共查询到20条相似文献,搜索用时 0 毫秒
1.
The deleterious effects of inbreeding have been well documented, but only recently have studies begun to explore the consequences of inbreeding for important ecological interactions. We examined the effects of inbreeding on the interaction between host and pathogen using the mixed-mating Mimulus guttatus (Scrophulariaceae) and Cucumber mosaic virus (CMV). Inbred (self) and outbred M. guttatus from two California populations (M5 and M13) were rub-inoculated with CMV and compared to sham-inoculated controls. Flower production by outbred plants in host population M5 showed little effect of the inoculation treatment, but inoculation reduced flower production of inbred plants by 12%, indicating that inbreeding reduces tolerance to CMV infection. This interaction fell short of significance, however. The effects of inbreeding and CMV inoculation on biomass in M5 varied significantly across the 15 families used in this experiment, indicating genetic variation in the effect of inbreeding on resistance or tolerance to CMV. CMV infection reduced biomass in host population M13, but there were no significant interactions between virus treatment and level of inbreeding for either flower production or biomass. Enzyme linked immunosorbent assay (ELISA) was used to detect CMV in host tissues. In both populations, mean ELISA absorbance values of inoculated plants were nearly identical for self and outcross hosts, indicating equal susceptibility to CMV. In outbred plants of population M5, flower production did not change with increasing ELISA absorbance, but in inbred plants it declined, indicating reduced tolerance to CMV infection. The results from this study suggest that pathogens may become increasingly detrimental as host populations become more inbred. 相似文献
2.
? Premise of the study: Shoot architecture is a fundamentally developmental aspect of plant biology with implications for plant form, function, reproduction, and life history evolution. Mimulus guttatus is morphologically diverse and becoming a model for evolutionary biology. Shoot architecture, however, has never been studied from a developmental perspective in M. guttatus. ? Methods: We examined the development of branches and flowers in plants from two locally adapted populations of M. guttatus with contrasting flowering times, life histories, and branch numbers. We planted second-generation seed in growth chambers to control for maternal and environmental effects. ? Key results: Most branches occurred at nodes one and two of the main axis. Onset of branching occurred earlier and at a greater frequency in perennials than in annuals. In perennials, almost all flowers occurred at the fifth or more distal nodes. In annuals, most flowers occurred at the third and more distal nodes. Accessory axillary meristems and higher-order branching did not influence shoot architecture. ? Conclusions: We found no evidence for trade-offs between flowers and branches because axillary meristem number was not limiting: a large number of meristems remained quiescent. If, however, quiescence is a component of meristem allocation strategy, then meristems may be limited despite presence of quiescent meristems. At the two basalmost nodes, branch number was determined by mechanisms governing either meristem initiation or outgrowth, rather than flowering vs. branching. At the third and more distal nodes, heterochronic processes contributed to flowering time and branch number differences between populations. 相似文献
3.
Most models of mating system evolution predict mixed mating to be unstable, although it is commonly reported from nature. Ecological interactions with mutualistic pollinators can help account for this discrepancy, but antagonists such as herbivores are also likely to play a role. In addition, inbreeding can alter ecological interactions and directly affect selfing rates, which may also contribute to maintaining mating system variation. We explored herbivore and inbreeding effects on pollinator behavior and selfing rates in Mimulus guttatus. First, individual spittlebug (Philaenus spumarius) herbivores were applied to native plants in two populations. Spittlebugs reduced flower size, increased anther-stigma distance, and increased selfing rates. A second experiment factorially crossed spittlebug treatment with inbreeding history (self- vs. cross-fertilized), using potted plants in arrays. Spittlebugs did not affect pollinator behavior, but they reduced flower size and nearly doubled the selfing rate. Inbreeding reduced the frequency of pollinator visits and increased flower-handling time, and this may be the first report that inbreeding affects pollinator behavior. Selfing rates of inbred plants were reduced by one half, which may reflect early inbreeding depression or altered pollinator behavior. The contrasting effects of herbivory and inbreeding on selfing rates may help maintain mating system variation in M. guttatus. 相似文献
4.
? Premise of study: Botanists have long been interested in the reasons for genetic variation among individuals, populations, and species of plants. The anthocyanin pathway is ideal for studying the evolution of such phenotypic variation. ? Methods: We used a combination of quantitative trait loci mapping and association studies to understand the genetic basis of variation in five anthocyanin phenotypes including calyx, corolla, and leaf coloration patterns that vary within and among populations of Mimulus guttatus. We then examined what genes might be responsible for this phenotypic variation and whether one of the traits, calyx spotting, is randomly distributed across the geographic range of the species. ? Key results: All five phenotypes in M. guttatus were primarily controlled by the same major locus (PLA1), which contains a tandem array of three R2R3-MYB genes known to be involved in the evolution of flower color in a related species of Mimulus. Calyx spotting was nonrandomly distributed across the range of M. guttatus and correlated with multiple climate variables. ? Conclusions: The results of this study suggest that variation in R2R3-MYB genes is the primary cause of potentially important anthocyanin phenotypic variation within and among populations of M. guttatus, a finding consistent with recent theoretical and empirical research on flower color evolution. 相似文献
5.
In Mimulus guttatus, copper tolerance is determined largely by a single gene and is expressed in both the sporophyte and microgametophyte. This study explores the extent to which selection during pollen formation affects copper tolerance in the sporophytic generation. Two sets of plants heterozygous for copper tolerance, produced by reciprocal crosses between different copper-tolerant or sensitive families, and the plant on which the original observations were based, were cloned and grown in control or copper-supplemented solutions. Pollen viability and the number of tolerant progeny produced in backcrosses to sensitive plants were compared. In addition, the effect of copper treatment on pollen viability in vitro was compared for plants tolerant, sensitive and heterozygous for copper tolerance. The extent to which in vitro pollen viability decreased in response to copper treatment corresponded to the copper tolerance of the pollen source. When grown with added copper, four of the five plants showed significant reductions in pollen viability, ranging from 18% to 48% of control values. The reductions in pollen viability were correlated with an increase in tolerant progeny ( r= 0.679, p=0.004). Increases in tolerant progeny could be large, ranging from 119% to 170% of that of controls, but were usually smaller than was predicted from the reductions in viable pollen. In addition, plants derived from reciprocal crosses differed significantly in the extent to which pollen viability was decreased and sporophytic tolerance increased. Thus, while selection during pollen formation could increase sporophytic tolerance, sporophytic factors, perhaps including cytoplasmic or epigenetic ones, moderated the effectiveness of pollen selection for copper tolerance. 相似文献
6.
Movement of pollinators between coflowering plant species may influence conspecific pollen deposition and seed set. Interspecific pollinator movements between native and showy invasive plants may be particularly detrimental to the pollination and reproductive success of native species. We explored the effects of invasive Lythrum salicaria on the reproductive success of Mimulus ringens, a wetland plant native to eastern North America. Pollinator flights between these species significantly reduced the amount of conspecific pollen deposited on Mimulus stigmas and the number of seeds in Mimulus fruits, suggesting that pollen loss is an important mechanism of competition for pollination. Although pollen loss is often attributed to pollen wastage on heterospecific floral structures, our novel findings suggest that grooming by bees as they forage on a competitor may also significantly reduce outcross pollen export and seed set in Mimulus ringens. 相似文献
9.
The calculation of heritabilities and genetic correlations, which are necessary for predicting evolutionary responses, requires knowledge about the relatedness between individuals. This information is often not directly available, especially not for natural populations, but can be inferred by using molecular markers such as allozymes. Several methods based on inferred relatedness from marker data have been developed to estimate heritabilities and genetic correlations in natural populations. Most methods use maximum-likelihood procedures to assign pairs or groups of individuals to predefined discrete relatedness classes (e.g., half sibs and unrelated individuals). The Ritland method, on the other hand, uses method of moments estimators to estimate pairwise relatedness among individuals as continuous values. We tested both the Ritland method and a maximum-likelihood method by applying them to a greenhouse population consisting of seed families of the herb Mimulus guttatus and comparing the results to the ones from a frequently used standard method based on half-sib families. Estimates of genetic correlations were far from accurate, especially when we used the Ritland method. However, this study shows that even with a few variable allozyme loci, it is possible to get qualitatively good indications about the presence of heritable genetic variation from marker-based methods, even though both methods underestimated it. 相似文献
10.
1. This study investigated whether sand-dune willow Salix cordata , exhibits genetic variation in resistance and tolerance to herbivory. 2. A field experiment using cuttings from nine willow clones demonstrated genetic variation in resistance to the specialist herbivore Altica subplicata , as measured by beetle densities. Willow clones differed significantly in both total biomass and leaf trichome densities, and herbivore densities were marginally correlated with both of these parameters. 3. Tolerance to herbivory was measured in a greenhouse experiment by comparing growth response of plants experiencing 50% artificial defoliation and plants experiencing no defoliation. Clones showed significant differences in tolerance to herbivory for some growth measures (changes in height and number of leaves), but not for other growth measures (stem diameter growth and final biomass). 4. Despite the significant genetic variation in both resistance and tolerance, no trade-off was found between resistance and tolerance to herbivory. 相似文献
11.
Segregation ratios in the F 2s of crosses between courgette cultivars and the pumpkin cv. Cinderella indicated that the resistance of the latter to cucumber mosaic virus (CMV), expressed as a failure to develop systemic symptoms, was controlled by two unlinked recessive genes. However, data from the backcross generations were not consistent with this. Biometrical analysis showed significant gene interactions, possibly between the genes for CMV resistance and the background genotype determining plant vigour and a gene dosage effect for resistance. The resistance has been successfully backcrossed into courgette breeding material. 相似文献
12.
The timing and effectiveness of pollinator visitation to flowers is an important factor influencing mating patterns and reproductive success. Multiple pollinator probes to a flower may increase both the quantity and genetic diversity of progeny, especially if single probes deposit insufficient pollen for maximal seed set or if the interval between probes is brief. When pollen carryover is limited, sequential pollen loads may also differ markedly in sire representation. We hypothesized that these conditions help explain high levels of multiple paternity in Mimulus ringens fruits. We documented all bee visits to individual flowers, quantified resulting seed set, and determined paternity for 20 seeds per fruit. Most (76%) flowers received multiple probes, and the interval between probes was usually <30 min. Flowers probed multiple times produced 44% more seeds than flowers probed once. All fruits were multiply sired. Flowers receiving a single probe averaged 3.12 outcross sires per fruit, indicating that single probes deposit pollen from several donors. Multiple paternity was even greater after three or more probes (4.92 outcross sires), demonstrating that sequential visits bring pollen from donors not represented in the initial probe. 相似文献
13.
BackgroundThe apoplast plays an important role in plant defense against pathogens. Some extracellular PR-4 proteins possess ribonuclease activity and may directly inhibit the growth of pathogenic fungi. It is likely that extracellular RNases can also protect plants against some viruses with RNA genomes. However, many plant RNases are multifunctional and the direct link between their ribonucleolytic activity and antiviral defense still needs to be clarified. In this study, we evaluated the resistance of Nicotiana tabacum plants expressing a non-plant single-strand-specific extracellular RNase against Cucumber mosaic virus. ResultsSevere mosaic symptoms and shrinkage were observed in the control non-transgenic plants 10 days after inoculation with Cucumber mosaic virus (CMV), whereas such disease symptoms were suppressed in the transgenic plants expressing the RNase gene. In a Western blot analysis, viral proliferation was observed in the uninoculated upper leaves of control plants, whereas virus levels were very low in those of transgenic plants. These results suggest that resistance against CMV was increased by the expression of the heterologous RNase gene. ConclusionWe have previously shown that tobacco plants expressing heterologous RNases are characterized by high resistance to Tobacco mosaic virus. In this study, we demonstrated that elevated levels of extracellular RNase activity resulted in increased resistance to a virus with a different genome organization and life cycle. Thus, we conclude that the pathogen-induced expression of plant apoplastic RNases may increase non-specific resistance against viruses with RNA genomes. 相似文献
15.
Sugarcane mosaic virus (SCMV) causes considerable damage to maize ( Zea mays L.) in Europe. The objective of the present study was to determine the genetic basis of resistance to SCMV in European maize
germplasm and to compare it with that of U.S. inbred Pa405. Three resistant European inbreds D21, D32, and FAP1360A were crossed
with four susceptible inbreds F7, KW1292, D408, and D145 to produce four F 2 populations and three backcrosses to the susceptible parent. Screening for SCMV resistance in parental inbreds and segregating
generations was done in two field trials as well as under greenhouse conditions. RFLP markers umc85, bnl6.29, umc10, umc44, and SSR marker phi075 were used in F 2 populations or F 3 lines to locate the resistance gene(s) in the maize genome. Segregation in the F 2 and backcross generations fitted to different gene models depending on the environmental conditions and the genotype of the
susceptible parent. In the field tests, resistance in the three resistant European inbreds seems to be controlled by two to
three genes. Under greenhouse conditions, susceptibility to SCMV in D32 appears to be governed by one dominant and one recessive
gene. Allelism tests indicated the presence of a common dominant gene (denoted as Scm1) in all three resistant European inbreds and Pa405. Marker analyses mapped two dominant genes: Scm1 on chromosome 6S and Scm2 on chromosome 3.
Received: 17 November 1997 / Accepted: 25 November 1997 相似文献
16.
Soybean cultivar J05 was identified to be resistant to the most virulent strain of soybean mosaic virus (SMV) in northeastern China. However, the reaction of J05 to SMV strains in the United States of America is unknown, and genetic information is needed to utilize this germplasm in a breeding program. The objectives of this study were to determine the reaction of J05 to all US strains of SMV (G1-G7), the inheritance of SMV resistance in J05, and the allelic relationship of resistance genes in J05 with other reported resistance genes. J05 was crossed with susceptible cultivar Essex (rsv) to study the inheritance of SMV resistance. J05 was also crossed with PI 96983 (Rsv1), L29 (Rsv3), and V94-5152 (Rsv4) to test the allelism of resistance genes. F(2) populations and F(2:3) lines from these crosses were inoculated with G1 or G7 in the greenhouse. Inheritance and allelism studies indicate that J05 possesses 2 independent dominant genes for SMV resistance, one at the Rsv1 locus conferring resistance to G1 and necrosis to G7 and the other at the Rsv3 locus conditioning resistance to G7 but susceptibility to G1. The presence of both genes in J05 provides resistance to G1 and G7. J05 is unique from the previous sources that carry 2 genes of Rsv1Rsv3 and will be useful in breeding for SMV resistance. 相似文献
17.
Resistance to Cucumber mosaic virus (CMV) in the exotic melon accession PI 161375, cultivar "Sonwang Charmi" (SC) had previously been described as oligogenic, recessive and quantitative, with a major QTL residing in linkage group XII (LGXII). We have used a collection of near isogenic lines (NILs) with introgressions of SC into the genome of the susceptible accession Piel de Sapo (PS) to further characterise this resistance. Infection of NILs carrying introgressions on LGXII showed that only NIL SC12-1 was resistant to CMV strains P9 and P104.82, but not to strains M6 and TL. Further mapping of this region showed that the resistance, named cmv1 maps in an area of 2.2 cM, between markers CMN61_44 and CMN21_55. Moreover, cmv1 confers total resistance to strains P9 and P104.82, indicating that in these cases it is not quantitative and that cmv1 is sufficient to confer full resistance to these CMV strains. Candidate gene mapping of ten translation initiation factors in the melon genome failed to find any of them in the interval between markers CMN61_44 and CMN21_55. All these results suggest that the resistance to CMV present in SC is oligogenic, where different loci confer resistance to different CMV strains, but not necessarily quantitative, since at least one of these genes (cmv1) confers total resistance, similar to that of the parental SC, and does not need the contribution of other loci. 相似文献
18.
Cucumber mosaic virus (CMV) has a worldwide distribution and the widest host range of any known plant virus. From 2000 to 2012, epidemics of CMV severely affected the production of snap bean ( Phaseulos vulgaris L.) in the Midwest and Northeastern United States. Virus diversity leading to emergence of new strains is often considered a significant factor in virus epidemics. In addition to epidemics, new disease phenotypes arising from genetic exchanges or mutation can compromise effectiveness of plant disease management strategies. Here, we captured a snapshot of genetic variation of 32 CMV isolates collected from different regions of the U.S including new field as well as historic isolates. Nucleotide diversity (π) was low for U.S. CMV isolates. Sequence and phylogenetic analyses revealed that CMV subgroup I is predominant in the US and further showed that the CMV population is a mixture of subgroups IA and IB. Furthermore, phylogenetic analysis suggests likely reassortment between subgroups IA and IB within five CMV isolates. Based on phylogenetic and computational analysis, recombination between subgroups I and II as well as IA and IB in RNA 3 was detected. This is the first report of recombination between CMV subgroups I and II. Neutrality tests illustrated that negative selection was the major force operating upon the CMV genome, although some positively selected sites were detected for all encoded proteins. Together, these data suggest that different regions of the CMV genome are under different evolutionary constraints. These results also delineate composition of the CMV population in the US, and further suggest that recombination and reassortment among strain subgroups does occur but at a low frequency, and point towards CMV genomic regions that differ in types of selection pressure. 相似文献
19.
Transgenic Gladiolus plants that contain either Cucumber mosaic virus (CMV) subgroup I coat protein, CMV subgroup II coat protein, CMV replicase, a combination of the CMV subgroups I and II coat
proteins, or a combination of the CMV subgroup II coat protein and replicase genes were developed. These plants were multiplied
in vitro and challenged with purified CMV isolated from Gladiolus using a hand-held gene gun. Three out of 19 independently transformed plants expressing the replicase gene under control
of the duplicated CaMV 35S promoter were found to be resistant to CMV subgroup I. Three out of 21 independently transformed
plants with the CMV subgroup II coat protein gene under control of the Arabidopsis UBQ3 promoter were resistant to CMV subgroup II. Eighteen independently transformed plants with either the CMV subgroup I coat
protein or a combination of CMV subgroups I and II coat proteins were challenged and found to be susceptible to both CMV subgroups
I or II. Virus resistant plants with the CMV replicase transgene expressed much lower RNA levels than resistant plants expressing
the CMV subgroup II coat protein. This work will facilitate the evaluation of virus resistance in transgenic Gladiolus plants to yield improved floral quality and productivity. 相似文献
20.
Soybean [ Glycine max (L.) Merr.] PI486355 is resistant to all the identified strains of soybean mosaic virus (SMV) and possesses two independently inherited resistance genes. To characterize the two genes, PI486355 was crossed with the susceptible cultivars Lee 68 and Essex and with cultivars Ogden and Marshall, which are resistant to SMV-G1 but systemically necrotic to SMV-G7. The F 2 populations and F 23 progenies from these crosses were inoculated with SMV-G7 in the greenhouse. The two resistance genes were separated in two F 34 lines, LR1 and LR2, derived from Essex x PI486355. F 1 individuals from the crosses of LR1 and LR2 with Lee 68, Ogden, and York were tested with SMV-G7 in the greenhouse; the F 2 populations were tested with SMV-G1 and G7. The results revealed that expression of the gene in LR1 is gene-dosage dependent, with the homozygotes conferring resistance but the heterozygotes showing systemic necrosis to SMV-G7. This gene was shown to be an allele of the Rsv1 locus and was designated as Rsv1-s. It is the only allele identified so far at the Rsv1 locus which confers resistance to SMV-G7. Rsv1-s also confers resistance to SMV-G1 through G4, but results in systemic necrosis with SMV-G5 and G6. The gene in LR2 confers resistance to strains SMV-G1 through G7 and exhibits complete dominance. It appears to be epistatic to genes at the Rsv1 locus, inhibiting the expression of the systemic necrosis conditioned by the Rsv1 alleles. SMV-G7 induced a pin-point necrotic reaction on the inoculated primary leaves in LR1 but not in LR2. The unique genetic features of the two resistance genes from PI486355 will facilitate their proper use and identification in breeding and contribute to a better understanding of the interaction of SMV strains with soybean resistance genes. 相似文献
|