首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The internal transcribed spacer (ITS1, 5.8S rDNA, and ITS2) region of nuclear ribosomal DNA (nrDNA) was sequenced from 53 species, which represent most of the living species diversity in the genus Phalaenopsis (Orchidaceae). A phylogeny was developed for the genus based on the neighbor-joining and maximum parsimony analyses of molecular data. Results of these analyses provided support for the monophyly of the genus Phalaenopsis and concurred in that the genera Doritis and Kingidium should be treated as being parts of the genus Phalaenopsis as suggested by Christenson (2001). Within the genus Phalaenopsis, neither subgenera Aphyllae nor Parishianae were monophyletic, and they were highly clustered with subgenus Proboscidioides plus sections Esmeralda and Deliciosae of subgenus Phalaenopsis based on ITS data. Those species also have the same characters of morphology of four pollinia and similar biogeographies. Furthermore, neither subgenus Phalaenopsis nor Polychilos was monophyletic. Within the subgenus Phalaenopsis, only section Phalaenopsis was highly supported as being monophyletic. As for the subgenus Polychilos, only section Polychilos was moderately supported as being monophyletic. In conclusion, the present molecular data obtained from the ITS sequence of nrDNA of the genus Phalaenopsis provide valuable information for elucidating the phylogeny of this genus.  相似文献   

2.
Western chipmunks (Neotamias) exhibit a complex geographical distribution and can vary by minute morphological differences. This has lead to confusion around the taxonomy and evolutionary history of this group. The main focus of this molecular study was to infer taxonomic relationships within Neotamias, especially at the tips of the tree. Sequences of the complete control region for 16 species of chipmunks (Tamias, Neotamias) were analyzed independently and in combination with previously published sequences of two mitochondrial genes, cytochrome b and cytochrome oxidase II. The control region data set corroborated the findings of Piaggio and Spicer (2001) in finding five discrete clades, while also providing stronger bootstrap support for most terminal branches. Analysis of individual mitochondrial genes revealed that not all genes have the same phylogenetic signal and when analyzed in combination, this incongruence amongst genes is resolved.  相似文献   

3.
Initial molecular phylogenetic studies established the monophylly of the large genus Croton (Euphorbiaceae s.s.) and suggested that the group originated in the New World. A denser and more targeted sampling of Croton species points to a South American origin for the genus. The nuclear and chloroplast genomes indicate a different rooting for the phylogeny of Croton. Although we favor the rooting indicated by the chloroplast data our conclusions are also consistent with the topology inferred from the nuclear data. The satellite genera Cubacroton and Moacroton are embedded within Croton. These two genera are synonimized into Croton and a new subgenus, Croton subgenus Moacroton, is circumscribed to include them and their allied Croton species. Croton subgenus Moacroton is morphologically characterized by a primarily lepidote indumentum, bifid or simple styles, and pistillate flowers with sepals that are connate at the base. This newly circumscribed subgenus is found from North America to South America, and in contrast to the majority of Croton species most of its members are found in mesic habitats. The group is most diverse in the greater Caribbean basin. A molecular clock was calibrated to the phylogeny using the available Euphorbiaceae fossils. The timing and pattern of diversification of Croton is consistent with both the GAARlandia and Laurasian migration hypotheses. A single species, Croton poecilanthus from Puerto Rico, is placed incongruently by its nuclear and chloroplast genomes. The possibility of this species being of hybrid origin is discussed.   相似文献   

4.
The importance of the environment in shaping phenotypic evolution lies at the core of evolutionary biology. Chipmunks of the genus Tamias (subgenus Neotamias) are part of a very recent radiation, occupying a wide range of environments with marked niche partitioning among species. One open question is if and how those differences in environments affected phenotypic evolution in this lineage. Herein we examine the relative importance of genetic drift versus natural selection in the origin of cranial diversity exhibited by clade members. We also explore the degree to which variation in potential selective agents (environmental variables) are correlated with the patterns of morphological variation presented. We found that genetic drift cannot explain morphological diversification in the group, thus supporting the potential role of natural selection as the predominant evolutionary force during Neotamias cranial diversification, although the strength of selection varied greatly among species. This morphological diversification, in turn, was correlated with environmental conditions, suggesting a possible causal relationship. These results underscore that extant Neotamias represent a radiation in which aspects of the environment might have acted as the selective force driving species’ divergence.  相似文献   

5.
Climate and host demographic cycling often shape both parasite genetic diversity and host distributions, processes that transcend a history of strict host–parasite association. We explored host associations and histories based on an evaluation of mitochondrial and nuclear sequences to reveal the underlying history and genetic structure of a pinworm, Rauschtineria eutamii, infecting ten species of western North American chipmunks (Rodentia:Tamias, subgenus Neotamias). Rauschtineria eutamii contains divergent lineages influenced by the diversity of hosts and variation across the complex topography of western North America. We recovered six reciprocally monophyletic R. eutamii mitochondrial clades, largely supported by a multilocus concordance tree, exhibiting divergence levels comparable with intraspecific variation reported for other nematodes. Phylogenetic relationships among pinworm clades suggest that R. eutamii colonized an ancestral lineage of western chipmunks and lineages persisted during historical isolation in diverging Neotamias species or species groups. Pinworm diversification, however, is incongruent and asynchronous relative to host diversification. Secondarily, patterns of shallow divergence were shaped by geography through events of episodic colonization reflecting an interaction of taxon pulses and ecological fitting among assemblages in recurrent sympatry. Pinworms occasionally infect geographically proximal host species; however, host switching may be unstable or ephemeral, as there is no signal of host switching in the deeper history of R. eutamii.  相似文献   

6.
Thanwisai A  Kuvangkadilok C  Baimai V 《Genetica》2006,128(1-3):177-204
The sequences of the second internal transcribed spacer (ITS2) of ribosomal DNA (rDNA) were determined for 40 black fly species from Thailand, belonging to 4 subgenera of the genus Simulium, namely Gomphostilbia (12 species), Nevermannia (5 species), Montisimulium (1 species), Simulium sensu stricto (21 species), and an unknown subgenus with one species (Simulium baimaii). The length of the ITS2 ranged from 247 to 308 bp. All black fly species had high AT content, ranging from 71 to 83.8%. Intraindividual variation (clonal variation) occurred in 13 species, ranging from 0.3 to 1.1%. Large intrapopulation and interpopulation heterogeneities exist in S. feuerboni from the same and different locations in Doi Inthanon National Park, northern Thailand. Phylogenetic relationships among 40 black fly species were examined using PAUP (version 4.0b10) and MrBAYS (version 3.0B4). The topology of the trees revealed two major monophyletic clades. The subgenus Simulium and Simulium baimaii were placed in the first monophyletic clade, whereas the subgenera Nevermannia + Montisimulium were placed as the sister group to the subgenus Gomphostilbia in the second monophyletic clade. Our results suggest that S. baimaii belongs to the malyschevi-group or variegatum-group in the subgenus Simulium. The molecular phylogeny generally agrees with existing morphology-based phylogenies.  相似文献   

7.
The phylogeny and phylogeography of the Old World wood mice (subgenus Sylvaemus, genus Apodemus, Muridae) are well-documented. Nevertheless, the distributions of species, such as A. fulvipectus and A. ponticus remain dubious, as well as their phylogenetic relationships with A. sylvaticus. We analysed samples of Apodemus spp. across Europe using the mitochondrial cytochrome-b gene (cyt-b) and compared the DNA and amino-acid compositions of previously published sequences. The main result stemming from this study is the presence of a well-differentiated lineage of Sylvaemus including samples of various species (A. sylvaticus, A. fulvipectus, A. ponticus) from distant locations, which were revealed to be nuclear copies of the mitochondrial cyt-b. The presence of this cryptic pseudogene in published sequences is supported by different pathways. This has led to important errors in previous molecular trees and hence to partial misinterpretations in the phylogeny of Apodemus.  相似文献   

8.
Eremias, or racerunners, is a widespread lacertid genus occurring in China, Mongolia, Korea, Central Asia, Southwest Asia and Southeast Europe. It has been through a series of taxonomic revisions, but the phylogenetic relationships among the species and subgenera remain unclear. In this study, a frequently studied region of the mitochondrial 16S rRNA was used to (i) reassess the phylogenetic relationships of some Eremias species, (ii) test if the viviparous species form a monophyletic group, and (iii) estimate divergence time among lineages using a Bayesian relaxed molecular-clock approach. The resulting phylogeny supports monophyly of Eremias sensu Szczerbak and a clade comprising Eremias, Acanthodactylus and Latastia. An earlier finding demonstrating monophyly of the subgenus Pareremias is corroborated, with Eremias argus being the sister taxon to Eremias brenchleyi. We present the first evidence that viviparous species form a monophyletic group. In addition, Eremias przewalskii is nested within Eremias multiocellata, suggesting that the latter is likely a paraphyletic species or a species complex. Eremias acutirostris and Eremias persica form a clade that is closely related to the subgenus Pareremias. However, the subgenera Aspidorhinus, Scapteira, and Rhabderemias seem not to be monophyletic, respectively. The Bayesian divergence-time estimation suggests that Eremias originated at about 9.9 million years ago (with the 95% confidence interval ranging from 7.6 to 12 Ma), and diversified from Late Miocene to Pleistocene. Specifically, the divergence time of the subgenus Pareremias was dated to about 6.3 million years ago (with the 95% confidence interval ranging from 5.3 to 8.5 Ma), which suggests that the diversification of this subgenus might be correlated with the evolution of an East Asian monsoon climate triggered by the rapid uplift of the Tibetan Plateau approximately 8 Ma.  相似文献   

9.
Spironello M  Hunter FF 《Genetica》2005,123(3):217-226
The black fly subgenus Inseliellum is present on a series of archipelagos in the South Pacific. In this study, larval polytene chromosome maps of six Inseliellum species are presented. Chromosomal relationships among taxa were determined through shared fixed inversions or chromosomal landmark positioning. Three fixed inversions (IL-2, IIS-1, and IIIS-1) were shared among species, as was the position of the nucleolar organizer (NO) (IL or IIL). Comparisons to two previously studied species of Inseliellum are included to produce a cytological transformation series among eight taxa. The NO position defines two clades in the phylogeny of Inseliellum, herein named the NO-IL and NO-IIL clades. The utility of this cytological data set is discussed.  相似文献   

10.
11.
Aim Namib biogeography in many instances remains reliant on advanced and detailed systematic studies. This study attempts to combine molecular phylogenetic data, geology and palaeo‐climatic data to (i) resolve the relationships of the 13 morphological species of Scarabaeus (Pachysoma) and (ii) relate their evolution to past climatic and geological events. Location South Africa and Namibia. Methods Sequencing of a 1197 bp segment of the mitochondrial cytochrome oxidase I (COI) gene of the 13 species within Scarabaeus (Pachysoma) was undertaken. Analyses performed included Parsimony and Maximum Likelihood as well as imposing a molecular clock. Results The molecular phylogeny showed strong support for 11 of the 13 morphological species. The remaining two species, S. (P.) glentoni and S. (P.) hippocrates, formed a complex and could not be assigned specific status on the basis of the COI gene phylogeny. Strong support for the three species formerly classified within the genus Neopachysoma was consistently obtained. The subgenus appears to have arisen c. 2.9 Ma. Species within the subgenus arose at different times, with the common ancestor to Neopachysoma and the hippocrates complex having evolved 2.65 and 2.4 Ma, respectively. Scarabaeus (P.) denticollis, S. (P.) rotundigenus, S. (P.) rodriguesi and S. (P.) schinzi are some of the youngest species, having diverged between 2 million and 600,000 years ago. Main conclusions Scarabaeus (Pachysoma) is a derived monophyletic clade within the Scarabaeini. The subgenus appears to be young in comparison with the age of the Namib Desert, which dates back to the Miocene (c. 15 Ma). The psammophilous taxa are shown to disperse with their substratum and habitat, barchan dunes. Clear south/north evolutionary gradients can be seen within the species of this subgenus, which are consistent with the unidirectional wind regime. Species with a suite of mostly plesiomorphic characters have a southerly distribution while their derived psammophilous relatives have central to northern Namib distributions. Major rivers such as the Orange, Buffels and Holgat appear to be gene barriers to certain species as well as areas of origin of speciation events.  相似文献   

12.
Allium subgenus Melanocrommyum (Alliaceae) from Eurasia comprises about 150 mostly diploid species adapted to arid conditions. The group is taxonomically complicated with different and contradictory taxonomic treatments, and was thought to include a considerable number of hybrid species, as the taxa show an admixture of assumed morphological key characters. We studied the phylogeny of the subgenus, covering all existing taxonomic groups and their entire geographic distribution. We analyzed sequences of the nuclear rDNA internal transcribed spacer region (ITS) for multiple individuals of more than 100 species. Phylogenetic analyses of cloned and directly sequenced PCR products confirmed the monophyly of the subgenus, while most sections were either para- or polyphyletic. The splits of the large sections are supported by differences in the anatomy of flower nectaries. ITS data (i) demand a new treatment at sectional level, (ii) do not support the hypotheses of frequent gene flow among species, (iii) indicate that multiple rapid radiations occurred within different monophyletic groups of the subgenus, and (iv) detected separately evolving lineages within three morphologically clearly defined species (cryptic species). In two cases these lineages were close relatives, while in Allium darwasicum they fall in quite different clades in the phylogenetic tree. Fingerprint markers show that this result is not due to ongoing introgression of rDNA (ITS capture) but that genome-wide differences between both lineages exist. Thus, we report one of the rare cases in plants where morphologically indistinguishable diploid species occurring in mixed populations are non-sister cryptic species.  相似文献   

13.
Reid, D. G., Dyal, P. & Williams, S.T. (2012) A global molecular phylogeny of 147 periwinkle species (Gastropoda, Littorininae). —Zoologica Scripta, 41, 125–136. Complete species‐level molecular phylogenies have been published for several genera of Littorinidae (e.g. Echinolittorina, Littoraria). Here we add new sequence data from three genes (28S rRNA, 12S rRNA, cytochrome oxidase c subunit I) for single specimens of an additional 24 species, to make a data set of 147 (97%) of the 152 recognized species of the subfamily Littorininae. This three‐gene data set is analysed to produce a phylogenetic hypothesis for the subfamily, which includes the first complete species‐level phylogeny of the genus Peasiella and the first three‐gene phylogeny of all Littorina species. The non‐planktotrophic species of Littorina have previously been classified together (as subgenus Neritrema), implying a single origin of this developmental mode. Tests of this hypothesis with the new data are inconclusive, and resolution is not improved in a tree constructed from five genes (adding previously published sequences of 16S rRNA and cytochrome b). Using available fossils for calibration we generate a BEAST chronogram, which emphasizes that the radiation of Littorina is more recent than that of other littorinine genera. A database is provided, listing all known species of Littorininae, with their distributions, development, ecology and gene sequences, as a tool for future evolutionary studies of this model group.  相似文献   

14.
Yukari Mizuta 《Mycoscience》2006,47(6):380-384
Two new species and one new variety of Oudemansiella (Agaricales) from Japan are described and illustrated: (1) Oudemansiella latilamellata sp. nov. (subgenus Xerula, section Radicatae) has relatively broad lamellae and broadly ellipsoid spores with a subacute apex; (2) Oudemansiella rhodophylla sp. nov. (subgenus Xerula, section Radicatae), growing in deciduous forests of Fagus crenata, Quercus crispula, etc., is characteristic in having lamellae tinted reddish; and (3) Oudemansiella amygdaliformis var. bispora var. nov. (subgenus Xerula, section Albotomentosae) is distinguished from the type variety by having two-spored basidia and grows in evergreen oak forests (Castanopsis sieboldii, Quercus glauca, etc.) or bamboo groves.  相似文献   

15.
Summary Chloroplast DNA (cpDNA) restriction endonuclease patterns are used to examine phylogenetic relationships between Bromus subgenera Festucaria and Ceratochloa. Festucaria is considered monophyletic based on the L genome, while Ceratochloa encompasses two species complexes: the B. catharticus complex, which evolved by combining three different genomes, and the B. carinatus complex, which is thought to have originated from hybridization between polyploid species of B. catharticus and diploid members of Festucaria. All species of subgenus Ceratochloa (hexaploids and octoploids) were identical in chloroplast DNA sequences. Similarly, polyploid species of subgenus Festucaria, except for B. auleticus, were identical in cpDNA sequences. In contrast, diploid species of subgenus Festucaria showed various degrees of nucleotide sequence divergence. Species of subgenus Ceratochloa appeared monophyletic and phylogenetically closely related to the diploid B. anomalus and B. auleticus of subgenus Festucaria. The remaining diploid and polyploid species of subgenus Festucaria appeared in a distinct grouping. The study suggests that the B. catharticus complex must have been the maternal parent in the proposed hybrid origin of B. carinatus complex. Although there is no direct evidence for the paternal parent of the latter complex, the cpDNA study shows the complex to be phylogenetically very related to the diploid B. anomalus of subgenus Festucaria.  相似文献   

16.
The phylogeny of all Pacific fiddler crab representatives of the subgenus Minuca Bott, 1954 (sensu Beinlich and von Hagen, 2006) is reconstructed. For the molecular analysis, Cox1 mitochondrial and 28S ribosomal nuclear DNA sequences were used. According to these data, same transisthmian sister species relationships are confirmed and a new species of the genus Uca Leach, 1814, Uca osa sp. n., is described from Golfo Dulce, a tropical gulf in Pacific Costa Rica. Morphological as well as molecular data confirm distinctness of this species compared with all other members of the subgenus Minuca, to which it belongs. Distinctive morphological traits are presented to distinguish Uca osa sp. n. from its congeners in the Eastern Pacific.  相似文献   

17.
Hybridization and polyploidization are important evolutionary processes in higher plants and have greatly enriched the diversity of the genus Potamogeton (Potamogetonaceae). To study the phylogenetic relationships and hybrid origin of Potamogeton species, 35 accessions representing 20 species, including diploids, tetraploids and hexaploids, and three hybrids were collected in China and their ribosomal internal transcribed spacers (ITS) were cloned, sequenced and statistically analyzed. The data showed that ITS sequences were informative to analyze the phylogeny of Potamogeton, and the phylogenetic tree revealed that Potamogeton species examined could be mainly divided into two groups (Group I and II), corresponding to subgenus Potamogeton and subgenus Coleogeton, respectively. Then, the evolutionary mechanism on the polyploidy of Potamogeton species was discussed. P. natans probably was an allotetraploid and one of its parent might result from aneuploidy change of species with 2n=28. P. hubeiensis might be derived from the hybridization between P. octandrus and P. cristatus. We suggested that both P. lucens and P. maackianus probably were allotetraploids, and P. obtusifolius might be a diploid hybrid between P. compressus and P. pusillus. Moreover, P. malainoides might have undergone biased concerted evolution toward one of its parent P. wrightii, and P. intortusifolius might be a synonymy of P. × anguillanus.  相似文献   

18.
A phylogeny of the genus Aphis Linnaeus, 1 758 was built primarily from specimens collected in the Midwest of the United States. A data matrix was constructed with 68 species and 41 morphological characters with respective character states of alate and apterous viviparous females. Dendrogram topologies of analyses performed using UPGMA (Unweighted Pair Group Method with Arithmetic Mean), Maximum Parsimony and Bayesian analysis of Cytochrome Oxidase I, Elongation Factor 1‐α and primary endosymbiont Buchnera aphidicola 16S sequences were not congruent. Bayesian analysis strongly supported most terminal nodes of the phylogenetic trees. The phylogeny was strongly supported by EF1‐α, and analysis of COI and EF1‐α molecular data combined with morphological characters. It was not supported by single analysis of COI or Buchnera aphidicola 16S. Results from the Bayesian phylogeny show 4 main species groups: asclepiadis, fabae, gossypii, and middletonii. Results place Aphis and species of the genera Protaphis Börner, 1952, Toxoptera Koch, 1856 and Xerobion Nevsky, 1928 in a monophyletic clade. Morphological characters support this monophyly as well. The phylogeny shows that the monophyletic clade of the North American middletonii species group belong to the genus Protaphis: P. debilicornis (Gillette & Palmer, 1929 ), comb. nov., P. echinaceae (Lagos and Voegtlin, 2009 ), comb. nov., and P. middletonii (Thomas, 1879 ). The genus Toxoptera should be considered a subgenus of Aphis (stat. nov.). The analysis also indicates that the current genus Iowana Frison, 1954 should be considered a subgenus of Aphis (stat. nov.).  相似文献   

19.
We present a phylogenetic hypothesis for 72 ,,Drosophila“ species, constructed through analysis from the paralogous alpha methyldopa (amd) and dopa decarboxylase (ddc) nuclear genes (encompassing a total of 2015 base pairs). Our data support the subdivision of the paraphyletic subgenus ,,Drosophila“ into three main radiations (the immigrans‐tripunctata, the virilis‐repleta and the Hawaiian Drosophilidae), each of which is further subdivided to originate monophyletic ‘sub‐radiations’. Moreover, this study raises the possibility that the Zaprionus/Liodrosophila species encompass a fourth radiation within the subgenus ,,Drosophila“ phylogeny and provides temporal estimates for each of the postulated divergence events.  相似文献   

20.
Polygala pauciramosa, a new species from the Federal District and the state of Goiás is described, illustrated, and compared with related species of Polygala subgenus Hebeclada. The new species is an herb that grows in seasonally to permanently wet savannas. A key to the species of Polygala subgenus Hebeclada from Goiás state, Brazil is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号