首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In eukaryotic cells the nuclear envelope (NE) serves as a functional barrier between cytosol and nucleoplasm perforated by nuclear pore complexes (NPCs). Both active and passive transport of ions and macromolecules are thought to be mediated by the centrally located large NPC channel. However, 3-dimensional imaging of NPCs based on electron microscopy indicates the existence of additional small channels of unknown function located in the NPC periphery. By means of the recently developed nuclear hourglass technique that measures NE electrical conductance, we evaluated passive electrically driven transport through NPCs. In isolated Xenopus laevis oocyte nuclei, we varied ambient Ca2+ and ATP in the cytosolic solution and/or chelated Ca2+ in the perinuclear stores in order to assess the role of Ca2+ in regulating passive ion transport. We noticed that NE electrical conductance is large under conditions where macromolecule permeability is known to be low. In addition, atomic force microscopy applied to native NPCs detects multiple small pores in the NPC periphery consistent with channel openings. Peripheral pores were detectable only in the presence of ATP. We conclude that NPC transport of ions and macromolecules occurs through different routes. We present a model in which NE ion flux does not occur through the central NPC channel but rather through Ca2+- and ATP-activated peripheral channels of individual NPCs.  相似文献   

2.
3.
4.
Bidirectional trafficking of macromolecules between the cytoplasm and the nucleus is mediated by the nuclear pore complexes (NPCs) embedded in the nuclear envelope (NE) of eukaryotic cell. The NPC functions as the sole pathway to allow for the passive diffusion of small molecules and the facilitated translocation of larger molecules. Evidence shows that these two transport modes and the conformation of NPC can be regulated by calcium stored in the lumen of nuclear envelope and endoplasmic reticulum. However, the mechanism of calcium regulation remains poorly understood. In this review, we integrate data on the observations of calcium-regulated structure and function of the NPC over the past years. Furthermore, we highlight challenges in the measurements of dynamic conformational changes and transient transport kinetics in the NPC. Finally, an innovative imaging approach, single-molecule super-resolution fluorescence microscopy, is introduced and expected to provide more insights into the mechanism of calcium-regulated nucleocytoplasmic transport.  相似文献   

5.
A Glucocorticoid-sensitive cell rapidly responds to hormone stimulation with bidirectional exchange of specific macromolecules between cytosol and nucleus. Glucocorticoid-initiated macromolecules (GIMs) must overcome the nuclear envelope (NE) to enter or leave the nucleus. GIM translocation occurs through nuclear pore complexes (NPCs) that span the NE. We investigated the question whether transport of GIMs through NPCs occurs random or involves selected groups of NPCs (hot spots). Glucocorticoid receptors were expressed in Xenopus laevis oocytes and GIM transport was activated by triamcinolone acetonide, a potent synthetic glucocorticoid analogon. Glucocorticoid receptors associated with the NE and the chromatin were identified using western blot analysis and, at single molecule level, atomic force microscopy. Fluorescence-labeled dextran was used to describe passive NE permeability. We observed that after hormone injection (i) small GIMs, most likely GRs, localize within seconds on both sides of the NE. (ii) large GIMs, most likely ribonucleoproteins, localize within minutes on NPCs at the nucleoplasmic side (iii) both small and large GIMs accumulate on selected NPC clusters (iv) NE permeability transiently decreases when GIMs attach to NPCs. We conclude that GIM transport across the nuclear barrier does not randomly take place but is carried out by a selected population of NPCs.  相似文献   

6.
Nuclear pore complexes (NPCs) are supramolecular nanomachines that mediate the exchange of macromolecules and inorganic ions between the nucleus and the cytosol. Although there is no doubt that large cargo is transported through the centrally located channel, the route of ions and small molecules remains debatable. We thus tested the hypothesis that there are two separate pathways by imaging NPCs using atomic force microscopy, NPC electrical conductivity measurements, and macromolecule permeability assays. Our data indicate a spatial separation between the active transport of macromolecules through the central channel and the passive transport of ions and small macromolecules through the pore periphery.  相似文献   

7.
Nuclear pore complexes (NPCs) facilitate selective transport of macromolecules across the nuclear envelope in interphase eukaryotic cells. NPCs are composed of roughly 30 different proteins (nucleoporins) of which about one third are characterized by the presence of phenylalanine-glycine (FG) repeat domains that allow the association of soluble nuclear transport receptors with the NPC. Two types of FG (FG/FxFG and FG/GLFG) domains are found in nucleoporins and Nup98 is the sole vertebrate nucleoporin harboring the GLFG-type repeats. By immuno-electron microscopy using isolated nuclei from Xenopus oocytes we show here the localization of distinct domains of Nup98. We examined the localization of the C- and N-terminal domain of Nup98 by immunogold-labeling using domain-specific antibodies against Nup98 and by expressing epitope tagged versions of Nup98. Our studies revealed that anchorage of Nup98 to NPCs through its C-terminal autoproteolytic domain occurs in the center of the NPC, whereas its N-terminal GLFG domain is more flexible and is detected at multiple locations within the NPC. Additionally, we have confirmed the central localization of Nup98 within the NPC using super resolution structured illumination fluorescence microscopy (SIM) to position Nup98 domains relative to markers of cytoplasmic filaments and the nuclear basket. Our data support the notion that Nup98 is a major determinant of the permeability barrier of NPCs.  相似文献   

8.
The nuclear pore complex (NPC) controls transport of macromolecules across the nuclear envelope. It is large and complex but appears to consist of only approximately 30 different proteins despite its mass of > 60MDa. Vertebrate NPC structure has been analyzed by several methods giving a comprehensive architectural model. Despite our knowledge of yeast nucleoporins, structural data is more limited and suggests the basic organization is similar to vertebrates, but may lack some peripheral and other components. Using field emission scanning electron microscopy to probe NPC structure we found that the yeast, like higher eukaryotic, NPCs contain similar peripheral components. We can detect cytoplasmic rings and evidence of nucleoplasmic rings in yeasts. A filamentous basket is present on the nucleoplasmic face and evidence for cytoplasmic filaments is shown. We observed a central structure, possibly the transporter, that which may be linked to the cytoplasmic ring by internal filaments. Immuno-gold labeling suggested that Nup159p may be attached to the cytoplasmic ring, whereas Nup116p may be associated, partly, with the cytoplasmic filaments. Analysis of a Nup57p mutant suggested a role in maintaining the stability of cytoplasmic components of the NPC. We conclude that peripheral NPC components appear similar in yeasts compared to higher organisms and present a revised model for yeast NPC structural composition.  相似文献   

9.
10.
11.
Molecules can enter the nucleus by passive diffusion or active transport mechanisms, depending on their size. Small molecules up to size of 50-60 kDa or less than 10 nm in diameter can diffuse passively through the nuclear pore complex (NPC), while most proteins are transported by energy driven transport mechanisms. Active transport of viral proteins is mediated by nuclear localization signals (NLS), which were first identified in Simian Virus 40 large T antigen and had subsequently been identified in a large number of viral proteins. Usually they contain short stretches of lysine or arginine residues. These signals are recognized by the importin super-family (importin α and β) proteins that mediate the transport across the nuclear envelope through Ran-GTP. In contrast, only one class of the leucine-rich nuclear export signal (NES) on viral proteins is known at present. Chromosome region maintenance 1 (CRM1) protein mediates nuclear export of hundreds of viral proteins through the recognition of the leucine-rich NES.  相似文献   

12.
蛋白质入核转运的机制和研究进展   总被引:2,自引:0,他引:2  
细胞核膜是由外膜和内膜组成的磷脂双分子层结构,同时镶嵌一些核孔复合体(NPC).核孔复合体是胞浆和胞核之间主动和被动转运的生理屏障.核内功能蛋白在胞浆内合成后通过核孔复合体进入胞核,这个过程除了需要NPC上核孔蛋白、胞浆内核转运受体和RanGTP等蛋白的参与外, 货物蛋白本身的结构特征在其入核转运过程中亦发挥重要作用.本文着重就蛋白入核转运的机制及近年来取得的相关进展进行综述.  相似文献   

13.
Protein import through the nuclear pore complex is a multistep process   总被引:44,自引:30,他引:14       下载免费PDF全文
The transport of macromolecules across the nuclear envelope is mediated by the nuclear pore complex (NPC). Using cryo-electron microscopy and image processing we have mapped the interaction of three specific gold probes with the NPC and obtained projection maps of two possible intermediates in nuclear import. The probes used in these experiments were (a) mAb-414, which cross-reacts with Xenopus nucleoporins containing O-linked N-acetyl glucosamines; (b) wheat germ agglutinin, a transport inhibitor; and (c) nucleoplasmin, a transport substrate. Strong binding sites of the three probes are circularly arrayed on NPCs between radii of 100 and 125 A and may be coextensive. These results suggest that nucleoplasmin-gold (NP-gold) can form at least three distinct complexes with a central transport assembly of the NPC, which may represent intermediates of a multistep protein import pathway. Initially, NP-gold appears to bind at multiple sites located around the periphery of the closed NPC transporter and also directly over the center where it can dock. In a subsequent step NP-gold is translocated through the nuclear pore.  相似文献   

14.
核孔复合物(NPC)是一个巨型分子复合物,相对分子质量约125×106。脊椎动物的NPC由大约30种蛋白质组成,这些蛋白质的序列大多具有FG(苯丙氨酸-甘氨酸)重复序列。NPC锚定于双层核膜上,并且是物质跨核膜运输的惟一通道,它可快速介导小分子物质的被动运输以及大分子物质的主动运输过程。虽然NPC具有较大的相对分子质量和复杂的结构,但它可在细胞分裂过程中分离并重新组装。生物大分子经NPC的跨核膜运输直接影响真核细胞的生长、增殖、分化、发育等多种生命活动。本文重点介绍NPC的结构、组装及其功能特点。  相似文献   

15.
Nuclear envelope barrier leak induced by dexamethasone   总被引:1,自引:0,他引:1  
Nuclear pore complexes (NPCs) are multiprotein channels that span the nuclear envelope. They strongly limit the efficiency of gene transfection by restriction of nuclear delivery of exogenously applied therapeutic macromolecules. NPC dilation could significantly increase this efficiency. Recently, it was shown in oocytes of Xenopus laevis that NPCs dilate from about 82 to 110 nm within min after injection of the glucocorticoid analog dexamethasone (dex). In the present paper we analyzed by means of atomic force microscopy the structural details of NPC dilation and correlated them with functional changes in nuclear envelope permeability. 5-11 min after Dex injection NPC dilation was found at its maximum (approximately 140 nm). In addition, a yet unknown configuration, so-called giant pore, up to 300 nm in diameter, was visualized. Giant pore formation was paralleled by an increase in nuclear envelope permeability tested by electrophysiology and confocal fluorescence microscopy. Even large macromolecules lacking any nuclear localization signal (77 kDa FITC-dextran, molecule diameter up to 36 nm) could gain access to the nucleus. We conclude that dex transiently opens unspecific pathways for large macromolecules. Dex treatment could be potentially useful for improving the efficiency of nuclear gene transfection.  相似文献   

16.
Optical Single Transporter Recording (OSTR) is a technique for analyzing membrane transport kinetics at high sensitivity, selectivity, and spatial resolution. Cellular membranes are firmly attached to microarrays of small test compartments (TCs) with diameters between approximately 0.1 and 100 microm and depths between approximately 10 and 100 microm. This permits to generate either "small" membrane patches containing few transporters or "large" patches containing many transporters. Transport of substrates across membrane patches is recorded by confocal microscopy. The present article reviews recent applications of OSTR to the nuclear pore complex (NPC). The results show that the transport functions of the NPC, previously studied almost exclusively in intact and permeabilized cells, are conserved in isolated nuclei and can be fully reconstituted in purified nuclear envelopes by addition of recombinant transport factors. This opens new avenues to the analysis of nuclear transport including the export of nucleic-acid-protein and ribosomal particles.  相似文献   

17.
18.
19.
Aitchison JD  Rout MP 《Genetics》2012,190(3):855-883
Exchange of macromolecules between the nucleus and cytoplasm is a key regulatory event in the expression of a cell's genome. This exchange requires a dedicated transport system: (1) nuclear pore complexes (NPCs), embedded in the nuclear envelope and composed of proteins termed nucleoporins (or "Nups"), and (2) nuclear transport factors that recognize the cargoes to be transported and ferry them across the NPCs. This transport is regulated at multiple levels, and the NPC itself also plays a key regulatory role in gene expression by influencing nuclear architecture and acting as a point of control for various nuclear processes. Here we summarize how the yeast Saccharomyces has been used extensively as a model system to understand the fundamental and highly conserved features of this transport system, revealing the structure and function of the NPC; the NPC's role in the regulation of gene expression; and the interactions of transport factors with their cargoes, regulatory factors, and specific nucleoporins.  相似文献   

20.
Nucleocytoplasmic transport of proteins   总被引:4,自引:0,他引:4  
In eukaryotic cells, the movement of macromolecules between the nucleus and cytoplasm occurs through the nuclear pore complex (NPC)--a large protein complex spanning the nuclear envelope. The nuclear transport of proteins is usually mediated by a family of transport receptors known as karyopherins. Karyopherins bind to their cargoes via recognition of nuclear localization signal (NLS) for nuclear import or nuclear export signal (NES) for export to form a transport complex. Its transport through NPC is facilitated by transient interactions between the karyopherins and NPC components. The interactions of karyopherins with their cargoes are regulated by GTPase Ran. In the current review, we describe the NPC structure, NLS, and NES, as well as the model of classic Ran-dependent transport, with special emphasis on existing alternative mechanisms; we also propose a classification of the basic mechanisms of protein transport regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号