the Bornholm Basin in the southern Baltic Sea, only a fraction of the sprat Sprattus sprattus population vertically overlapped with the Baltic cod population. Sprat occurred in the intermediate water, in the halocline and in the bottom water, while herring Clupea harengus and Baltic cod occurred exclusively in the halocline and in the bottom water. Only parts of the sprat population were hence accessible for Baltic cod, and only a fraction of the sprat had access to the Baltic cod eggs below the halocline. Baltic cod–clupeid overlap volumes appeared to be determined by salinity stratification and oxygenation of the bottom water. Hydrography time series were used to estimate average habitat volumes and overlap from July to September in 1958–1999. In the 1999 survey spawning Baltic cod had greater ratios of empty stomachs and lower average rations than non-spawning Baltic cod. The average ration for Baltic cod caught within 11· 4 m from the bottom (demersal) did not differ from the average ration of Baltic cod caught in shallower waters (pelagic), because spawning and non-spawning Baltic cod in both strata were caught at equal rates. The diet of the Baltic cod caught demersally contained more benthic invertebrates, especially Saduria entomon, but Baltic cod caught pelagically also had fresh benthic food in their stomachs, indicating vertical migration of individual fish.  相似文献   

8.
Fish otoliths' chronometric properties make them useful for age and growth rate estimation in fisheries management. For the Eastern Baltic Sea cod stock (Gadus morhua), unclear seasonal growth zones in otoliths have resulted in unreliable age and growth information. Here, a new age estimation method based on seasonal patterns in trace elemental otolith incorporation was tested for the first time and compared with the traditional method of visually counting growth zones, using otoliths from the Baltic and North seas. Various trace elemental ratios, linked to fish metabolic activity (higher in summer) or external environment (migration to colder, deeper habitats with higher salinity in winter), were tested for age estimation based on assessing their seasonal variations in concentration. Mg:Ca and P:Ca, both proxies for growth and metabolic activity, showed greatest seasonality and therefore have the best potential to be used as chemical clocks. Otolith image readability was significantly lower in the Baltic than in the North Sea. The chemical (novel) method had an overall greater precision and percentage agreement among readers (11.2%, 74.0%) than the visual (traditional) method (23.1%, 51.0%). Visual readers generally selected more highly contrasting zones as annuli whereas the chemical readers identified brighter regions within the first two annuli and darker zones thereafter. Visual estimates produced significantly higher, more variable ages than did the chemical ones. Based on the analyses in our study, we suggest that otolith microchemistry is a promising alternative ageing method for fish populations difficult to age, such as the Eastern Baltic cod.  相似文献   

9.
Polar cod (Boreogadus saida) play an integral part in the Arctic ecosystems linking the upper and lower trophic levels. Though their estimated biomass is considerable, recent knowledge of their diets in the US Beaufort Sea is sparse. Collections of polar cod from the US Beaufort Sea were made during August 2008 using demersal and pelagic trawls. Polar cod diet composition was quantified as percent prey weight, percent prey count, and frequency of occurrence of prey. The diet composition between the demersal- and pelagic-captured cod showed differences in all these categories. Polar cod captured in the demersal nets primarily fed on fish (by weight), and pelagic cod primarily fed on copepods (frequency of occurrence) and euphausiids (by weight). In general, these dominant preys are different than what has been reported in other studies describing polar cod diets.  相似文献   

10.
The Archipelago Sea in the northern Baltic has been subjected to large-scale cultural, economic and ecological changes, especially during the last three decades. Environmental threats originate from both basin-wide sources, affecting the whole Baltic Sea, and from local sources, such as nutrient loading from nearby river outflows, intense agriculture, fish farming, ships' traffic, boating, and man's physical impacts on the landscape and seascape. Both the Åland archipelago and the Archipelago Sea have been listed as hot-spots by HELCOM, Baltic Marine Environment Protection Commission, eutrophication being the main threat to the aquatic environment. In this study we review how biological communities have reacted to an increase in man-induced multisource stresses. Changes in plankton, benthic animals, macroalgal assemblages and fish communities have been documented in most parts of the Baltic Sea since the 1970s. What remains to be understood is the importance of these structural changes for the functioning of the Archipelago Sea ecosystem under various levels of human impact.  相似文献   

11.
In 2014, the International Council for the Exploration of the Sea (ICES) was unexpectedly unable to provide an analytical assessment of eastern Baltic cod stock; factors such as data issues, assessment methodology, and the ecological situation of cod were indicated as the reasons for this failure. Some evidence suggests that the natural mortality (M) of cod could increase substantially in forthcoming years and that the selectivity could change. In this paper, age‐structured and stock‐production assessment models were applied to simulate the dynamics of cod stock; in the models, both constant and increasing natural mortalities were permitted. In the age‐structured model, the effects of selectivity related to the cod size on the cod assessment were also analysed. In addition, stock with characteristics similar to Baltic cod stock and increasing natural mortality was generated and assessed with the age‐structured model using both constant and increasing M. It was shown that models with increasing natural mortality of cod in recent years perform much better than models with constant natural mortality in terms of the distribution of residuals and retrospective patterns. The models with size‐dependent selectivity did not perform better than other standard assessments. The assessment of generated stock (where natural mortality was increasing) with constant natural mortality in the assessment model showed a poor distribution of residuals and strong retrospective patterns, similar to the ICES assessment with constant M. The conducted simulations strongly suggest that the main reason for the poor recent cod assessment is the increase in natural mortality, which is not considered in the assessment methodology.  相似文献   

12.
Alternatives in ecosystem‐based management often differ with respect to trade‐offs between ecosystem values. Ecosystem or food‐web models and demographic models are typically employed to evaluate alternatives, but the approaches are rarely integrated to uncover conflicts between values. We applied multistate models to a capture–recapture dataset on common guillemots Uria aalge breeding in the Baltic Sea to identify factors influencing survival. The estimated relationships were employed together with Ecopath‐with‐Ecosim food‐web model simulations to project guillemot survival under six future scenarios incorporating climate change. The scenarios were based on management alternatives for eutrophication and cod fisheries, issues considered top priority for regional management, but without known direct effects on the guillemot population. Our demographic models identified prey quantity (abundance and biomass of sprat Sprattus sprattus) as the main factor influencing guillemot survival. Most scenarios resulted in projections of increased survival, in the near (2016–2040) and distant (2060–2085) future. However, in the scenario of reduced nutrient input and precautionary cod fishing, guillemot survival was projected to be lower in both future periods due to lower sprat stocks. Matrix population models suggested a substantial decline of the guillemot population in the near future, 24% per 10 years, and a smaller reduction, 1.1% per 10 years, in the distant future. To date, many stakeholders and Baltic Sea governments have supported reduced nutrient input and precautionary cod fishing and implementation is underway. Negative effects on nonfocal species have previously not been uncovered, but our results show that the scenario is likely to negatively impact the guillemot population. Linking model results allowed identifying trade‐offs associated with management alternatives. This information is critical to thorough evaluation by decision‐makers, but not easily obtained by food‐web models or demographic models in isolation. Appropriate datasets are often available, making it feasible to apply a linked approach for better‐informed decisions in ecosystem‐based management.  相似文献   

13.
Overfishing of large predatory fish populations has resulted in lasting restructurings of entire marine food webs worldwide, with serious socio-economic consequences. Fortunately, some degraded ecosystems show signs of recovery. A key challenge for ecosystem management is to anticipate the degree to which recovery is possible. By applying a statistical food-web model, using the Baltic Sea as a case study, we show that under current temperature and salinity conditions, complete recovery of this heavily altered ecosystem will be impossible. Instead, the ecosystem regenerates towards a new ecological baseline. This new baseline is characterized by lower and more variable biomass of cod, the commercially most important fish stock in the Baltic Sea, even under very low exploitation pressure. Furthermore, a socio-economic assessment shows that this signal is amplified at the level of societal costs, owing to increased uncertainty in biomass and reduced consumer surplus. Specifically, the combined economic losses amount to approximately 120 million € per year, which equals half of today''s maximum economic yield for the Baltic cod fishery. Our analyses suggest that shifts in ecological and economic baselines can lead to higher economic uncertainty and costs for exploited ecosystems, in particular, under climate change.  相似文献   

14.
The fat content and fatty‐acid profiles of herring, Clupea harengus membras, from the southern Baltic Sea varied depending on when (fishing season) and where (fishing grounds) the fish were caught as well as on their size and sex. The fat, protein and dry matter content and the fatty‐acid profiles were assayed in C. h. membras muscle tissue. The changes observed in fatty‐acid profiles were determined by factors such as specimen mass and fat content, which, in turn, depended on fishing season. This is explained by dietary differences between juvenile and older fish. Gonad maturation and spawning in the latter are also factors. The study results provide confirmation of the hypothesis that polyunsaturated fatty acids (PUFA), in particular docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), play vital roles in the sexual maturation of C. h. membras.  相似文献   

15.
Nets with a small mesh size are required to catch Nephrops norvegicus, consequently large quantities of small whitefish are also caught, and much of this bycatch is undersized and is discarded dead. The main bycatch species are whiting (Merlangius merlangus), haddock (Melanogrammus aeglefinus) and cod (Gadus morhua). Here we summarize the known behavioural reactions of these species towards conventional trawls and review the results of using different trawl modifications to increase selectivity of Nephrops trawls. The trawl modifications are categorised as separator grids, separator and guiding panels, square-mesh panels, capture avoidance designs and codend modification. Finally, the extent to which these developments have been legislated for is discussed including the conditions under which new gear regulations have been introduced. Haddock and whiting rise during the trawling process facilitating their separation from Nephrops and escape, however the behaviour of small fish of these species is less consistent. Cod and Nephrops remain on bottom of the trawl, so to separate these species requires some physical filtering process. Overall, there is currently sufficient technical ability to improve selectivity in Nephrops trawls. The design of choice is dependent on the objectives of managers; for reducing discards but retaining marketable fish, square-mesh panels offer the most useful tool; to eliminate all bycatch and create a single-species fishery, grids and traditional Nephrops trawls show most potential. Whatever the objectives of the new measures, it is likely that a short-term economic impact will follow, and some form of incentive may be required to implement effective measures. A voluntary uptake of new measures by industry is preferable, however, to date, restrictions on fishing opportunities have been necessary to introduce innovative gear designs.  相似文献   

16.
The study of hybrid zones is central to our understanding of the genetic basis of reproductive isolation and speciation, yet very little is known about the extent and significance of hybrid zones in marine fishes. We examined the population structure of cod in the transition area between the North Sea and the Baltic Sea employing nine microsatellite loci. Genetic differentiation between the North Sea sample and the rest increased along a transect to the Baltic proper, with a large increase in level of differentiation occurring in the Western Baltic area. Our objective was to determine whether this pattern was caused purely by varying degrees of mechanical mixing of North Sea and Baltic Sea cod or by interbreeding and formation of a hybrid swarm. Simulation studies revealed that traditional Hardy-Weinberg analysis did not have sufficient power for detection of a Wahlund effect. However, using a model-based clustering method for individual admixture analysis, we were able to demonstrate the existence of intermediate genotypes in all samples from the transition area. Accordingly, our data were explained best by a model of a hybrid swarm flanked by pure nonadmixed populations in the North Sea and the Baltic Sea proper. Significant correlation of gene identities across loci (gametic phase disequilibrium) was found only in a sample from the Western Baltic, suggesting this area as the centre of the apparent hybrid zone. A hybrid zone for cod in the ecotone between the high-saline North Sea and the low-saline Baltic Sea is discussed in relation to its possible origin and maintenance, and in relation to a classical study of haemoglobin variation in cod from the Baltic Sea/Danish Belt Sea, suggesting mixing of two divergent populations without interbreeding.  相似文献   

17.
Nissling  Anders 《Hydrobiologia》2004,514(1-3):115-123
Hydrobiologia - Stock development of cod and sprat, two major fish species in the Baltic Sea, is linked by trophic interactions. Depending on recruitment success the Baltic may be pushed towards...  相似文献   

18.
Stomach content composition and prey‐specific consumption rates of juvenile and adult harbor porpoises (Phocoena phocoena) were estimated from a data set including 339 stomachs collected over a 32 yr period (1980–2011) in the western Baltic Sea. The stomach contents were mainly hard parts of fish prey and in particular otoliths. The bias originating from differential residence time of otoliths in the stomachs was addressed by use of a recently developed approach. Atlantic cod and herring were the main prey of adults, constituting on average 70% of the diet mass. Juvenile porpoises also frequently consumed gobies. Here, the mass contribution by gobies was on average 25%, which was as much as cod. Other species such as whiting, sprat, eelpout, and sandeels were of minor importance for both juveniles and adults. The diet composition differed between years, quarters, and porpoise acquisition method. Yearly consumption rates for porpoises in the western Baltic Sea were obtained in three scenarios on the daily energy requirements of a porpoise in combination with an estimate including the 95% CLs of the porpoise population size. Cod of age groups 1 and 2 and intermediate‐sized herring suffered the highest predation from porpoises.  相似文献   

19.
A rough guide to population change in exploited fish stocks   总被引:2,自引:0,他引:2  
R. Cook 《Ecology letters》2000,3(5):394-398
Interpreting how populations will change in response to exploitation is essential to the sound management of fish stocks. While deterministic models can be of use in evaluating sustainable fishing rates, the inherent variability of fish populations limits their value. In this paper a probabilistic approach is investigated which avoids having to make strong assumptions about the functional relationship between spawning stock size and the annual number of young fish (recruits) produced. Empirical probability distributions for recruits are derived, conditioned on stock size, and used to indicate likely stock changes under different fishing mortality rates. The method is applied to cod ( Gadus morhua ) in the North Sea to illustrate how population change can be inferred and used by fishery managers to choose fishing mortality rates which are likely to achieve sustainable exploitation.  相似文献   

20.
Abstract The ecosystems of coastal and enclosed seas are under increasing anthropogenic pressure worldwide, with Chesapeake Bay, the Gulf of Mexico and the Black and Baltic Seas as well known examples. We use an ecosystem model (Ecopath with Ecosim, EwE) to show that reduced top-down control (seal predation) and increased bottom-up forcing (eutrophication) can largely explain the historical dynamics of the main fish stocks (cod, herring and sprat) in the Baltic Sea between 1900 and 1980. Based on these results and the historical fish stock development we identify two major ecological transitions. A shift from seal to cod domination was caused by a virtual elimination of marine mammals followed by a shift from an oligotrophic to a eutrophic state. A third shift from cod to clupeid domination in the late 1980s has previously been explained by overfishing of cod and climatic changes. We propose that the shift from an oligotrophic to a eutrophic state represents a true regime shift with a stabilizing mechanism for a hysteresis phenomenon. There are also mechanisms that could stabilize the shift from a cod to clupeid dominated ecosystem, but there are no indications that the ecosystem has been pushed that far yet. We argue that the shifts in the Baltic Sea are a consequence of human impacts, although variations in climate may have influenced their timing, magnitude and persistence. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号